
A Visual Sensing Platform for Creating A Smarter
Multi-Modal Marine Monitoring Network

Dian Zhang
CLARITY, Dublin City

University, Ireland
dian.zhang2@mail.dcu.ie

Edel O’Connor
CLARITY, Dublin City

University, Ireland
edel.oconnor@dcu.ie

Kevin McGuinness
CLARITY, Dublin City

University, Ireland
kevin.mcguinness@dcu.ie

Noel E. O’Connor
CLARITY, Dublin City

University, Ireland
noel.oconnor@dcu.ie

Fiona Regan
MESTECH, Dublin City

University, Ireland
fiona.regan@dcu.ie

Alan Smeaton
CLARITY, Dublin City

University, Ireland
alan.smeaton@dcu.ie

ABSTRACT
Demands from various scientific and management commu-
nities along with legislative requirements at national and
international levels have led to a need for innovative research
into large-scale, low-cost, reliable monitoring of our marine
and freshwater environments. In this paper we demonstrate
the benefits of a multi-modal approach to monitoring and
how an in-situ sensor network can be enhanced with the
use of contextual image data. We provide an outline of the
deployment of a visual sensing system at a busy port and
the need for monitoring shipping traffic at the port. Sub-
sequently we present an approach for detecting ships in a
challenging image dataset and discuss how this can help to
create an intelligent marine monitoring network.

Categories and Subject Descriptors
I.4 [IMAGE PROCESSING AND COMPUTER VI-
SION]: Miscellaneous; I.5.4 [Applications]: Computer vi-
sion

Keywords
environmental monitoring, multi-modal sensing, visual sens-
ing

1. INTRODUCTION
Increasing demands from various scientific and manage-

ment communities for monitoring issues such as climate
change, water quality, coastal erosion, flooding and ecosystem
change along with legislative requirements at both national
and international levels have led to a need for innovative
research into large-scale, reliable and sustainable monitoring
of our marine and freshwater environments. Coastal and
freshwater environments in particular represent vital environ-
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mental assets on many levels and need continuous monitoring
and protection. Accurately monitoring the quality of these
waters can prove very difficult since the associated environ-
mental processes often demonstrate high frequency spatial
and temporal variation and are extremely heterogeneous.
New technologies are emerging to enable remote autonomous
sensing of water systems and subsequently meet the demands
for high temporal and spatial monitoring. In our work we
extend our conventional understanding of a sensor network or
a community of sensor nodes to include diverse data sources
and multiple sensing modalities in order to create a smarter
marine monitoring network. In particular we focus on the
use of visual sensors to complement and enhance the use of
an in-situ environmental monitoring network.

In our previous work, we have shown how rainfall radar, a
deployed camera and in-situ sensing can be collaboratively
combined to optimise a coastal monitoring network [7, 8]. In
this work our focus moves to a different site with very different
characteristics, dynamics and issues. Poolbeg Marina is
located on the lower part of the estuary of the River Liffey,
in Dublin, Ireland. Due to the large amount of activity at the
site and its importance from an environmental and ecological
perspective, the site was equipped with a multi-parameter
in-situ sensor, equipped with turbidity, dissolved oxygen,
temperature, conductivity and depth probes along with a
visual sensing system. The visual sensor continuously sends
images back to a cloud server at a relatively low frame rate
(approximately 1 frame every 10 seconds). Shipping traffic
at the port greatly effects the aquatic ecosystem. Emissions
from the large amount of traffic, along with propeller contact,
noise, movement and turbulence from the propulsion systems
can have multiple effects on the ecosystem including increased
turbidity. There are many negative impacts of increased
turbidity on the ecosystem and these are well defined in the
literature [6]. Analysis of the sensor data demonstrates that
ships entering the port often coincide with spikes in data
from the turbidity sensor (Figure 1). The same effects are
not seen with the activity of small boats in the area. In the
following we describe an approach for accurately detecting
ships in a challenging image dataset. We achieve very high
accuracy which leads to the possibility of smarter marine
monitoring via low-cost intelligence provided by contextual
information from a visual sensor at the site.

53



Figure 1: Turbidity readings showing the relation-
ship between tubidity spikes and presence of ship

2. RELATED WORK
Automated analysis of image data for analysing and de-

tecting environmental processes and events has been studied
in a wide variety of contexts. For example in previous stud-
ies, video systems have been identified as effective tools for
coastal monitoring. A prime example of this is a major
European research project entitled CoastView [3]. This fo-
cused on the development of video systems in support of
coastal zone management utilizing Argus technology. Other
studies have investigated the use of cameras and analysis of
the resulting image data for other forms of environmental
monitoring applications. In [4] Graham et al. investigate the
use of cameras in determining the dynamics of expanding leaf
area for Rhododendron occidentale. Richardson et al. [10]
explored whether digital webcam images could be used to
monitor spring green-up in a deciduous northern hardwood
forest. They concluded that webcams offer an inexpensive
means by which phenological changes can be quantified.

