
DISTRIBUTED COMPUTING

1

Condos and Clouds

Constraints in an environment empower the services

Pat Helland, Salesforce.com

Living in a condominium (commonly known as a condo) has its constraints and its services. By
defining the lifestyle and limits on usage patterns, it is possible to pack many homes close together
and to provide the residents with many conveniences. Condo living can offer a great value to those
interested and willing to live within its constraints and enjoy the sharing of common services.

Similarly, in cloud computing, applications run on a shared infrastructure and can gain many
benefits of flexibility and cost savings. To get the most out of this arrangement, a clear model
is needed for the usage pattern and constraints to be imposed in order to empower sharing and
concierge services. It is the clarity of the usage pattern that can empower new PaaS (Platform as a
Service) offerings supporting the application pattern and providing services, easing the development
and operations of applications complying with that pattern.

Just as there are many different ways of using buildings, there are many styles of application
patterns. This article looks at a typical pattern of implementing a SaaS (Software as a Service)
application and shows how, by constraining the application to this pattern, it is possible to provide
many concierge services that ease the development of a cloud-based application.

USAGE PATTERNS
Over the past 50 years, it has become increasingly common for buildings to be constructed for an
expected usage pattern. Not all buildings fit this mold. Some buildings have requirements that are
so unique, they simply need to be constructed on demand—steel mills, baseball stadiums, and even
Super Walmarts are so specialized you can’t expect to find one using a real estate agent.

Such custom buildings are becoming increasingly rare, however, while more and more buildings—
whether industrial parks, retail offices, or housing—are being constructed in a common fashion
and with a usage pattern in mind. They are built with a clear idea of how they will be used but not
necessarily who will use them. Each has standard specifications for the occupants, and the new
occupants must fit into the space.

CONSTRAINTS AND CONCIERGE SERVICES

A building’s usage pattern may impose constraints but, in turn, offers shared concierge services. A
condominium housing development, for example, imposes constraints on parking, noise levels, and
barbequing. Residents can’t work on garage projects or gardening projects. In exchange, someone is
always on hand to accept their packages and dry cleaning. They may have a shared exercise facility
and pool. Somebody else fixes things when they break.

An office building may have shared bathrooms, copy rooms, and lobby. The engineering for the
building is typically common for the whole structure. To get these shared benefits, tenants may have
a fixed office layout, as well as some rules for usage. Normally, people can’t sleep at work, can’t have
pets at work, and may even have a dress code for the building.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2390756.2398392&domain=pdf&date_stamp=2012-11-14

DISTRIBUTED COMPUTING

2

A retail mall provides shared engineering, parking, security, and common space. An advertising
budget may benefit all the mall tenants. In exchange, there are common hours, limits on the
allowable retail activities, and constraints on the appearance of each store.

Each of these building types imposes constraints on usage patterns and offers concierge services in
exchange. To enjoy the benefits, you need to accept the constraints.

Similarly, cloud computing typically has certain constraints and, hence, can offer concierge
services in return. What can the shared infrastructure do to make life easier for a sharing
application? What constraints must a sharing application live within to fit into the shared cloud?

WHAT IS CLOUD COMPUTING?
Cloud computing delivers applications as services over an intranet or the Internet. A number of
terms have emerged to characterize the layers of cloud-computing solutions.
• SaaS. This refers to the user’s ability to access an application across the Internet or intranet. SaaS
has been around for years now (although the term for it is more recent). What’s new is the ability to
project the application over the Web without building a data center.
• PaaS. This is a nascent area in which higher-level application services are supplied by the vendor
with two goals: first, a good PaaS can make developing an application easier; second, a good PaaS can
make it easier for the cloud provider to share resources efficiently and provide concierge services to
the app. Today, the leading examples of PaaS are Salesforce’s Force.com5 and Google’s App Engine.2
• IaaS (infrastructure as a service). Sometimes called utility computing, this is virtualized hardware
and computing available over the Web. The user of an IaaS can access VMs (virtual machines) and
storage to accompany them on demand.

