
Towards an Advanced System for Real-Time Event
Detection in High-Volume Data Streams

Andreas Weiler, Svetlana Mansmann, Marc H. Scholl
Database and Information Systems Group, University of Konstanz

Box D 188, 78457 Konstanz, Germany

{firstname.lastname}@uni-konstanz.de

ABSTRACT

This paper presents an advanced system for real-time event
detection in high-volume data streams. Our main goal is
to provide a system, which can handle high-volume data
streams and is able to detect events in real-time. Addition-
ally, we perform further steps, such as classifying and rank-
ing events with retrospective analysis. To solve this task
we take advantage of a high-performance database system
for semi-structured data and extend it with the functional-
ity of continuous querying. The combination of executing
queries on the incoming data stream and fast queries on the
historical datasets is used as a powerful tool for developing
an event detection and information system. Furthermore,
we define several event features for improving event classifi-
cation and for discovering parallelisms, relations, duration,
and coherences of events.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: Information
Storage and Retrieval

Keywords

event detection, information extraction, stream processing

1. INTRODUCTION AND MOTIVATION
Recent years have witnessed a continuous development of

social media services on the web. Unprecedented success
and active usage of these services result in massive amounts
of user-generated data produced within a very short time.
The continuous emergence of new services, such as social me-
dia platforms and technologies for generating and receiving
streamed data, imposes new challenges on the way such data
volumes are processed and analyzed in real-time or near real-
time. Popular examples are microblogging services, such as
Twitter. Initially introduced in 2006 as a simple platform for
exchanging short messages (“tweets”) on the Internet, Twit-
ter rapidly gained worldwide popularity and has evolved into

an extremely influential channel of broadcasting news and
the means of real-time information exchange. Twitter has
revolutionized the ways of interacting and exchanging infor-
mation on the Internet and opened new ways for knowledge
acquisition from social interaction streamed in real-time. As
of 2012 the Twitter platform attracts over 140 million active
users generating over 340 millions of tweets daily1. A crowd
of users broadcast a variety of personal matters, most cur-
rent news, or spam and advertisements into the World Wide
Web. The resulting data flow contains a large volume of live
data with all types of information from all over the world.
Considering the speed, the volume and the noisiness of the
streaming data, it becomes a crucial task to discriminate be-
tween useful and useless information in the incoming data
stream in appropriate time. This brings up new challenges
for data processing and analysis. An important prerequisite
for achieving the fastest possible response times is efficient
processing of the streaming data. The fast propagation of
news and current events over microblogging services makes
it very interesting to detect such events automatically and
in real-time. We have to tackle several issues to provide an
efficient and effective live event detection system.
On the one hand, a system is required to keep the data mov-
ing through the on-line algorithms to get the most valuable
results in the shortest time frame possible. On the other
hand, there is a need for the functionality of a database
system for accessing the historical data already stored for
further steps of the analysis and for comparing freshly de-
tected events with past occurrences. For example a recent
earthquake in Indonesia (see chapter 5) is detected based
on mostly non-English terms. However by using the histor-
ical data belonging to the event we are able to enrich the
event by English terms such as “earthquake”, “indonesia”,
and “warning”. As a result, there is an urge to combine a
passive and inflexible database system with a real-time and
active one and deploy the advantages from both into a pow-
erful combination.

2. SYSTEM ARCHITECTURE
We adopt a native XML database system BaseX2 as an

underlying architecture for our proposed system. The core
component combines the storage layer and the streaming
processor into one system. The event detection system as
well as the visualizations can be assembled in a distributed
fashion by using several connections to the streaming data or

1http://blog.twitter.com/2012/03/twitter-turns-six.html
2http://www.basex.org

87

Konstanzer Online-Publikations-System (KOPS)
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-2-12xls4eaaj83g7

Erschienen in: Proceedings of the 5th Ph.D. workshop on Information and knowledge - PIKM '12. -
New York, New York, USA : ACM Press, 2012. - S. 87-90. - ISBN 978-1-4503-1719-1

https://dx.doi.org/10.1145/2389686.2389704

Figure 1: Architecture overview of the proposed system.

