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Abstract

We consider solutions for distributed multicommodity flow
problems, which are solved by multiple agents operating
in a cooperative but uncoordinated manner. We show
first distributed solutions that allow 1 + e approximation
and whose convergence time is essentially linear in the
maximal path length, and is independent of the number of
commodities and the size of the graph.

Our algorithms use a very natural approximate steepest
descent framework, combined with a blocking flow technique
to speed up the convergence in distributed and parallel
environment.

Previously known solutions that achieved comparable
convergence time and approximation ratio required exponen-
tial computational and space overhead per agent.

1 Introduction

1.1 Motivation Consider a collection of uncoordi-
nated agents trying to optimize a certain global objec-
tive. The agents must follow a specific protocol (namely,
local program of the agent); our goal is to design such
a local program in order to achieve fast convergence to
the near-optimum solution. Notice that the fact that
the agents are uncoordinated does not preclude them
from executing the same local program, as long as every-
body is honest. Certainly, in some scenarios agents may
act dishonestly and deviate from the protocol, either in
order to increase their own revenue at the expense of
others (selfish behavior), or simply in order to sabotage
the system (malicious behavior). This paper only deals
with honest case, and does not deal with the issue of
designing either incentives to prevent selfish behavior
or defenses against malicious behavior.

A canonical distributed optimization problem is
solving a Linear Program in a distributed environment.
From the computational point of view, the following
case is interesting: we have exponential number of vari-
ables, yet polynomial dimensionality. One classical ex-
ample is multicommodity flow: there is an exponential
number of paths, yet the dimensionality of the solution
is certainly bounded by the number of edges.
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Informally, the above network bandwidth manage-
ment problems can be modeled as multicommodity flow
problems in a directed capacitated graph, with a collec-
tion of commodities, each characterized by the follow-
ing: source (where the flow is originated), sink (where
the flow ends up), benefit (the monetary value of this
flow), and demand (the amount of flow available). The
normalized load of each edge is the ratio between flow
on this edges and its capacity. The flow for each com-
modity must satisfy Kirchoff laws of flow conservation at
intermediate points (except for source and destination).
The collection of all the flows must satisfy capacity con-
straints, namely total flow on each edge cannot exceed
its capacity.

While multicommodity flow is a classical combina-
torial optimization problem, it also directly addresses a
number of practically important issues of congestion and
bandwidth management in connection-oriented network
architectures, as stated below!:

Pure Routing: decide how to route all the demand
to minimize maximal edge load.

Pure Flow Control: decide which fraction of a
demand commodity is admitted (rest is rejected), as-
suming infinite demand, and assuming routing is pre-
determined to go over a single path.

Combined routing € flow control: combination of
the two decisions above: whom do admit, and how to
route.

There are a number of variations of classical mul-
ticommodity flow and Linear Programming problems
that describe above network problems.

Maximum concurrent flow (MCF): maximizes
the minimal ratio between the flow of a commodity and
its demand (disregarding their benefit), i.e., minimized
maximum edge load while meeting all flow demand.
This is exactly the pure routing problem in networks.

Maximum-benefit low (MBF): maximizes the
total benefit of all the flows (disregarding their de-
mand); it simultaneously optimizes routing and admis-
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ing these issues, and thus is not supporting quality of service
guarantees.



sion control to maximize overall network throughput.
This is exactly the combined routing and flow control
problem in networks.

Positive Linear Programming (LP): (also
called pure packing problem) corresponds to solving
pure flow control problem in network; each variable cor-
responds to flow on the unique fixed path for the com-
modity. Note that polynomial representations of MCF
and MBF problems involve negative coefficients, e.g.,
to capture Kirchoff’s flow preservation laws and thus
do not fit into this framework.