Figure 1 shows the relationship between the cloud and SaaS providers and users. (The figure was
derived from a technical report from the University of California at Berkeley, “Above the Clouds:
A Berkeley View of Cloud Computing.”3) As observed in “Above the Clouds,” cloud computing has
three new aspects: the illusion of infinite computing resources on demand; the elimination of
upfront commitment by cloud users; and the ability to pay for computing resources on a short-term
basis.

SaaS user

web applications

SaaS provider/cloud user

utility computing

cloud provider

Cloud Computing, Utility Computing, and Software as a Service

DISTRIBUTED COMPUTING

3

Cloud computing allows the deployment of SaaS—and scaling on demand—without having to
build or provision a data center.

PUBLIC AND PRIVATE CLOUDS

Clouds are about sharing. The question is whether you share within a company or go to a third-party
provider and share across companies.

In a public cloud, a cloud-computing provider owns the data center. Other companies access their
computing and storage for a pay-as-you-go fee. This has tremendous advantages of scale, but it is
more challenging to manage the trust relationship. Trust ensures that the computing resources are
available when they are needed (this could be called an SLA, or service-level agreement). In addition,
there are issues of privacy trust in which the subscribing company needs to have confidence its
private data will not be accessed by prying eyes. Demonstrating privacy is easier if the company
owns the data center.

A public cloud can project its shared resources as VMs and low-level storage requiring the
application to build on what appears to be a pool of physical machines (even though they are really
virtual). This would be a public-cloud IaaS. Amazon’s AWS (Amazon Web Service)1 is a leading
example of this.

Alternatively, in a public-cloud PaaS, higher-level abstractions can be presented to the applications
that allow finer-grained multi-tenancy than a VM. The shape and form of these abstractions are
undergoing rapid evolution. Again, Force.com and App Engine are emerging examples.

In a private cloud the data center, physical machines, and storage are all owned by the company
that uses them. Sharing happens within the company. The usage of the resources can ebb and flow
as determined by different departments and applications. The size of the shared cloud is likely to be
smaller than within a public cloud, which may reduce the value of the sharing. Still, it is attractive
to many companies because they do not need to trust an outside cloud provider. So, far, we have
seen only private-cloud IaaS. The new PaaS offerings are not yet being made available for individual
companies to use in their private clouds.

THE FORCES DRIVING US TO THE CLOUD

A number of forces are prompting increased movement of applications to the cloud:
Data-center economics. Very large data centers can offer computation, storage, and networking

at a relatively cost-effective price. Power is an ever-increasing portion of data-center costs, and it
can be obtained more effectively by placing the data center near inexpensive sources of electricity
such as hydroelectric dams. Internet ingress and egress is much cheaper near Internet main lines.
Containerized servers with thousands of machines delivered in a shipping container offer lower cost
for computation and storage. Shared administration of the servers offers cost savings in operations.
All of this is included in the enormous price tag for the data center. Few companies can afford such
a large investment. Sharing (and charging for) the large investment reduces the costs. This provides
economic drive for both the cloud providers and users.

Shared data. Increasingly, companies are finding huge (and serendipitous) value in maintaining a
“big-data” store. More and more, vast amounts of corporate data are placed into one store that can be
addressed uniformly and analyzed in large computations. In many cases the value of the discoveries
grows as the size of the data store increases. It is becoming a goal to store all of an enterprise’s data in
a common store, allow analysis, and see surprising value.

DISTRIBUTED COMPUTING

4

Shared resources. By consolidating computation and storage into a shared cloud, it is possible to
provide higher utilization of these resources while maintaining strong SLAs for the higher-priority
work. Low-priority work can be done during slack times while being preempted for higher-priority
work during the busy times. This requires that resources are fluid and fungible so that the lower-
priority work can be bumped aside and the resources reallocated to the higher-priority work.

SaaS: FRONT END, BACK END, AND DECISION SUPPORT

Let’s look more closely at a typical pattern seen in a SaaS implementation. In general, the application
has two major sections: the front end, which handles incoming Web requests; and the back end,
which performs offline background processing to prepare the information needed by the front end.
In addition to its work preparing data for the front end, the back-end application is usually shared
with decision-support processing (see figure 2).