the database server. Hereby we ensure that all components
are decoupled and can be extended with further components.
One of the challenging tasks is the combination of continuous
querying applied to the stream and queries against data al-
ready stored in the database. This combination leads to two
challenges we have to tackle: first, we encounter an ongoing
load of queries for the event detection and, second, we have
to deal with uncertain peaks of query load for querying the
historical data. Due to storage and performance constraints
it is impossible to store the entire incoming data stream in
the database for unlimited time. Therefore, we rather focus
on the last few hours of recent data for extracting additional
information for the events.
Another challenge is to combine and integrate multiple het-
erogeneous data sources into a homogeneous system. With
the usage of XML we tackle this challenge and provide an
adaptable system for all kinds of sources. For example,
Twitter data is streamed in JavaScript Object Notation for-
mat and can be easily and quickly converted into XML.With
this solution the system automatically adapts to possible fu-
ture format changes of the streamed Twitter data.
Figure 1 shows our proposed architecture, which supports
direct and continuous querying applied to on-line stream as
well as execution of queries against data already stored in
the database. As for query language, the database system
supports the full functionality of XQuery3. The incoming
data stream runs through the continuous query system for
detecting events on-the-fly. For example, it is possible to
filter the incoming items by defining a query for returning
only tweets with geographic information included. Simul-
taneously to the stream processing, the data items will be
persistently stored into the database to be available for fu-
ture information acquisition. Additionally, we store already
detected event patterns into the database to provide sup-
port for matching newly detected events with past events,
detecting relationships between events, and offering an in-
formation system about all past events.

3. TWITTER
Twitter has fundamentally changed the way messages are

formulated, published, and distributed in the World Wide
Web. Prominent characteristics of Twitter, such as the lim-
itation of the message length to just 140 characters and the
freedom for users to create messages in a fast and easy way
without rules, regulations or inspections applied, brought a
new era of communication into being.
A further important property of the Twitter data is that
each tweet object in the data stream contains the tweet mes-
sage itself and a very large amount of meta-data for the tweet
(e.g. count of retweets, geographic location) and the user’s

3http://www.w3.org/TR/xquery/

profile (e.g. count of followers). Through this multidimen-
sionality with over 60 data fields we can derive such dimen-
sions as the time of the tweet, its geographic location or the
source, the latter describing the way the tweet is created.
For example, the Twitter message can be sent from a mo-
bile device, by just clicking a Twitter button on any website
or by entering the message directly via the Twitters’ web in-
terface. This information can be really helpful for separating
between a personally created tweet and a pure forwarding of
a web article. Other kind of meta-data specific for Twitter
is the count of retweets and the mention of hashtags or users
in the tweets. By using the count of retweets we can provide
an indication about the range of users who already received
the respective tweet. This additional knowledge can be very
useful for detecting and characterizing different events.

4. EVENT DETECTION
Event Detection is a classical problem that has been un-

der discussion for several years in many research areas. A
lot of research tackles the detection of anomalies [4], which
can be an indication of an event. Our research is mostly
related to anomaly detection in text data streams and our
analysis also mainly concentrates on the content of short
messages. Hereby we can discover abnormally high rates
of terms in the textual input. However, we also want to
combine the analysis of the textual part of the tweet with
acquired knowledge about events and anomalies from differ-
ent dimensions provided by the meta-data. For example, we
can apply the event detection analysis on the geographical
dimension of tweets to determine abnormally large amount
of tweets in specific regions or cities, which could be an in-
dication of a local or global happening.
We also want to classify events in order to distinguish be-
tween certain types of events. Using this acquired knowledge
we can set up hierarchies and relations between the recog-
nized and classified events. To achieve all these goals in
real-time we need to develop algorithms to make them ap-
plicable for on-line event detection and combine them with
retrospective analysis for further knowledge gains [12].

4.1 Phases of Event Detection
For an easier separation of single steps in the event de-

tection framework, we defined three phases that have to be
implemented using either the on-line stream or the historical
dataset. The following summarizes the phases of the event
detection system:

1. Detect and Identify: The first phase is concerned with
detecting unusual behavior of defined measures in the in-
coming data stream. We have to distinguish between
useful and useless items in a fast-moving, never ending,
noisy, and high-volume data stream, which imposes the
necessity to develop new or adapt existing algorithms for
on-line execution and immediate delivery of the results.

2. Specify and Classify: The second phase is specifica-
tion and classification of the event. Here we identify
various features of an event and assign the latter to a
defined or newly generated event class. For example, the
classification can be supported by meta-data inspection
or details from information sources such as DBPedia4 or
WordNet5. Additionally we enrich the events with fre-

4http://dbpedia.org/
5http://wordnet.princeton.edu/

88

quent terms extracted out of the historical data, which
occurred in conjunction with the event term. Further in-
formation gain can be achieved by correlation with other
sources (e.g., RSS feeds).

3. Rank and Relate: The next phase is event ranking and
discovery of relations between and among certain events.
We have to distinguish between important (e.g. highest
amount of tweets or most retweeted) and less important
events as well as whether and how they are related to
each other. This knowledge opens up the possibility to
create hierarchical structures of events and to model re-
lationships between them.

