
Static Routing in Symmetric Real-Time Network-on-Chips

Florian Brandner
Embedded Systems Engineering Section

Inst. for Informatics and Mathematical Modeling
Technical University of Denmark

flbr@imm.dtu.dk

Martin Schoeberl
Embedded Systems Engineering Section

Inst. for Informatics and Mathematical Modeling
Technical University of Denmark

masca@imm.dtu.dk

ABSTRACT
With the rising number of cores on a single chip the question
on how to organize the communication among those cores
becomes more and more relevant. A common solution is
to use a network-on-chip (NoC) that provides communica-
tion bandwidth, routing, and arbitration among the cores.
The use of NoCs in real-time systems is problematic, since
the shared network and all cores connected to it have to be
analyzed to derive time bounds of real-time tasks.

We propose to use a statically scheduled, time-division-
multiplexed NoC design that allows a decoupled analysis
of individual real-time tasks. Our network provides virtual
circuits between all cores. These virtual circuits are imple-
mented by delivering messages periodically on a static, fixed
routing schedule. Since the routing does not change, it can
be pre-computed offline.

This work focuses on the computation of routing sched-
ules for symmetric NoC topologies, e.g., torus and hyper-
cube. Due to the symmetry, the all-to-all communication
can be modeled via simplified communication patterns that
are concurrently processed by all routers. The scheduling
problem is solved by a heuristic that tries to maximize the
overlap of active patterns. Our experiments show that, for
larger networks, our heuristic yields schedule lengths that
are only 15% to 20% longer than theoretical lower bounds.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems;
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Circuit-switching networks

General Terms
Theory, Algorithms, Measurement

Keywords
Static Scheduling, Network-on-Chip, Real-Time Systems

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
RTNS’12 , November 08 - 09 2012, Pont a Mousson, France
Copyright 2012 ACM 978-1-4503-1409-1/12/11 ...$15.00.

1. INTRODUCTION
In real-time systems we need analyzable processors, mem-

ories, and interconnects to perform static worst-case execu-
tion time (WCET) analysis. In a chip-multiprocessor the ar-
bitration for shared resources (memory and communication
channels) has to be static to be analyzable. In this paper
we explore the generation of static communication schedules
for a network-on-chip (NoC).

Our time-predictable NoC, called S4NoC [8], uses time-di-
vision multiplexing (TDM) to share the communication net-
work among all computing cores, i.e., each core is granted
exclusive access to some network resources for specific time
periods. The packets in this network are single-word mes-
sages (also called flits). A message moves from one router to
the next in a single cycle. It also has to move each cycle, as
the routers provide no further buffering. Another assump-
tion in the S4NoC is that the target core is able to consume
all messages. There is no provision of flow control at the
NoC-message level. If this is needed, it has to be imple-
mented at a higher network level. The ability to consume
the messages at the destination can be fulfilled by using a
dedicated communication memory to store incoming data.

The S4NoC is intended as a generic, time-predictable plat-
form for a wide range of real-time programs as is. The net-
work thus periodically delivers messages between all pairs
of cores, i.e., a periodic all-to-all communication schedule.
This schedule provides equal communication bandwidth be-
tween any two cores in the NoC. It, furthermore, ensures
that resource conflicts on routers and links are resolved, and
deadlocks cannot appear during message routing. The use of
such a fixed, all-to-all communication schedule is inherently
time-predictable and analyzable, which enables the analysis
of the timing behavior of the entire system.

Other statically scheduled NoCs [3, 7] rely on application-
specific schedules that depend on the communication re-
quirements of a specific application. Along with the com-
munication schedule, also the hardware is customized. For
instance, buffers are often required to resolve conflicts on
shared network links [4, 9]. This is problematic in safety-
critical systems, as changes in the communication require-
ments then incur fundamental changes to the system archi-
tecture and hardware design. The approach followed by the
S4NoC is different. It provides a generic, all-to-all sched-
ule that is applicable to a wide range of applications. This
simplifies the validation and certification of safety-critical
systems. Changes in the communication requirements of
one part of the system do not affect other parts as their
requirements are still guaranteed to be satisfied.

(a) 4×4 Mesh (b) 4×4 Torus

Figure 1: Nodes and interconnection links in two-
dimensional network-on-chips.

Besides being time-predictable and analyzable, the S4NoC
design has advantages in the hardware implementation. With
single-word messages it is beneficial to avoid routing infor-
mation in the message itself and store the schedule tables in
the routers. Without this message head, the size (and there-
fore bandwidth) of the NoC is freely configurable. As the
schedule is static and only depends on the number of cores,
the corresponding tables can literally be hardcoded and im-
plemented efficiently as read-only-memory (ROM) tables in
silicon. For a 4-way router, e.g., used in a bidirectional torus,
each table entry encodes only 8 bits (2 bits per 4-way multi-
plexer). Experiments using an FPGA implementation have
shown that the ROM tables are indeed very small.