In a typical SaaS implementation, the front end offers user-facing services dealing with Web
service or HTML. It is normal for this Web-serving code to have aggressive SLAs, typically of only
300-500 ms, sometimes even tighter. The back-end processing consumes crawled data, partner feeds,
and logged information generated by the front end and other sources, and it generates reference
data for use by the front end. You may see product catalogs and price lists as reference data, or you
may see inverted search indices to support systems such as Google or Bing search. In addition to the
generation of reference data, the back-end processing typically performs decision-support functions
for the SaaS owner. These allow “what-if” analyses that guide the business.

PATTERNS IN SaaS APPS: THE FRONT END
This section explores a common pattern used in building the front-end portion of SaaS applications.

SaaS computing & storage

large read-
only and/or
updateable

datasets

reference
data for
online

back-end
data analysis

front-end online
web-serving

internet

crawling

data feeds

results

user &
system data

Software as a Service Computing and Storage

DISTRIBUTED COMPUTING

5

By leveraging the pattern used by these applications, a number of very useful concierge services can
be supplied by the PaaS plumbing.

MANY SERVICE APPS FIT A PATTERN

Many service applications fit nicely within a pattern of behavior. The goal of these applications is
to implement the front end of a SaaS application. Incoming Web-service requests or HTML requests
arrive at the system and are processed with a request-response pattern using session state, other
services, and cached reference data.

CONCIERGE SERVICES FOR THE FRONT END

When a front-end application fits into the constraints of the pattern just described, a lot of concierge
services may be supplied to the application. These services simplify the development of the app, ease
the operational challenges of the service, and facilitate sharing of cloud resources to efficiently meet
SLAs defined for the applications. Some possible concierge services include:

Auto-scaling. As the workload rises, additional servers are automatically allocated for this service.
Resources are taken back when load drops.

Auto-placement. Deployment, migration, fault boundaries, and geographic transparency are all
included. Applications are blissfully ignorant.

Capacity planning. This includes analysis of traffic patterns of service usage back to incoming user
workload. Trends in incoming user workload are tracked.

Resource marketplace. The concierge plumbing automatically tracks a service’s cost as it consumes
resources directly and indirectly (by calling other services). This allows the cost of shared services to
be attributed and charged back to the instigating work.

A/B testing and experimentation. The plumbing makes it easy to deploy a new version of a service
on a subset of the traffic and compare the results with the previous version.

Auto-caching and data distribution. The back end of the SaaS application generates reference data
(e.g., product catalog and price list) for use by the front end. This data is automatically cached in
a scalable way, and changes to items within the reference data are automatically distributed to the
caches.

Session-state management. As each request with a partner is processed, the request has the option
to record session state that describes the work in progress for that partner. This is automatically
managed so that subsequent requests can easily fetch the state to continue work. The session-state
manager works with dynamically scalable and load-balanced services. It implements the application’s
policy for session-state survival and fault tolerance.

Each of these concierge services depends on the application abiding by the constraints of the
usage pattern as described for the typical front-end SaaS application.

STATELESS REQUEST PROCESSING

Incoming requests for a service are routed to one of many servers capable of responding to the
request. At this point, no state is associated with the session present in the target server (we’ll get
it later if needed). It is reasonable to consider this a stateless request (at least so far) and select any
available server.

The plumbing keeps a pool of servers that can implement the service. Incoming requests are

DISTRIBUTED COMPUTING

6

dynamically routed and load balanced. As demand increases and decreases, the concierge services of
the plumbing can automatically increase and decrease the number of servers.

COMPOSITE REQUEST PROCESSING

Frequently, a service calls another service to get the job done. The called service may, in turn, call
another service. This composite call graph may get quite complex and very deep. Each of these
service calls will need to complete to build the user’s response. As requests come in, the work fans
out, gets processed, and then is collected again. In 2007, Amazon reported that a typical request
to one of its e-commerce sites resulted in more than 150 service requests.4 Many SaaS applications
follow the pattern shown in figure 3a:
1. A request arrives from outside (either Web service or HTML).
2. The service optionally requests its session state to refresh its memory about the ongoing work.
3. The response comes back from the session-state manager.
4. Other services are consulted if needed.
5. The other service responds.
6. The application data cache (curated by the back-end processing) is consulted.
7. Cached reference data is returned to the service for use by its front-end app.
8. The response is issued to the caller.