One can introduce separate variables for flows of
each commodity on each path, rather than for edges,
and thus represent multicommodity flows as positive
LP’s. This formulation allows solving MCF and MBF
problems in this framework. The computational over-
head of such representation is linear in the number
of paths and super-polynomial (in the worst case, ex-
ponential) in the size of the network, even for rela-
tively short (logarithmic) length paths. In a distributed
setting, positive LP has been widely studied recently
[GY02, LN93, BBR97, You0l] and can be considered
solved in a satisfactory manner. The resulting dis-
tributed solutions for flow problems suffer from expo-
nential representation issue. In this paper, we focus on
solutions using polynomial representations that do not
require exponential overhead.

1.2 Distributed Computation Model We assume
a collection of agents, each agent representing a differ-
ent flow, interacting with a shared “billboard” in a syn-
chronous manner. The billboard maintains the current
state of total network flows, namely keeps record of total
flow on each edge of the network, without distinguish-
ing which commodity is this flow coming from. At each
time step, each agent may “read” the values of flow on
various network edges from this billboard, perform local
computation, and then “write” its own flows on this bill-
board, namely re-routing its flow based on the current
state of the network flows.

At each time step, each agent decides where to send
its flow (this is the routing decision) and how much
of its flow will be sent overall (this is the admission
control decision). These decisions are made, at each
time step, by all the agents in parallel and without
coordination with other agents, except for the fact that
the agents have access to the common clock, they see
the congestion of the network edges being used by the
flows of their commodity, and they all execute the same
program.

In order to make our model more realistic, we make
additional restriction on the use of the billboard, namely
that an agent responsible for a certain commodity can

only read the part of the billboard which is currently
used by its flow. The reason for this restriction is that
in reality, the flow over a certain path can measure
congestion over the edges used in this path, but cannot
see congestion over the other edges used by other flows,
since the flows are uncoordinated.

For example, if we consider a set of clients, each
client being able to send a job to one of the “near-by”
servers, then the problem becomes load-balancing in a
bi-partite graph [ANR92], where each client can see the
load of near-by servers and decide how to re-balance its
flow based on this limited feedback.

Also, since this model does not allow any explicit
communication between agents, it is impossible to solve
the problem by a centralized algorithm as in, say,
[PST95], [GK98]. In fact it is not even a-priori obvi-
ous that approximately optimal solutions are even com-
putable.

Complexity measures. As the time goes on, the
quality of the flows should improve in that the flow
decisions should approach the optimum flow. The
approzimation ratio of the flow is the ratio between the
performance of this flow and optimal performance.

The distributed convergence time (for certain ap-
proximation ratio 14-¢ ) is the number of parallel rounds
it takes for the distributed algorithms to start meet-
ing such bounds. The computational complezity of each
agent is the local computational overhead imposed by
local program of each agent, in terms of number of local
computational steps.

The distributed convergence time is an information-
theoretic measure that is independent of the model of
computation, while computational complexity is model-
dependent and thus is not particularly robust. It is thus
reasonable to draw distinction between polynomial time
and super-polynomial time in this model.

1.3 Our results We will denote by 7(MCF) and
7(M BF) the distributed convergence times of computa-
tion of maximum concurrent flow and maximum-benefit
flow, and we denote by u(MCF) and u(M BF) the to-
tal amount of computation by each agent. Let k denote
the number of commodities, and let m,n denote the
number of edges and nodes in the network. Let an in-
teger L, 1 < L < n, be the maximal path length in a
near-optimal flow solution (this is essentially a constant
in many important applications); note that L = 1 in a
bi-partite case. Denote by P < n” the total number of
paths. Our main results are stated in Theorem 1.1 and
1.2, respectively and Figure 1 compares them with the
existing results.



| Reference

| Approximation | Distributed Time |

Sequential work |

[AA94] O(logn) O (logP) = O (L) O (P) =0 (nh)
[LN93, BBRI7, You01] 1+ O (logP) = O (L) O (P) =0 (nh)
This paper 1+e€ O (logP) =0 (L) | O(m? -logP) =0 (m?- L)

Figure 1: Comparison of our results with existing work (O (-) absorbs polylog factors).

THEOREM 1.1. For the MCF algorithm in §2.2, the
convergence time and computation cost are:

T(MCF) < £61og3mlogﬁ
€ €
= O(logP)=0(L) and
2
w(MCF) = O(L ;n 1og3mlogﬁ>
€ €

0 (m2 -log P) =0 (mQL) .