4.2 Event Types and Features
By enumerating a multitude of possible characteristics of

an event, we can detect related events, such as equal or sim-
ilar events at different geographical locations or events that
are follow-ups of other events. A further advantage is that
we can find duplicate events or events caused by other events
and build up a taxonomy of event types.
On the one hand, events can be described by a pre-defined
set of characteristics and features. On the other hand, events
are highly versatile and it should be possible to discover ar-
rival of new events, i.e., such that have never occurred be-
fore, in order to describe them by introducing new features.
This is a kind of unsteadiness we have to tackle within our
research. The most common descriptive characteristics of
events can be summarized as follows:

Type: Determines what other information is needed to prop-
erly characterize the given event. Events can be of various
types, e.g., social, natural disaster, or criminal activity.

Geographic: Describes where the event took place and what
locations are involved in the event. This way, we can
distinguish between global and local events or between
centralized and widely scattered ones, etc.

Temporal: Describes the event’s time frame along with the
starting and the ending point. By using the time frame
we can differentiate between short-term, medium-term or
long-term events [5]. With the knowledge from the event
history we can additionally distinguish between one-time
happenings or reoccurring events.

Social: Contains data about the actors or the concerned
persons of an event. Hereby we can classify individual
events (e.g., death of a famous artist) or mass events
(e.g., political riots).

Sentiment: Reflects the emotions of the event, giving us
an opportunity to distinguish between positive and neg-
ative events. We also have to deal with mixed emotional
characteristics, such as political elections or sport events.

5. MOTIVATING EXAMPLE
The data collection for our work was obtained by stor-

ing the incoming items of the public Twitter stream directly
into a database, with new database instances created on an
hourly basis. We are connected to the Twitter endpoint
using the Streaming API6 with the so-called “gardenhose”
level, which contains 10% of the public stream provided by
Twitter. As a result, we obtain a data stream with up to 2
million tweets per hour with the average of 20.000 tweets per

6https://dev.twitter.com/docs/streaming-api

minute. We can conclude that around 10% of the incoming
tweets have geographic information, which is either set au-
tomatically by the mobile device, manually by the author of
the tweet or both of them, available. Our training collection
currently covers the last few months of the Twitter stream.
In the following example we show event detection concen-
trating on the textual analysis of the content of the tweets.
We analyze abnormal peaks in the IDF value of terms and
assume that the resulting terms are “event terms”. In this
case we simulate a live stream with the Twitter data of the
hour from an earthquake happening on the Indonesian is-
land of Sumatra at 08:38:38 AM UTC on Wednesday, April
11th 2012. Since we only need the text of the tweets, we run
a continuous filter query for the text field on the stream and
discard all other unused data fields.
Since pure tokenization of texts results in a lot of terms,
but the main subject of a statement is normally present in
nouns, the tokens are tagged with their part of speech by
using especially tailored for Twitter Part-Of-Speech Tagger
[6] and then limited to nouns and proper nouns for further
treatment. All other tokens are currently discarded. Figure
2 shows the IDF Trend of the resulting possibly event terms.
For the purpose of checking whether a term is an event term
or not we calculate the IDF Trend of the current occurrence
of a term by using the following rules:

1. Let xn (n is the actual occurrence) be the number of
tweets run through the system since the last occurrence
of the term. If result res (res = log(xn) + log(xn−1) −
log(xn−2)) is less than the threshold 4, increase number
of hits by one, else decrease number of hits by one.

2. If number of hits is greater than 20, set the term as pos-
sible event term.

Figure 2: IDF Trend of resulting event terms.

By using the above rules we can detect seven candidates
for event terms in the hour of the earthquake event already
mentioned before. Most of them are related to the event and
can be detected in the last quarter of the hour, which corre-
sponds to the time when the event takes place. Future work
and further analysis is needed to validate the possible event
terms and to mark them as definite or unreliable. Addition-
ally we have to enrich the identified event terms with the
information from the historical data and investigate their
correlation and relationships. First exemplary results show
that we can enrich the event by detecting frequent terms,
such as “earthquake”, “indonesia”, and “warning”, in the ap-
propriate tweets containing one of the event terms.