SLAS AND REQUEST DEPTH

Requests serviced by the SaaS front end will have an SLA. A typical SLA may be a “300-ms response
for 99.9 percent of the requests assuming a traffic rate of 500 requests per second.”

It is common practice when building services to measure an SLA with a percentile (e.g., 99.9
percent) rather than an average. Averages are much easier to engineer and deploy but will lead to
user dissatisfaction because the outlying cases are typically very annoying.

serviceother
service

4
5

1
8

6

2 3

7 session
state

back-end
feed processing

application
data cache

request

response

session state
manager

The Typical Front-End SaaS Application Pattern

DISTRIBUTED COMPUTING

7

POUNDING ON THE SERVICES AT THE BOTTOM

Implementing a system-wide SLA with a composite call graph puts a lot of pressure on the bottom of
the stack. Because the time is factored into the caller’s SLA, deeper stacks mean more pressure on the
SLAs.

In many systems, the lowest-level services (such as the session-state manager and the reference-
data caches) may have SLAs of 5 to 10 milliseconds 99.9 percent of the time. Figure 4 shows how
composite call graphs can get very complex and put a lot of SLA pressure down the call stack.

A QUICK REFRESHER ON SIMPLE QUEUING THEORY

The expected response time is dependent on both the minimum response time (the response time
on an empty system) and the utilization of the system. Indeed, the equation is:

This makes intuitive sense. If the system is 50 percent busy, then the work must be done in the
slack, so it takes twice the minimum time. If the system is 90 percent busy, then the work must get
done in the 10 percent slack and takes 10 times the minimum time.

very
tight SLA
constraints

re
qu

es
t

re
sp

on
se

a composite call graph in
an SaaS front-end can get

very complex

re
qu

es
t

re
sp

on
se

to meet a system-wide SLA, each
service deeper in the call stack
must meet an ever-tighter SLA

re
qu

es
t

re
sp

on
se

The bottom of the call stack can
be under enormous pressure to

meet tight SLAs

Composite Call Graphs

DISTRIBUTED COMPUTING

8

AUTOMATIC PROVISIONING TO MEET SLAS

When the SLA for a service is slipping, one answer is to reduce the utilization of the servers
providing the service. This can be done by adding more servers to the server pool and spreading the
work thinner.

Suppose each user-facing or externally facing service has an SLA. Also, assume the system
plumbing can track the calling pattern and knows which internal services are called by the
externally facing services. This means that the plumbing can know the SLA requirements of the
nested internal services and track the demands on the services deep in the stack.

Given the prioritized needs and the SLAs of various externally facing services, the plumbing
can increase the number of servers allocated to important services and borrow or steal from lower-
priority work.

ACCESSING DATA AND STATE

When a request reaches a service, it initially has no state other than what arrived with the request. It
can fetch the session state and/or cached reference data if needed.

The session state provides information from previous interactions that this service had over the
session. It is fetched at the beginning of a request and then stored back with additional information
as the request is completing.

Most SaaS applications use application-specific information that is prepared in the background
and cached for use by the front end. Product catalogs, price lists, geographical information, sales
quotas, and prescription drug interactions are examples of reference data. Cached reference data is
accessed by key. Using the key, the services within the front end can read the data. From the front
end, this data is read only. The back-end portion of the application generates change to (or new
versions of) the reference data. An example of read-only cached reference data can be seen on the
Amazon.com retail site. Look at any product page for the ASIN (Amazon Standard Identification
Number), a 10-character identifier usually beginning with “0” or “B”. This unique identifier is the
key for all the product descriptions you see displayed, including images.

MANAGING SCALABLE AND RELIABLE STATE

The session state is keyed by a session-state ID. This ID comes in on the request and is used to
fetch the state from the session-state manager. An example of session state is a shopping cart on an
e-commerce site.

The plumbing for the session-state manager handles scaling. As the number of sessions grows, the
session-state manager automatically increases its capacity.

This plumbing is also responsible for the durability of the session state. Typically, the durability
requirements mandate that the session state survive the failure of a single system. Should this be
written to disk on a set of systems in the cloud? Should it be kept in memory over many systems
to provide acceptable durability? Increased durability costs more to implement and may require
increased latency to ensure that the request is durable.