THEOREM 1.2. For the MBF algorithm in §3.2, the
convergence time and computation cost are:

T(MBF) < £410g2mlogE
€ €
= O(logP)=0(L) and
2
w(MBF) = O(L :n longlogE)
€ €

o} (m2 -logP) =0 (m2L) .

1.4 Comparison with existing work The only ex-
isting parallel methods with comparable convergence
times and approximation ratios apply only to positive
LP, namely pure “packing” or pure “covering” or a com-
bination of pure packing and covering. These results
were achieved by Luby and Nisan [LN93], Awerbuch and
Azar [AA94], Bartal-Byers-Raz [BBR97], and Young
[YouOl]. As mentioned before, multicommodity flow
problem do not fit naturally into this framework. That
is, in order to fit this framework, and exponential com-
putational overhead is needed with explicit representa-
tion of flow paths. Assuming flow paths with length
bounded by L, the resulting algorithms can converge in
O (logP) = O (L) rounds at the expense of exponential
computational overhead, u(MCF), u(M BF) for which
only exponential upper bounds existed O (P) = Q(n”)
(Figure 1).

The essence of our improvement over prior work
[LN93], [AA94], [BBRI7], [YouOl] is that, without
compromising on the convergence time we accomplish,
for the first time in the literature, a solution with
polynomial computation overhead of O (log P) = O (L).

1.5 Intuitive explanation of the algorithm The
basic idea of our algorithm is properly exploiting the
concepts of Lagrangian relaxation and steepest descent.
The idea of Lagrangian relaxation is to introduce an
exponential potential function, that sums up exponents
of congestion over all network edges. Suppose that
initially all the flows are zero and we increase the flows
slowly to meet the demand. While we do this, the
potential function grows and our goal is to keep the
potential function under control.

Alternatively (for MCF problem) we can introduce
a fictitious edge with low capacity connecting the source
and the sink for each commodity, and send initially all
the flow for this commodity over this fictitious edge. In
the future, we will re-route the flow from such a fictitious
edge to real network edges, thus creating impression
that the demand routed through the real network is
only growing.

For the MBF problem, introduce a fictitious com-
modity with almost zero benefit and a fictitious edge
between its source and sink, and route all benefit that
needs to be accrued through this edge, using only ficti-
tious commodity.

Notice that if we can eventually satisfy the demand
or benefit requirements while keeping the potential
function increase to be at most polynomially higher
than the potential increase using optimal flows, then
this is equivalent to achieving 1 + ¢ approximation.

In order to achieve this goal we proceed in a steepest
descent manner: we reroute portion of the flow from
the expensive paths to the cheapest paths, just like in
[PST95] or [GK98]. The problem is how to efficiently
implement this in a distributed concurrent environment.
The difficulty here is quite similar to what has been
reported, for example in [AA94] and to some extent in
[EDMO05, FRV06], namely, a concurrent attempt to re-
route on a shortest path causes this path to stop being
the shortest, causing unpredictable oscillations.

We suggest a new algorithmic technique to handle
such oscillations, which achieves the same effect as in
exponential overhead approaches of Luby and Nisan
[LN93], Bartal et al. [BBRY7], and Young [YouOl]
without exponential overhead.



Essentially, this involves extracting the sufficient
conditions for approximate steepest descent framework
to be efficient, and finding a polynomial algorithm that
meets these conditions. Specifically, a sufficient condi-
tion is that the flow of each commodity on each edge
increases at most multiplicatively (or by a polynomially
small additive amount). The efficient algorithm that we
propose finds a maximal collection of such flow augmen-
tations using the blocking flow subroutine.

1.6 Outline of the rest of the paper The technical
contents of the paper consists of the following. We
start with a description of the basic steepest descent
framework for MCF problem in §2.1 and the distributed
MCF algorithm in §2.2. We present the corresponding
steepest descent framework for MBF problem in §3.1
and the distributed MBF algorithm in §3.2.