3. METHODOLOGY
Usually a continuous monitoring system is installed at a

fixed location and does not move over time. This provides
an opportunity to model the information of the scene – a
background model. Many background modelling techniques
have been developed and widely used for detecting moving
objects in videos, some of these are reviewed in [9]. However,
the unreliable low frame rate of the remote visual sensor unit
prevents the use of most of these techniques such as object
tracking [5] or optical flow [1] techniques for detection of
ships at the scene. Thus we investigate two alternative back-
ground modelling techniques that may be able to overcome
these issues: Eigenbackgrounds [12] and Gaussian Mixture
Models(GMM) [11].

3.1 Eigenbackgrounds
Eigenbackgrounds are formed by calculating the mean and

its covariance for a set of images. This covariance matrix is
then diagonalized using eigenvalue decomposition. To reduce
the dimensionality of the space only the first n largest eigen-
vectors and associated eigenvalues are kept. For a particular
scenario, the optimised number of dimensions n can be de-
fined by calculating the explained variance ratio (EVR) of
all components. The EVR is the percentage of variance ex-
plained by each of the selected components. A new incoming
image, can be projected onto the Eigenspace then back-
projected onto the image space. Since the Eigenspace only
stores the information of training data, the back-projected
image will not contain any objects that do not appear in
the training set. Also, the Eigenvalue represents the char-
acteristics of the value distribution of a set of pixels, so it

can be used to build a compact and accurate background
model of image data with a low and variant frame rate. Fig-
ure 2 shows an example of background subtraction using
Eigenbackgrounds.

Figure 2: (a) input image, (b) reconstructed im-
age, (c) difference between input image and recon-
structed image

3.2 Gaussian Mixture Model Background
In Gaussian Mixture Modelling the history of a particular

pixel’s values x0, y0 is defined as a time series:

{X1, ..., Xt} = {I (x0, y0, i) : 1 ≤ i ≤ t} (1)

Where I refers to the image sequence and xi is a vector
referring to the intensity value of the pixel. According to
[11], the probability of observing the current pixel value is:

P (Xt) =

K∑
i=1

ωi,t,N (Xt;µi,t, σi,t) (2)

Where K is the number of distributions. Stauffer and Grim-
son [11] explain that K is determined by the available memory
and computational power. Once the background model is
built, for each new incoming image, the probability of each
pixel can be calculated. To maximise the difference between
foreground and background, the negative log probability is
used. Figure 3 shows an example of background subtraction
using GMM.

Figure 3: (a) input image, (b) foreground

3.3 Feature Extraction using Histograms of Lo-
cal Background Residuals (HLBR)

Since our objective is to be able to detect when large ob-
jects like large boats and ships enter the harbour, we need to
extract a set of features that are sufficiently discriminative to
allow us to classify such events. The background subtraction
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techniques described in the previous section produce a resid-
ual image R in which the value of each pixel represents the
magnitude of the difference between the observed scene and
the background model. If the background model effectively
captures the true variation expected in scenes containing
normal events, then we expect that the residual Rij will be
relatively high in the vicinity of previously unseen objects,
and relatively low elsewhere. If, on the other hand, the image
contains normal events, we expect that the residual will be
comprised primarily of noise and therefore relatively uniform
and of low magnitude over all locations (i, j). The above
reasoning suggests that global statistics of local residual
magnitude may be an effective way to distinguish between
images with and without objects of interest. We propose
the following Monte Carlo-based approach for generating a
global descriptor that captures local variation in the image.

Given an m× n residual image R, sample K pairs (x, y)k
of random integers such that x ∼ U(0,m − w) and y ∼
U(0, n− w), where U(a, b) is a uniform distribution over the
integers in the half-open interval [a, b), and w is a window size
parameter. For each pair (x, y)k compute the expectation
on the residual over the corresponding window as:

E[Rij |(x, y)k] =
1

w2

x+w∑
i=x

y+w∑
j=y

Rij . (3)

These expectations capture the local residual magnitude over
fixed sized windows in the image. In particular, E[Rij |(x, y)k]
will be relatively large in the vicinity of objects not captured
by our background model, and small elsewhere. The global
distribution of E[Rij ] can, therefore, be used to character-
ize the local residual magnitude in the image. We used a
simple normalized histogram with fixed width bins to cap-
ture the distribution of local residual magnitudes produced
by (3) to generate a global fixed length descriptor. For our
experiments, we used a histogram of 60 bins, producing a
length 60 descriptor. The choice of the number of bins and
the width parameter w are described in more detail in the
experiments section. Summations over rectangular image
regions can be computed much faster using integral images
(summed-area-tables [2]). Integral images can be computed
in linear time by dynamic programming, and once computed
allow summations over rectangular regions (such as the one
in (3)) to be computed in constant time.