Typically, a session-state manager is used so frequently that it must provide a very aggressive
SLA for both reads and writes. A 5- or 10-ms guarantee is not unusual. This means it is not
practical to wait for the session state to be recorded on disk. It is common for the session state to be

DISTRIBUTED COMPUTING

9

acknowledged as successfully written when it is present on two or three replicas in memory. Shortly
thereafter, it will likely be written to disk.

APPLYING CHANGES TO THE BACK END

Sometimes, front-end requests actually “do work” and apply application changes to the back end. For
example, the user pushes Submit and asks for the work to be completed.

Application changes to the back end may be either synchronous, in which the user waits while
the back end gets the work done and answers the request, or asynchronous, in which the work is
enqueued and processed later.

Amazon.com provides an example of asynchronous back-end app changes. When the user presses
Submit, a portion of the front end quickly acknowledges the receipt of the work and replies that
the request has been accepted. Typically, the back end promptly processes the request, and the user
receives an e-mail in a second or two. Occasionally, the e-mail takes 30 minutes or so when the
asynchronous processing at the back end is busy.

AUTOMATIC SERVICES, STATE, AND DATA

By understanding the usage pattern of a SaaS application, the platform can lessen the work needed
to develop an application and increase its benefits. As suggested in figure 3b, the application should
simply worry about its business logic and not about the system-level issues. Interfaces to call other
services, access cached data, and access session state are easy to call. This provides support for a
scalable and robust SaaS application.

The application session state, application reference-data cache, and calls to other services
are available as concierge services. The platform prescribes how to access these services, and
the application need not know what it takes to build them. By constraining the application
functionality, the platform can increase the concierge services.

serviceother
service

session
state

back-end
feed processing

application
data cache

request

response

session state
manager

The Application’s Focus on Business Logic

DISTRIBUTED COMPUTING

10

PATTERNS IN SaaS APPLICATIONS: THE BACK END
This section explores the patterns used in the back-end portion of a typical SaaS application. What
does this back end do for the application? How does it typically do it?

FEEDS, CRAWLING, LOGGING, AND ONLINE WORK

The back end of a SaaS application receives data from a number of sources:
• Crawling. Sometimes the back end has applications that look at the Internet or other systems to see
what can be extracted.
• Data feeds. Partner companies or departments may send data to be ingested into the back-end
system.
• Logging. Data is accumulated about the behavior of the front-end system. These logs are submitted
for analysis by the back-end system.
• Online work. Sometimes, the front end directly calls the back end to do some work on behalf of
the front-end part of the application. This may be called synchronously (while the user waits) or
asynchronously.

All of these sources of data are fed into the back end where they are remembered and processed.

DATA PUBLICATION AND UPDATES OF REFERENCE DATA

Many front-end applications use reference data that is periodically updated by the back end of the
SaaS application. Applications are designed to deal with reference data that may be stale. The general
model for processing reference data is:
1. Incoming information arrives at the back end from partners’ feeds, Web crawling, or logs from
system activity. Online work may also stimulate the back-end processing.
2. The application code of the back end processes the data either as batch jobs, event processing with
shorter latency, or both.
3. The new entries in the reference-data caches are distributed to the caching machines. The changes
may be new versions made by batch updates or incremental updates.
4. The front-end apps read the reference-data caches. These are gradually updated, and the users of
the front end see new information.

AUTOMATING THE REFERENCE-DATA CACHE

The reference-data cache is a key-value store. One easy-to-understand model for these caches has
partitioned and replicated data in the cache. Each cache machine typically has an in-memory store
(since disk access is too slow). The number of partitions increases as the size of the data being cached
increases. The number of replicas increases initially to ensure fault tolerance and then to support
increases in read traffic from the front end.

It is possible to support this pattern in the plumbing with a full concierge service. The
plumbing on the back end can handle the partition for data scale (and repartitioning for growth
or shrinkage). It can handle the firing up of new replicas for read-rate scale. Also, the plumbing can
manage the distribution of the changes made by the back end (either as a batch or incrementally).
This distribution understands partitioning, dynamic repartitioning, and the number of replicas
dynamically assigned to partitions.