2 Maximum Concurrent
Flow Problem

The maximum concurrent multicommodity flow prob-
lem (MCF) is defined as follows. Let G = (V, E) be
a directed graph with edge-capacities c. > 0. There
are k commodities © = 1,...,k. The commodity i is
associated with a source s; € V, a sink ¢t; € V, and
flow demand d; > 0. The objective is to route, for
each commodity i, a flow of value d; from s; to t; pos-
sibly split along several paths such that the maximum
ratio of the total flow routed along an edge to its ca-
pacity is minimized. Let f¢ be the flow of commodity i
routed along edge e. The edge e is said to have a conges-
tion of cong, = (>_, f)/ce. Thus we want to minimize
max, cong,.

Here we describe an efficient distributed algorithm
that computes a (1 4 €)-approximate solution to the
above problem for any given € > 0.

Multicommodity

2.1 An approximate steepest descent frame-
work for MCF algorithms Our algorithm is moti-
vated by the algorithm of Garg and Konemann [GK98]
and we begin by describing a framework for MCF al-
gorithms inspired by their algorithm. Let us assume
for simplicity that the demands are scaled so that the
optimum value of max, cong, = 1. The algorithm will
employ approzimate steepest descent in order to mini-
mize the convex potential

B3 ()

where m is the number of edges. Note that an m
approximation of ® yields a (1 + O(e))-approximation
for max, cong,. This follows from a simple fact that

o).

€

maxcong, < 7 log ®
e ogm
< log(m®Me")
logm
< 0(0) + i log(m - (m! /s )
< 1+0(e).

Here ®* and cong} denote the potential and the con-
gestion on edge e under the optimum routing. We show
that the algorithm described here indeed computes an
mPM_approximation of the minimum ®.

Initially all the flows f! are zero. The algorithm
goes in T = (logm)/e*> phases and routes a flow of
value d; /T for each commodity 7 in each phase, thereby
constructing a feasible solution in the end. A phase,
in turn, is divided into several steps. In each step,
each commodity augments its flow along certain paths
simultaneously. Let {f!} be the current flow values.
Suppose commodity i augments a flow of Af¢ along
an edge e. The overall increase in ® due to this
augmentation along e is at most

(2.1) ZAJ@; . 10;% (ml/e)wngé

e

where congl, is the congestion on edge e after this
step. This follows from the inequality e® — 1 < de?
where § = (Y., Afilogm)/(ec.). Let us associate a
length [, = c—le(ml/e)conge with an edge e. In order
to minimize the increase in @, the algorithm augments
the flow of commodity ¢ along (1 + €) approximate
shortest paths from s; to ¢; under this length function.
The amount of flow augmented is subject to the step-
size constraint that for any edge e, its length increases
by at most an e fraction. That is, the total flow
Afe =, Af! sent through e in a step should satisfy
le(Af.logm)/(ece) < € le, ie., Af. < €2c./logm.
In this framework, we intentionally do not specify a
particular way of augmenting the flow. We rather prove
that any augmentation that satisfies the routing-along-
short-paths and the step-size constraints yields a good
approximation.

Our assumption that the optimum value of
max, cong, = 1 implies that the optimum value of ®
is ®* > m'/c. The following lemma proves that at
the end of the algorithm, the value of ® is an m®™)-
approximation of the optimum, thereby establishing
that the algorithm computes an (1 4+ O(e)) approxima-
tion to the maximum congestion. Let ®(t) denote the
value of the potential ® after phase t.



LEMMA 2.1. ®(T) < mCPM) .ml/e,

Proof. Fix a phase ¢t and let us estimate the change
in the potential, ®(t) — ®(¢ — 1), in this phase. To
this end, we first analyze the change in ® in a single
step in this phase. Let {(V) and [®) be the length
functions in the beginning and at the end of a step
respectively. The increase in ® in this step is at most
M%Zi Af; - (1 + e)l§2) where Af; is the flow sent
for commodity 7 in this step. This follows from the
expression (2.1). The factor of (1 +¢€) is due to the fact
that the flow is routed along (1+€) approximate shortest
paths which have length at most (1 + 6)152). Since the

shortest path length [;(¢) between the ith pair at the

end of phase ¢ is at least 152) and since we route a total

flow of €2d;/logm for each commodity i in each phase,
we have,

O(t) - d(t—1) < loimzlz;d;l-(ue)li(t)

e(l+€)Y  dili(t).