We consider symmetric network topologies and search for
a static schedule of individual messages to provide all-to-all
communication with equal bandwidth. For such a system
the intuition is that a symmetric schedule, where all routers
perform the same schedule, may be an optimal schedule.
The schedules found using our technique are 15% to 20%
longer than theoretical lower bounds, and therefore confirm
the intuition. Those schedules are found quickly, leading
to a scalable approach that can be applied even to large
network instances. The main contribution of this paper is
a heuristic algorithm to generate these near-optimal static
schedules for instances of the TDM-based S4NoC with sym-
metric topologies.

The implementation of the schedule construction is freely
available as open source, and distributed with the hardware
implementation of the NoC.1 The generated schedules are
used in an FPGA-based many-core system, where the sched-
ule is synthesized into hardware as ROM tables. Although
not in the scope of this paper, the evaluation of the derived
schedules in a real prototype system gives further confidence
that they are correct.

The paper is organized as follows: the next section pro-
vides background information on NoC topologies, routing,
and communication schedules. Related work is presented
in Section 3. Section 4 describes the scheduling algorithm
in detail. The evaluation in Section 5 shows the shortest
achievable scheduling periods for different topologies and
NoC sizes and the paper is finally concluded in Section 6.

2. BACKGROUND
The section provides the basic background on network-

on-chip topologies and how these networks can be used to
provide communication from every node in the network to
every other node (all-to-all).

1Source available at https://github.com/t-crest/s4noc

Figure 2: A 5×5 bidirectional torus using an inter-
twined layout and pipelining.

2.1 Network-On-Chip Topologies
A network-on-chip topology defines the structure of a con-

crete instance of a network. Typically a topology is defined
in terms of computing cores that are connected to the net-
work by the means of routers. The routers in turn are in-
terconnected using links. We assume that every core is con-
nected by two links, an incoming and an outgoing, to a single
router. We thus treat a core and its router synonymously as
a node.

Definition 1. A concrete instance of a network topology
is characterized by a directed graph G = (V,E), where the
vertices in V represent the nodes of the network (routers and
cores) and the edges in E the interconnection links.

Various network topologies have been proposed in the lit-
erature, ranging from tree-based organizations over two-di-
mensional mesh and torus structures to complex multi-di-
mensional hypercubes. Figure 1 depicts two instances of
typical NoCs, a 4×4 2-D mesh and a 4×4 torus.

Definition 2. A network topology is regular if the routers
are placed and interconnected in a regular (multi-dimension-
al) grid. Thus all routers, except those at the boarder of the
grid, are interconnected to their neighbors in a regular way.

Definition 3. A network topology is symmetric if the
routers are placed and interconnected in a regular (multi-
dimensional) grid. All routers, even those at the boarder,
are interconnected to their neighbors in a regular way by
wrapping around to the other side of the grid.

The mesh network in Figure 1(a) is an instance of a reg-
ular network topology, whereas the torus in Figure 1(b) is
a symmetric network topology. The layout of a torus net-
work, as shown by Figure 1(b), may lead to problems in the
hardware layout. The interconnection link closing the loop
becomes very long and thus often leads to an reduced op-
eration frequency of the network. An alternative approach,
used in practice, is to intertwine the layout of the individual
cycles for each row and each column as shown by Figure 2.
Instead of connecting a node to its direct neighbor, a link is
established to the next node in the row or column respec-
tively – unless the end of the row/column has been reached.
A link is now double the length as a link in a simple mesh
organization, which may limit the maximal attainable clock
frequency. This issue can be resolved by pipelining the com-
munication over links, i.e., introducing additional registers
on links, as shown by the bars on each link in Figure 2.
The register can be interpreted as a simplified router with a
single incoming and outgoing link.

https://github.com/t-crest/s4noc

In the context of this work we evaluate two-dimensional
networks with regular and symmetric topologies as depicted
by Figure 1 and 2, i.e., either a 2D-mesh, a torus, or a bidi-
rectional torus. For the tori, we consider both, the regular
topology and a variant using pipelined links. Note, how-
ever, that our approach is also applicable to other kinds of
topologies – for instance hypercubes.

2.2 Routing
In order to deliver messages over the network, a routing

mechanism has to be provided, i.e., a scheme that deter-
mines how messages are transmitted between the individual
nodes within a network.