DISTRIBUTED COMPUTING

11

Figure 5 illustrates how the interface from the back end to the front end in a SaaS application
is typically a key-value cache that is stuffed by the back end and read-only by the front end.
This clear pattern allows for the creation of a concierge service in a PaaS system, which eases the
implementation and deployment of these applications.

Note that this is not the only scheme for dynamic management of caches. Consistent hashing
(such as implemented by Dynamo4, Cassandra6, and Riak8) provides an excellent option when
dealing with reference data. The consistency semantics of the somewhat stale reference data, which
is read-only by the front end and updated by the back end, are a very good match. These systems
have excellent self-managing characteristics.

STYLES OF BACK-END PROCESSING

The back-end portion of the SaaS app may be implemented in a number of different ways, largely
dependent on the scale of processing required. These include:

Relational database and normal app. In this case, the computational approach is reasonably

automatic pub-sub
distribution of

updates

back-end
processing

(feed and crawl)

A–E

A–E

A–E

A–E

F–J

F–J

F–J

F–J

K–O

K–O

K–O

K–O

P–T

P–T

P–T

P–T

U–Z

U–Z

U–Z

U–Z

crawl the
web

feeds from
partners

incoming read requests

SaaS Application Interface from the Back-End to the Front-End

ERUGIF

DISTRIBUTED COMPUTING

12

traditional. The data is held in a relational database, and the computation is done in a tried-and-
true fashion. You may see database triggers, N-tier apps, or other application forms. Typically in a
cloud environment, the N-tier or other form of application will run in a VM. This can produce the
reference data needed for the front end, as well as what-if business analytics. This approach has the
advantage of a relational database but scales to only a few large machines.

Big data and MapReduce. This approach is a set-oriented massively parallel processing solution.
The underlying data is typically stored in a GFS (Google File System) or HDFS (Hadoop Distributed
File System), and the computation is performed by large batch jobs using MapReduce, Hadoop,
or some similar technology. Increasingly, higher-level languages declaratively express the needed
computation. This can be used to produce reference data and/or to perform what-if business
analytics. Over time, we will see MapReduce/Hadoop over all of an enterprise’s data.

Big data and event processing. The data is still kept in a scalable store such as GFS or HDFS,
and batch processing is available for both the production of reference data and for what-if analysis.
What is interesting here is the emergence of the ability to recognize changes from feeds or from
crawling the Web within seconds and perform transactional updates to the same corpus of back-
end data that is available to the MapReduce/Hadoop batch jobs. A noteworthy example of this is the
Google Percolator project.7 Rapid processing of events into fresh reference data offers a vibrant Web
experience.

CONCIERGE SERVICES FOR THE BACK END

When the back-end portion of the SaaS application follows the pattern described, it is possible to
create a PaaS offering that can make it much easier to build, deploy, and manage the application. By
living within the constraints of the pattern, many concierge services are made available such as:

Big-data unified data access. With unified enterprise-wide (and controlled cross-enterprise) data,
anything may be processed with anything (if authorized).

Fault-tolerant and scalable storage. Cloud-managed storage for both big data and relational
databases is available, with automatic intra-data-center and cross-data-center replication.

Massively parallel batch processing. High-level set operations perform large-scale computation.
Event processing. Low-latency operations with extremely high update rates for independent

events are available. Transactional updates occur with more than tens of petabytes of data (see
Percolator7). Event processing over the same corpus of data is available for batch processing.

Automatically scaling reference-data caches. The back end supplies the front end with
dynamically updated application-specific data. The management and operations of the key-value
cache are automatic. The plumbing ensures read SLAs by the front end are maintained by increasing
replication of the caches as necessary.

Multitenanted access control. Both inter-enterprise (public cloud) and intra-enterprise (private
cloud) require access control to the data contained in the shared stores.

Prioritized SLA-driven resource management. Relational databases, big-data batch, and big-
data event processing compete for the same computational resources. Different organizations have
different workloads, all competing for resources. The various workloads are given an SLA and a
priority, and the tradeoffs are then automated by the plumbing.
THE DRIVE TOWARD COMMONALITY IN COMPUTING
Just as buildings have commonality, as mentioned previously, there is commonality within different

DISTRIBUTED COMPUTING

13

classes of computing environments. The different classes must hook up to the community, just as
happens in buildings. Increasingly, the cloud environment is facilitating these changes.