(2.2)

PROPOSITION 2.1. ®(t) > 3. d;l;(t).

Proof. We prove this in two different ways. The first
proof is based on linear programming duality. The
LP dual of the MCF problem can be viewed as an
assignment of the lengths I > 0 to the edges such that
(3" cele)/ (32, dil;) is minimized where [; is the shortest
path length from s; to ¢; under the length function I.
Since the optimum value of max, cong, is 1, it follows
from weak duality that for any length function [, we
have (>, cele)/ (D, dili) > 1. Since ®(t) = > cele(t),
we conclude ®(t) > >~ d;l;(t).

Our second proof unfolds the LP duality and is
self contained. Let {g¢} be the flow in the optimum
solution to the MCF problem. Thus we have Y, g¢ < c.
for each edge e. Furthermore since the solution {g¢}
routes d; units of flow from s; to ¢; and since [;(t)
is the shortest path length from s; to t;, we have

S gile(t) > Y0, dili(t). Thus we have

O(t) = cele(t) > Z > gile(t) > Z dil;(t).

Combining the above proposition with inequality (2.2),
we get

D(t—1)
*O =T ar e

Since ®(0) = m and T = (logm)/e?, we have ®(T) <
m(l+ O(e))(logm)/62 <mOPW . ml/¢ as desired.

We remark that the Garg-Kénemann algo-
rithm [GK98] for MCF is an instance of the above frame-
work. In each phase of their algorithm, flows of different
commodities are routed one after another along short
paths. A single commodity is routed in any step, and
hence it is easy to ensure the step-size constraint. They
route the flows along the shortest path and saturate the
minimum capacity edge on this path.

2.2 Our distributed MCF algorithm We are now
ready to present our distributed algorithm which is also
an instance of the above framework. We are seeking
for a distributed algorithm where there is a minimal
co-ordination between different agents. Only global
information accessible to the agents is a common clock
and the congestion on the edges accessible by them.
We would like to route the flows of all commodities in
parallel. We therefore use a special way of ensuring the
step-size constraint. We initially route a tiny amount of
flow of all commodities on all edges and later increase
this flow multiplicatively. The initial flow may not even
satisfy the flow conservation constraints. However the
total capacity used in this initial pre-flow is € fraction
of the edge-capacities, thus this affects the optimality
only to an extent e.

Since the algorithm is an instance of the framework
described in the previous section, we need to specify
the details of how a phase and a step is implemented.
The complete description of the algorithm is given in
Figure 2. The algorithm has T = (logm)/e? phases
and each phase has T, = O(L(log> mlog(k/e))/e*)
steps, where L denotes the maximum number of edges
on any path between a source-sink pair. Let f! be
the flow of commodity 7 on edge e at some stage in
the algorithm. In the following step, we allow the
additional amount, Af¢, of commodity i to be routed
on this edge, to be at most €2f!/logm. Since we
maintain the feasibility invariant ), fZ < ¢, the total
additional flow allowed is at most €c./logm. Thus
the step-size constraints are satisfied. Unlike the Garg-
Koénemann algorithm, however, we now augment flows
for each commodity by computing blocking flows under
these step-size constraints and the constraint that the
flow needs to be routed along short paths. Due to
this, we end up saturating at least one edge on each
(approximately) shortest path. Using this, we are able
to show that we need only T, = O(L-polylog(mk)) steps
in order to send €?/logm fraction of the entire demand.