4. EXPERIMENTS AND RESULTS
The image dataset that is used for evaluating the proposed

methods was collected from our remote water quality moni-
toring system between May 2012 and June 2012. The data
exhibited a wide variety of lighting and weather conditions,
as well as a variety of ship types. A sample of the image data
shown in Figure 4 demonstrates the complexity of the dataset.
Approximately 3000 daylight color images with 640 × 480
pixels with different time intervals were annotated as the
ground truth of the dataset. These images are separated
into two categories: (1) no ship present and (2) ship present.
For each group, 50 percent of the images were randomly
chosen to build a model and the remainder of the images
were subsequently used for testing.

To compare the performance and accuracy of the proposed
methods, three background models are built: An Eigenback-
grounds model with 75 components and 60 bins, a GMM
with 15 distributions and a GMM with 35 distributions. Fig-

Figure 4: illustraction of image data

Figure 5: EVR of Eigenbackgrounds model

ure 5 is a plot of the EVR of the Eigenbackgrounds model
of our testing dataset. As can be seen from the plot, after
60 the ratio becomes steady and close to zero. This means
the components after 60 carry very little background infor-
mation. However, in order to gain the best performance 75
components are used for our experiments. Firstly, the his-
togram of local background residuals (HLBR) with different
rectangular region sizes and histogram ranges are examined.
Other image features including standard sum of error (SSE),
a global pixel density histogram with 255 bins, local pixel
density histograms over 2 × 2 and 4 × 4 sub-images were
also tested for comparison. SSE is the sum of squared error
between the back projected image and the original (which
equals the square distance of the image from the PCA sub-
space). Classification1 was carried out using a Radial Basis
Function (RBF) kernel as it can handle a nonlinear decision
boundary. The default parameters were used for the RBF
kernel. All the experiments are carried out on a standard
workstation with Intel Core i7 2600 3.4GHz CPU, and 16G
RAM. Figure 6 shows model training results using 10 fold
cross validation. It shows that the Eigenbackgrounds model
performs better than GMM models.

Figure 6: Models cross validation results

Figure 7 shows the ship detection rate using the testing
image set. It can be seen that the GMM model with 15
distributions performs better than the GMM model with 35
distributions but poorer than the performance of the Eigen-
backgrounds model. HLBR feature with rectangular region
size 15 and a histogram range between 0.05 and 0.9 using
an Eigenbackgrounds model achieves the best detection rate.
However, the accuracy starts falling with both an increase

1Classification is performed in the Weka data analysis envi-
ronment using LIBSVM implementation
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Figure 7: Ship detection results using HLBR feature

and decrease of the region size. Also, a histogram with a
range of 0.05 to 0.9 performs better than a range of 0.005
and 0.9 but the variance is very small. Further experiments
will be carried out in order to determine the best HLBR
feature parameters.

Figure 8: Comparison of different features based on
Eigenbackgrounds.

Results in Figure 8 show that the HLBR feature achieves
better performance than other features. This is because
the HLBR feature calculates not just the distribution of
foreground pixel values globally but also locally within small
regions. Thus, it performs better when dealing with large
amounts of noise.

Finally, it only took 24 seconds to build an Eigenback-
grounds model, but it took over 3 hours to build a GMM
model. Each pixel in a GMM model is independent, therefore
multi threading and process distribution can be used to re-
duce the time costs. However building the Eigenbackgrounds
model is still much faster.

5. CONCLUSION
In this paper, we developed and evaluated an algorithm

for automatically detecting the presence of ships in images
captured by a very low frame rate remote visual sensing
system. This follows an establishment of the importance of
monitoring ship traffic at the site from an environmental
monitoring perspective. Ships can be detected with a very
high accuracy. This means that a visual sensor may be
employed as a low cost platform for estimating conditions
at the site in the future and may complement and enhance
the use of a sophisticated in-situ sensor. The visual sensing
platform may provide contextual information to increase the
efficiency and effectiveness of the in-situ sensors creating a
smarter multi-modal marine monitoring network.
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