SILOS AND SOA

Today’s enterprises glue together silos of applications using SOA (service-oriented architecture). Silos
are collections of applications that work on a shared database. SOA is the application integration
that subsumes both EAI (enterprise application integration) and B2B (business-to-business)
communication using messaging and data feeds. Figure 6 shows how applications with shared
traits will congregate in the SOA service bus. Current enterprise applications will leverage their
commonality as they migrate to the cloud. Certainly, existing applications that have not been
designed for cloud deployment cannot get all the same benefits as those that follow the new and
emerging patterns. Still, there is a way of leveraging the existing commonality and gain new benefits
via cloud deployment, within either a public or private cloud.

Cloud computing will help drive silos and SOA to a common representation:
Relational databases. Relational databases will be supported on standardized servers with

standardized storage running over SANs (storage area networks). This will allow robust storage to
underlie restartable database servers.

Existing apps using VMs. Because existing applications have their own expectations of the
processing environment, those expectations are most easily met in a general fashion using a VM.
The VM looks just like a physical machine to the application software but can be managed within
the cloud’s cluster. The application may get one machine or a pool of machines.

SOA messaging through the big-data store. The large cloud-based store can receive the messages
and data feeds used to connect the enterprise’s silos. By plumbing the SOA service bus through the
big-data store, the information about the interaction of the silos is available for analysis. This class of
analysis has been shown to be invaluable in the insight it brings to the enterprise.

app-1

app-2 app-5app-3

silo

app-4

db-a

silo

db-d

app-8 app-10

app-6

silo

db-b

SOA service bus: messaging and data feeds

app-7 app-9

silo

db-c

Silos and SOA

ERUGIF

DISTRIBUTED COMPUTING

14

Standardized monitoring and analysis. As the pieces of the enterprise’s computing move to
common hosting in a private or public cloud, the behavior of the applications, interactions across
them, and usage patterns of the apps can be tracked. Capturing this in the big-data store allows
for analysis in a fashion integrated with the application’s messaging data and other enterprise
knowledge.

DATABASES AND BIG DATA

Relational databases offer tightly controlled transactions and full relational semantics. They do,
however, face challenges scaling beyond a handful of servers. Still, relational databases have more
than 30 years of investment in applications, operations, and skills development that will survive for
many years.

The emerging big-data stores as represented by MapReduce and Hadoop offer complementary
sets of advantages. Leveraging massive file systems with highly available replicated data, these
environments offer hundreds of petabytes of data that may be addressed in a common namespace.
Recently, updatable key-value stores have emerged that offer transaction-protected updates.7 These
enormous systems are optimized for sharing with multiple users accessing both computational and
storage resources in a prioritized fashion.

Increasingly, these benefits of the big-data environments will be applied to copies of the relational
database data used within existing applications. The integration of the line-of-business relational
data with the rest of the enterprise’s data will result in a common backplane for data.

IT DEPARTMENTS AND LINE-OF-BUSINESS: A NATURAL TENSION

The line-of-business department in an enterprise drives the development of new applications.
This is the department that needs the application and the solutions it provides to meet a business
requirement. The department funds the application and, typically, is not too concerned with how
the application will fit into the rest of the enterprise’s computational work.

The IT department, on the other hand, has to deal with and operate the application once it is
deployed. It wants the application, database, and servers to be on common ground. It needs to
integrate the application into enterprise-wide monitoring and management.

This natural tension is similar to that seen between property developers and the city planning
commission. Developers want to construct and sell buildings and aren’t too fussy about the quality.
The city planners have to make sure the developers consider issues such as neighborhood plans and
whether the sewage-treatment plant has enough capacity.

As we move to cloud-computing environments in which the application, database management
system, and other computing resources are hosted on a common collection of servers, we will see an
increase in the standards and expectations of how they will fit into the enterprise.

WHAT ABOUT THE FORCES DRIVING US TO THE CLOUD?