Now we prove that the above algorithm indeed
routes d; /T demand of each commodity 7 in each phase.
This would then imply that since it adheres to the
framework, it computes a (1 4+ O(e€)) approximation at
the end of T' = (logm)/e? phases.



e For T = O((logm)/e?) phases do:

1. Define the capacities ci = €2 f/logm.

residual capacity.

does not exceed d; /T

e Initialize: Set f! « ec./k for each edge e and commodity i.

Phase: For T}, = O(L(log® mlog(k/¢))/e*) steps do:

Step: Let {f!} be the current flow values. For each commodity i such that we have not yet routed d;/T
flow between its source-sink pair in this phase do in parallel:

2. Compute a blocking flow under capacities ¢! from s; to ¢; that routes flows along (14 €) approximate
shortest paths under the current length function, that is, no (1 4 €) approximate shortest path has a

3. Route the above flow subject to the constraint that the flow of commodity ¢ routed in this phase

Figure 2: A distributed algorithm for the MCF problem

LEMMA 2.2. The number of steps, 1T, =
O(L(log* mlog(k/e))/€*), in a phase is sufficient
to route d; /T flow for each commodity i.

Proof. Imagine that a phase is run until each commod-
ity ¢ has sent its desired flow. We argue that this
phase needs at most 7}, steps. Consider a commod-
ity i. Each blocking flow (except perhaps the last
one) for this commodity saturates at least one edge
on every (1 + €) shortest path. The total flow f! of
this commodity on such a saturated edge e increases
by a (1 + €2/logm) factor. Since the initial flow on
this edge was ece/k and it never exceeds (1 + O(e))ce,
the maximum number of times an edge can be satu-
rated is O((logmlog(k/€))/€?). Because any path has
at most L edges, after O(L(logmlog(k/e))/e?) steps,
the shortest-path length increases by a factor of at
least (1 + €). Now from Lemma 2.1, during the en-
tire course of the algorithm, the shortest path length
increases by a factor of at most m@M+1/¢. Therefore
after O(L(log? mlog(k/€))/€e*) blocking flow computa-
tions, the commodity ¢ must have sent at least d;/T
flow.

LEMMA 2.3. The algorithm can be implemented in
O(L(log® mlog(k/e))/e® - Tys) parallel running time
(with k processors) and O(Lk(log® mlog(k/e))/e* - Tyy)
sequential running time, where Tyy = O(m?) denotes
the time needed for a single commodity blocking flow

computation along (1 + €) approximate shortest paths.

Proof. The parallel running time follows directly from
the bounds on the number of phases and number of steps

in each phase. Each step, recall, involves computing at
most k& blocking flows, one for each of the £ commodities.

For the sequential time, we argue that each of the
k commodities needs at most O(L(log? mlog(k/e))/e*)
blocking flow computations. This, in turn, follows from
the argument in the proof of Lemma 2.2 that after
O(L(logmlog(k/€))/€?) steps, the shortest path length
increases by a factor of at least (1 + €). Now note that
during the algorithm, since the length of any edge in-
creases by a factor of at most m@M+1/¢ the shortest
path length increases by at most the same factor. There-
fore, the total number of blocking flow computations for
a commodity is at most O(L(log? m log(k/€))/€e*).

The desired blocking flow can be computed in
O(m?) time simply by doing O(m) successive shortest
path computations and saturating at least one edge
after each computation.

3 Maximum Benefit Multicommodity Flow
Problem

The maximum benefit multicommodity flow problem
(MBF) is defined as follows. Similar to that in the MCF
problem, let G = (V, E) be a directed graph with edge-
capacities ¢, > 0. There are k commoditiest = 1,... k.
This time, the commodity ¢ is associated with a source
s; € V,asink t; € V, and a per-unit-flow benefit b; > 0.
The objective is to route a flow f; from s; to ¢; possibly
split along several paths such that the entire flow can be
routed without violating the capacity constraints, i.e.,
the total flow routed through edge e is at most c., and
the total benefit ), b; f; is maximized.



Here we describe a distributed algorithm that
achieves a (1 + €) approximation.