The route for a specific message can be specified by its
source node, its destination node, and all intermediate links
that the message traverses on the way from the source to the
destination. Since we are dealing with regular and symmet-
ric networks only, it is sufficient to encode the direction of
the next neighbor node that the message will be forwarded
to instead of concrete links.

Definition 4. A route of a message is defined by a triple
r = (s, p, d), where s specifies the source, d the destination
node, and p ∈ F+ a non-empty string over an alphabet F .
The length of the route |r| = |p| denotes the number of hops
it takes to transmit the message. A route can also be in-
terpreted as a function r : N0 → F ∪ {⊥} that returns the
direction of the n-th hop of the route or ⊥ if n ≥ |r|.

The symbols of F represent the direction to the neighbor
to which a message will be transmitted next on each hop.
In two-dimensional networks a message can be forwarded to
the neighbor to the north (n), to the east (e), to the south
(s), or to the west (w), i.e., F = {n, e, s, w}.

Example 1. A simple route in a two-dimensional net-
work from a source node s to a destination node d could
be r = (s, nnw, d), i.e., the message travels two hops to the
north and one hop to the west. The third hop of this route
is r(2) = w, while r(0) = n and r(5) = ⊥.

We assume a fixed, static routing scheme where each router
has a local routing table that determines how messages are
passed further on. A message thus does not specify its des-
tination; the router instead forwards the message according
to the fixed schedule. The message delivery to/from cores
over the network interface is similarly determined by static
tables, which provide a mapping between the message’s des-
tination/source nodes and the corresponding time slots of
the routing tables. The time slot together with the routing
scheme determines from which node a message is sent and
which node ultimately receives the message.

A fixed, static schedule greatly simplifies the routers and
network interfaces, since no buffers and no dynamic arbi-
tration logic are needed. Furthermore, assuming correct
schedules, deadlock avoidance and message delivery times
are guaranteed by design.

2.3 All-To-All Communication
Given an instance of a network topology and assuming

static routing tables the problem now is to find a static com-
munication schedule that allows every node in the system to
send a message to every other node in the system within a
fixed time period. Note that a node may send different mes-
sages to different nodes; an all-to-all schedule thus should
not be confused with broadcasting of messages.

Definition 5. An all-to-all communication schedule
S = (R, T) for a network G = (V,E) consists of a set of
routes R, such that for all pairs s, d ∈ V , s 6= d there exists
exactly one route r = (s, p, d) ∈ R. The function T : R→ N0

determines at which time instant a message is transmitted
using a specific route.

A feasible communication schedule, in addition, has to
respect that every communication link may be used at most
once at every time instant. Similarly, it has to ensure that
every node may receive only one message and send only one
message at once. All incoming messages at a router have to
be forwarded to some outgoing link, i.e., messages cannot
stall on the path from their source to their destination.

The communication schedule outlined here corresponds
to a circuit-switched, time-division-multiplexed network that
provides virtual circuits offering equal bandwidth between
any two nodes in the system.

The problem of finding a feasible communication schedule
can be characterized as a multi-commodity flow over time [2],
where a number of commodities has to be shipped over a
network in a given time period. Each commodity has to be
delivered from a corresponding source to a destination such
that capacity constraints of all links in the network are re-
spected at all times. Based on this model various questions
can be asked with respect to the flow of the commodities.
For instance, one can ask for the maximal flow in this net-
work or for the quickest multi-commodity flow, i.e., the short-
est period in which all commodities reach their destination.
A solution to the latter problem corresponds directly to an
optimal schedule for the all-to-all communication problem.

3. RELATED WORK
The scheduling problem considered in this work can for-

mally be stated as a dynamic multi-commodity flow problem
over time. A seminal work by Ford and Fulkerson introduced
time-expanded flow networks to model dynamic flow prob-
lems using equivalent static problems [2]. A time-expanded
network is a structure containing replications of the net-
work for several time instants (e.g., clock ticks). Fleischer
and Skutella study variants of the NP-hard quickest multi-
commodity flow problem [1] and present a polynomial 2-
approximation algorithm. Although closely related, these
results apply to general multi-commodity flow problems,
where fractional solutions are acceptable. In the context
of this work, however, integer solutions are required since
the physical hardware resources are indivisible.

The S4NoC [8] is an implementation of the NoC design
assumed in this work. The scheduling problem is solved op-
timally for small network sizes using a multi-commodity flow
over time and ILP. Even though the approach does not scale
– scheduling a network with 25 nodes takes several weeks –
the computed optimal solutions provided important insights
to this work. Most notably the benefits of symmetric net-
work topologies, and in particular the bidirectional torus, as
well as the pattern-based scheduling strategy are motivated
by experiments using the optimal ILP formulation.