The forces that are driving us to the cloud will have their way as they focus on a common and
shared basis for computation and storage. First, the cost savings from cheaper electricity, networking,
and server technology that are available in concentrated and expensive data centers will continue.
While there are issues of managing trust, the economics are a powerful force. Second, enterprises
will continue to find serendipitous value in the analysis of data. The more data available for analysis,

DISTRIBUTED COMPUTING

15

the more often valuable surprises will happen. Finally, both computational and data-storage
resources will be increasingly shared across applications and enterprises. Existing applications will
get some value from sharing and new cloud-aware applications will get even more.

These forces will encourage applications to work together atop new abstractions for sharing. When
applications stick to their old models, they will get some advantages of the commonality of the cloud
but not as many as those seen by new applications.

CONCLUSION
The constraints in an environment are what empower the services. The usage pattern allows for
supporting infrastructure and concierge services.

Shared buildings become successful by constraining and standardizing their usage. Building
designers know how a building will be used, even if they don’t know who will be using it. Not
everyone can accept the constraints, but for those who do, there are wonderful advantages and
services.

The standardization of usage for computational work will empower the migration of work to the
shared cloud. With these usage patterns, supporting services can dramatically lower the barriers
to developing and deploying applications in the cloud. Lower-level standards are emerging with
VMs. These support a broad range of applications with less flexibility for sharing. Higher-level PaaS
solutions are nascent but offer many advantages.

We must define and constrain the usage models for important types of cloud applications. This
will permit enhanced sharing of resources with important supporting services. The new PaaS
offerings will bring tremendous value to the computing world.

REFERENCES

1. Amazon Web Services; http://aws.amazon.com/.
2. App Engine; http://code.google.com/appengine/.
3. �Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H., Konwinski, A., Lee, G., Patterson, D.

A., Rabkin, A., Stoica, I., Zaharia, M. 2009. Above the clouds: a Berkeley view of cloud computing;
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf.

4. �DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A.,
Sivasubramanian, S., Vosshall, P., Vogels, W. 2007. Dynamo: Amazon’s highly available key-value
store. ACM Symposium on Operating Systems Principles; http://www.allthingsdistributed.com/
files/amazon-dynamo-sosp2007.pdf.

5. Force.com; http://www.force.com/.
6. �Lakshman, A., Malik, P. 2009. Cassandra – a decentralized structured storage system. Large-

scale Distributed Systems and Middleware; http://www.cs.cornell.edu/projects/ladis2009/papers/
lakshman-ladis2009.pdf.

7. �Peng, D., Dabek, F. 2010. Large-scale incremental processing using distributed transactions and
notifications. Ninth Usenix Symposium on Operating Systems Design and Implementation; http://
research.google.com/pubs/pub36726.html.

8. Riak; http://basho.com/products/riak-overview/

LOVE IT, HATE IT? LET US KNOW
feedback@queue.acm.org

http://aws.amazon.com/
http://code.google.com/appengine/
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://www.force.com/
http://www.cs.cornell.edu/projects/ladis2009/papers/lakshman-ladis2009.pdf
http://www.cs.cornell.edu/projects/ladis2009/papers/lakshman-ladis2009.pdf
http://research.google.com/pubs/pub36726.html
http://research.google.com/pubs/pub36726.html
http://basho.com/products/riak-overview/
mailto:feedback@acmqueue.com

DISTRIBUTED COMPUTING

16

PAT HELLAND has been working in distributed systems, transaction processing, databases, and
similar areas since 1978. For most of the 1980s, he was the chief architect of Tandem Computers’ TMF
(Transaction Monitoring Facility), which provided distributed transactions for the NonStop System. With
the exception of a two-year stint at Amazon, Helland worked at Microsoft from 1994 to 2011 where he
was the chief architect for Microsoft Transaction Server, SQL Service Broker, and a number of features
within Cosmos, the distributed computation and storage system underlying Bing. Pat recently joined
Salesforce.com and is leading a number of new efforts working with very large-scale data.

This paper was written before Pat joined Salesforce.com and, while there are many similarities, this is not
intended to be a description of Salesforce’s architecture.
© 2012 ACM 1542-7730/11/1100 $10.00