3.1 An approximate steepest descent frame-
work for MBF algorithms We now describe a frame-
work for MBF problem that is motivated by the al-
gorithms of Garg and Koénemann [GK98] and Fleis-
cher [Fle00] and is similar to the one for the MCF prob-
lem. We again consider the same convex potential

o — Z (ml/e)conge

where cong, = >, f?/c. is the congestion on edge e due
to the flows f! of commodities ¢ on edge e. As before,
we associate a length [, = é(ml/é)conge with an edge
e.

Initially all the flows f! are zero. The algorithm
goes in several steps. In each step, each commodity
augments its flow along certain paths simultaneously.
These augmentations are subject to two constraints:

1. (routing-along-beneficial-paths) the commodity 4 is
allowed to augment its flow along a path of length
[ under the current length function only if I/b; is
at most (1 + ¢)min; [;/b; where [; is the shortest
path length from s; to ¢; under the current length
function,

2. (step-size) the total flow Af. of all commodities
together sent along e in a step should be at most
e2c./ logm.

The algorithm stops when the potential ® crosses
ml/e/eE for the first time. Here, again, we prove that
no matter how the commodities augment their flows, as
long as they satisfy the above routing-along-beneficial-
paths and step-size constraints, the algorithm yields a
good approximation.

LEMMA 3.1. The algorithm computes a solution that
satisfies max, cong, < 1 and B > B*(1—0(e)) where B
and B* are the benefits accrued by our and the optimum
algorithm respectively.

Proof. Note that the length of any edge increases by a
factor of at most e = (1 +¢) in any step. Therefore the
final potential ® is at most m!/¢. Therefore in the end,

€

max cong, < log mi/e < 1.
e log

Now fix a step t and observe that the change in
potential, ®(t) — ®(t — 1), in this step is at most

log

T +e)ZAfili(t)

€

where Af? denotes the flow of commodity i routed in
this step, {(t) denotes the length function at the end
of step t, and l;(t) denotes the shortest path length
from s; to ¢; under this length function. This follows
from an argument similar to the one in Lemma 2.1. Let
a(t) = min; 1;(t)/b; be the minimum cost to benefit ratio
at the end of step ¢. Since the flow was subject to the
routing-along-beneficial-paths constraint, we have

AfL(t) < (1+€)%a(t) - bAfL

One factor of (1 + ¢€) is due to the fact that we route
flows along (1 + €) approximate beneficial paths. The
second factor of (1+¢) is due to the fact that the lengths
l.(t) are at most (1 4 €) times the lengths during this
step. The above inequality, in turn, implies that

(3.3) Z AfiL(t) < (1+e)a(t) - B(t)
where B(t) denotes the total benefit accrued by the
algorithm in step t.

PROPOSITION 3.1. ®(t)/a(t) > B*.

Proof. We prove this in two different ways. The first
proof is based on LP duality. The LP dual of the MBF
problem can be viewed as an assignment of the lengths
le > 0 to the edges such that (3, cele)/(min; ;/b;) is
minimized where [; denotes the shortest path length
from s; to t; under the length function [. Since the opti-
mum benefit is B*, it follows from weak duality that for
any length function I, we have (}°_ cele)/(min; 1;/b;) >
B*. Applying this observation to the length function
[(t) proves the proposition.

Our second proof unfolds the LP duality and is self
contained. Let {g’} be the flow in the optimum solution
to the MBF problem. Thus this flow accrues a total
benefit of B* and satisfies Y, g° < c. for each edge e.

Now we have
> cele(t)

€

> 3> gile(t)

i

o(t) =

= B*-at).

The second inequality follows from the fact that the flow
gl is not more beneficial than the most beneficial paths.

Combining the above proposition with inequality (3.3)
and relating it to the change in the potential, we
conclude
() —d(t—1)
®(t)

slogm  B(t)
€

<(l+e¢) TR



e For T = O((logm)/e?) phases do:

1. Define the capacities ci = €2 f/logm.

End of phase: Set o — (1 +¢).

e Initialize: Set o + 1/ max; b;. Set f! « ec./k for each edge e and commodity i.