Several other NoCs use TDM-based routing of messages,
where the communication requirements are typically speci-
fied as a set of virtual circuits (VC) annotated with band-
width requirements.

Tadpole [5] is a scheduling algorithm for NuMesh. The
algorithm is based on time-expanded networks and tries to

Step 1

1

2 3

Step 2

2

Step 3

3

4

Step 4

4 5

Step 5

5 6
7

8

Step 6

6

7

8

Step 7

7

8

Step 8

8

Step 9

Figure 3: Routes selected by an optimal schedule (ILP), starting from the node in the top left corner. On
each step a new route is highlighted. Blocked links and reached nodes are marked (bars and dots).

greedily schedule VCs according to bandwidth requirements.
Congestion is modeled using a reduced graph of the network,
where edge weights represent congestion. Backtracking al-
lows the rerouting of communication due to congestion. Our
approach is closely related. However, by exploiting the sym-
metry of the network topology and pattern-based schedul-
ing the problem search space is drastically reduced. The
algorithm thus scales even for very large problem instances,
while achieving near-optimal results.

Æthereal [3] relies on a TDM-scheduling algorithm in two
phases [4]: (1) path allocation and (2) TDM-slot allocation.
Path allocation explores viable paths through the NoC using
an adapted shortest path search capturing link congestion
and bandwidth requirements. Slot allocation then tries to
find a feasible mapping of a path to TDM slots satisfying
bandwidth and latency constraints. The approach is driven
by the path selection, which may lead to additional link
buffers and an increased schedule length during slot alloca-
tion. This also applies to an improved variant of the slot
allocation algorithm [9]. Our algorithm similarly proceeds
in two phases, but is driven by the reservation of TDM slots
during the scheduling phase. This leads to more compact
and shorter schedules that do not require any additional
buffers associated on the network links. This is highly im-
portant as shorter schedules increase the bandwidth between
pairs of nodes and reduce the maximum transfer latency
when analyzing the worst-case timing of the system.

Lu and Jantsch [6] propose a similar two-phase approach
consisting of path selection and slot allocation for the Nos-
trum NoC [7]. They exploit the properties of logical net-
works to explore all feasible paths and slot allocations recur-
sively in a search tree. To keep the scheduling time practical,
branches of the tree are pruned eagerly be testing whether an
assignment of VCs to logical networks is feasible. The two
phases of the algorithm are tighter coupled as in the case
of Æthereal [4], avoiding the useless insertion of additional
buffers at the expense of potentially exponential computa-
tion overhead.

None of the discussed algorithms is able to deliver sym-
metric, all-to-all communication schedules, which ensure iden-
tical schedule tables at all routers of the S4NoC [8]. The
symmetry has several advantages. For one, the overhead re-
quired to implement the scheduling tables in hardware can
be reduced by sharing. More importantly, the correctness

of symmetric, all-to-all schedules and their implementation
in hardware is trivial to verify. This is usually required for
safety-critical systems.

4. PATTERN-BASED SCHEDULING
Based on experiments using an optimal integer linear pro-

gramming (ILP) formulation of our scheduling problem [8]
on two-dimensional network topologies, we found that the
optimal solutions to our scheduling problem for regular net-
work topologies are by themselves almost regular. For in-
stance, the computed optimal solutions always yield direct
message routes between two nodes without detours, i.e., only
shortest routes are selected even when the network capacity
would theoretically allow for detours. Furthermore, most
routes follow a simple routing scheme, where a route con-
sists of two straight segments, a horizontal followed by an
optional vertical segment, or the other way around.

Example 2. Figure 3 depicts the routes from one node
(upper left) towards all other nodes, extracted from an opti-
mal schedule of a 3×3 torus, computed using ILP. On each
step a message is sent using a new route from the source node
at the top left corner to some destination node (in green).
In addition, network links blocked by messages on the fly are
highlighted using a black bar. Once a message has reached
its destination, the respective node is marked by a dot. As
can be seen, the routes simply consist of two segments. For
instance, at step 7 a message is transmitted using a route
(s, se, d), where s denotes the top-left node and d the node
in the center of the network. The message arrives at the
destination on time step 9, while a communication link is
blocked by a message transmitted over the route at step 8.