6. RELATED WORK
The work related to our research can be summarized by

89

topics such as stream processing systems and knowledge dis-
covery and event detection from data streams and especially
from Twitter. Stream processing was introduced into the
world of relational databases by systems such as Aurora [1],
Borealis [2], and STREAM [3] which provide a SQL inter-
face for accessing and processing the streaming data. In
contrast to these systems we concentrate on extending an
XML database for accessing and processing semi-structured
data in an on-line fashion.
Mathioudakis and Koudas [8] presented a system called“Twit-
ter Monitor”, which detects trends from Twitter streams in
real-time by identifying and grouping bursty keywords in
the tweets. The system further actively involves the users
to order the trends and provide their own descriptions for
them. Contrary to this system we propose to automatically
process the phases of our proposed event analysis, such as
the functionality for specifying, classifying and correlating
events. Sankaranarayanan et al. [10] proposed a tool called
“TwitterStand”, which detects breaking news from Twitter
by observing some identified special users (“Seeders”), who
are mainly responsible for the occurrence of news stories. An
event detection system dedicated to earthquakes was pre-
sented by Sakaki et al. [9]. In 2011 Weng et al. [11] used
wavelet analysis on the frequency-based raw signals of the
words from tweet for detecting events. They used a keyword-
filtered dataset to show their practical usage for identifying
events during the Singapore General Election in 2011. In
the same year Marcus et al. [7] demonstrated an application
called “TwitInfo”, which identifies and labels event peaks for
given search queries related to the event. In contrast to our
proposed idea which uses an unfiltered data stream, all of
the above mentions systems are somehow restricted.

7. CONCLUSIONS AND FUTURE WORK
In this paper we proposed an advanced system for event

detection on high-volume data streams. We demonstrated
the ability to detect events in a large collection of tweets by
identifying abnormal peaks via inverse document frequency
analysis without predefined keywords. These results provide
evidence that the Twitter data stream is rich in information
and events can be identified. Since the data contains further
interesting dimensions such as the geographic information,
we also extend the event detection algorithm to take such
dimensions into account.
The main challenges are now to extend and devolve our ex-
isting approaches to work in an on-line and real-time fashion
on the data streams by developing and enhancing algorithms
and to implement further extensions and improvements of
the underlying system. For example, the database system
has to be equipped with a functionality to execute parallel
writing transactions to store the incoming streaming data
and reading transactions for acquiring knowledge for fur-
ther event analysis. One step in the future work is to analyze
large amounts of historical tweets to identify daily or weekly
patterns and to include these in the analysis. Hereby we get
the knowledge about default progression of terms at particu-
lar times. Another step is to add further data sources to our
system and correlate these data sources with the detected
events from the Twitter stream. Hereby we can obtain fur-
ther information about the detected events and that can also
help to decide if an event is “real” or not. Additionally we
also want to detect events occurring in the incoming stream
of other sources, such as RSS feeds, which do not appear in
the Twitter stream.

We contribute a scalable and high-performance system that
provides both real-time and retrospective analysis combined
in a core component. The database system plays a powerful
role as a continuous active and a constantly available passive
query processor. A further contribution is the integration
and consolidation of many heterogeneous data sources for
obtaining the largest possible information gain through our
system. We make use of various independent sources and
combine them into a single information base for real-time
event detection and enrichment.

8. REFERENCES
[1] D. Abadi et al. Aurora: A Data Stream Management

System. In In ACM SIGMOD Conference, 2003.

[2] D. Abadi et al. The Design of the Borealis Stream
Processing Engine. In Second Biennial Conference on
Innovative Data Systems Research (CIDR 2005), 2005.

[3] A. Arasu et al. STREAM: The Stanford Data Stream
Management System. Technical Report 2004-20,
Stanford InfoLab, 2004.

[4] V. Chandola et al. Anomaly detection: A survey.
ACM Comput. Surv., 41(3), 2009.

[5] M. Cheong and V. Lee. Integrating web-based
intelligence retrieval and decision-making from the
twitter trends knowledge base. In Proceedings of the
2nd ACM workshop on Social web search and mining,
SWSM ’09, pages 1–8. ACM, 2009.

[6] K. Gimpel et al. Part-of-Speech Tagging for Twitter:
Annotation, Features, and Experiments. In ACL
(Short Papers), pages 42–47, 2011.

[7] A. Marcus et al. Twitinfo: aggregating and visualizing
microblogs for event exploration. In Proceedings of the
2011 annual conference on Human factors in
computing systems, CHI ’11, pages 227–236. ACM,
2011.

[8] M. Mathioudakis and N. Koudas. TwitterMonitor:
trend detection over the twitter stream. In Proceedings
of the 2010 international conference on Management
of data, SIGMOD ’10, pages 1155–1158. ACM, 2010.

[9] T. Sakaki et al. Earthquake shakes Twitter users:
real-time event detection by social sensors. In
Proceedings of the 19th international conference on
World wide web, WWW ’10, pages 851–860. ACM,
2010.

[10] J. Sankaranarayanan et al. Twitterstand: news in
tweets. In Proceedings of the 17th ACM SIGSPATIAL
International Conference on Advances in Geographic
Information Systems, pages 42–51. ACM, 2009.

[11] J. Weng et al. Event Detection in Twitter. Technical
report, HP Labs, 2011.

[12] Y. Yang et al. A study of retrospective and on-line
event detection. In Proceedings of the 21st annual
international ACM SIGIR conference on Research and
development in information retrieval, SIGIR ’98, pages
28–36. ACM, 1998.

90