Phase: For T}, = O(L(logmlog(k/¢))/€*) steps do:

Step: Let {fi} be the current flow values. For each commodity i such that I;/b; < a(1 +¢€) do in parallel:

2. Route a blocking flow under capacities ¢! from s; to t; along (1+¢) approximate shortest paths under
the current length function, that is, no (1 + €) approximate shortest path has a residual capacity.

Figure 3: A distributed algorithm for the MBF problem

Since the left-hand-side is at most e€ — 1 = ¢, using the
approximation (1—¢€)log(®(t)/®(t—1)) < (P(t) —P(t—
1))/®(t), we get

€ o(1) 3 B(t)
1- 1 < (1 —.
= ogm 18— =1+ 5
Since the initial potential is ®(0) = m, the final

potential is ®(T) < m'¢, by telescoping sum we
conclude that B > B*(1 — O(e)).

3.2 Our distributed MBF algorithm We now de-
scribe our distributed algorithm for the MBF problem.
During the algorithm we maintain a value a that sat-
isfles @ < min,; l;/b; < a(1 + €) where [; is the shortest
path length from s; to ¢; under the current length func-
tion. Initially we set @ = 1/ max; b; and increase it by
a factor of (1 + €) as soon as there is no commodity i
such that ;/b; < a(1 4 €). We call the duration corre-
sponding to a fixed value of a a phase. Since the length
of any edge increases by a factor of at most m'/¢, the
value of « also increases by at most the same factor dur-
ing the course of the algorithm. Thus the total number
of phases is O((logm)/€?). This idea of keeping track
of the current length-to-benefit ratio was first used by
Fleischer [F1e00].

We now describe the initialization and how to
implement a phase of the algorithm. See Figure 3. We
initialize the flows as before to occupy an e fraction of
the edge-capacities. This affects the feasibility only to
an extent e. Each of the O((logm)/€?) phases is further
divided into T}, = O(L(logmlog(k/e))/€?) steps. In
each step, each commodity 4 that has beneficial paths,
i.e., paths of length [ such that I/b; < a(1+ €), routes a
blocking flow along approximate shortest paths. In the
end of a phase, we increase the value of a by (1 + ¢).
In Lemma 3.2, we prove that T, steps are sufficient to

increase the value of min;[;/b; by a factor of at least
(1 + €), thus we maintain our o-invariant correctly.
Given this, it is then clear from Lemma 3.1, that the
above algorithm computes an (1 + O(e)) approximate
solution to the MBF problem.

LEMMA 3.2. In any phase, after at most T, =
O(L(logmlog(k/e€))/€?) steps, the value of min; l; /b; in-
creases by at least (1 + €).

Proof. Imagine that a phase is run till the value of
min; [;/b; increases by a factor of (1+¢€). We prove that
it takes at most T}, steps. Consider a commodity. Each
blocking flow of this commodity saturates at least one
edge on any (1 + €) approximate shortest path. Every
time an edge saturates, the flow of that commodity
on it increases by a factor of (1 + €2/logm). Since
the flow of any commodity on any edge e goes from
ece/k to at most ¢, an edge can be saturated at most
O((logmlog(k/e))/e?) times. Since there are at most
L edges on any paths, after O(L(logmlog(k/e))/€*)
steps, the length of the shortest path for this commodity
increases by a factor of at least (1 + ¢€). Thus the proof
is complete.

The following lemma is now evident.

LEMMA 3.3. The algorithm has at most
O(L(log® mlog(k/€))/e*) steps where each step can
be implemented in Ty parallel running time (with k
processors) where Ty = O(m?) denotes the time needed
for a single commodity blocking flow computation along
(14 €) approzimate shortest paths.

4 Conclusions and Open Questions

One obvious open question is eliminating the depen-
dency on L and get a poly-logarithmic convergence time



for any value of L. Another open question is extending
other results in [GK98], e.g., min-cost flows to efficient
distributed solutions. Also, the sequential time bounds
that we provide in this paper are surely not very tight;
a better bound on the cost blocking flow should lead to
reducing the computational overhead.
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