4.1 Symmetric Schedules
These observations, combined with properties of symmet-

ric (and regular) network topologies, give rise to a simple
heuristic that (1) assumes that all (or almost all) routers
take the same routing decisions on every time instant and
(2) that considers only simple, at most n-segmented routes,
where n is a constant depending on the network topology
(e.g., 2 for the two-dimensional topologies considered here).
The basic idea of our approach is to abstract all the currently
active routes in a schedule by a communication pattern, i.e.,

Step 1

1 2
3

4

Step 2

2

Step 3

3

Step 4

4 5

Step 5

5

6 7

Step 6

6

7

8

Step 7 Step 8

8

9

Step 9

9

10

Step 10 Step 11

Figure 4: Symmetric schedule constructed by reordering the routes from Figure 3. Each step highlights a
new route. Almost all network links are used at all times, as all routers in the network operate synchronously.

a route without a specific source and destination node. We
then define a conflict relation between these communication
patterns and devise an algorithm that computes an ordering
of a set of communication patterns that provides a conflict-
free, all-to-all communication schedule.

Definition 6. A communication schedule S = (R, T) is
symmetric when all routes scheduled at the same time in-
stant are transmitting the respective message along the same
path through the network, shifted according to the position of
the route’s source node, i.e., for all routes r1 = (s1, p1, d1)
and r2 = (s2, p2, d2) : T (r1) = T (r2)⇐⇒ p1 = p2. The path
p common to all routes scheduled at a specific time instant
is called a communication pattern.

Note that the original schedule from Figure 3 is not a
symmetric schedule, because the relative order in which mes-
sages are sent across these routes would lead to conflicts in
the usage of links when the communication patterns are ap-
plied at other nodes. For instance, a message sent from a
node at time step 1 would conflict with a message sent from
the node’s lower neighbor at time step 2. However, it is
possible to use the communication patterns from the former
example and reorder them to generate a symmetric schedule,
as shown in the following example.

Example 3. Figure 4 shows a symmetric schedule for a
3×3 torus network. At each step all nodes in the network
send a message according to the highlighted route in green
(shifted accordingly). Since all nodes send messages concur-
rently all vertical and/or horizontal communication links are
used at the same time. The schedule consists of 8 communi-
cation patterns eess, s, e, ee, see, sse, se, and ss that are
scheduled at time instant 1 through 6, 8, and 9 respectively.

Algorithm 1 Compute a symmetric and conflict-free com-
munication schedule.
Require: G = (V,E) . . . An instance of a network topology
Ensure: A symmetric, conflict-free schedule S = (R, T)

1: // Compute candidate communication patterns
2: P = Candidates(G)

3: // Select and schedule communication patterns
4: S = Schedule(P)

5: return S

Definition 7. A symmetric schedule S = (R, T) is conflict-
free when the following two conditions are met:
• For two routes r1, r2 ∈ R, T (r1) 6= T (r2):

T (r1) + |r1| 6= T (r2) + |r2|,
• For two routes r1, r2 ∈ R, T (r1) < T (r2) < T (r1)+|r1|,
∀i ∈ {0, . . . , T (r1) + |r1| − T (r2)}:
r1(T (r2)− T (r1) + i) 6= r2(i)

The definition from above ensures that (1) no two routes
start or end at the same time instant in the communication
schedule and (2) that any two routes scheduled concurrently
utilize disjoint sets of communication links.

Since routes and communication patterns can be treated
interchangeably in a symmetric schedule, we can devise an
algorithm that, given a set of communication patterns, com-
putes a conflict-free, symmetric schedule. The algorithm
consists of two phases. Firstly, a set of communication pat-
terns is computed that provides at least one pattern for any
pair of nodes. Secondly, a schedule is constructed by iter-
atively selecting candidate patterns and assigning them a
time slot in the schedule, while avoiding conflicts. Algo-
rithm 1 provides an overall view of our heuristic.

4.2 Candidate Patterns
The first step of our heuristic is to compute candidate

patterns, which can be used to construct the actual commu-
nication schedule. In contrast to traditional, static routing
algorithms, which often call this phase path selection, a can-
didate pattern is not necessarily included in the final result,
e.g., if another candidate providing an equivalent route has
been scheduled instead. An important property of this phase
is to ensure that the set of candidate patterns contains all
patterns needed to provide all-to-all communication. Algo-
rithm 2 computes such a candidate set.

Algorithm 2 Candidates(G) – Compute a candidate set of
communication patterns.

Require: n . . . Max. number of route segments
G = (V,E). . . An instance of a network topology

Ensure: A set of candidate patterns P

1: for all v1, v2 ∈ V, v1 6= v2 do
2: All shortest max. n-segmented routes (v1, p, v2) : p ∈P
3: return P

Algorithm 3 CandidatesTous(G) – Compute candidate
communication patterns for regular torus topologies.

Require: G = (V,E) . . . An instance of a network topology
Ensure: A set of candidate patterns P

1: let o be the top-left most node in the grid defined byG
2: for all v ∈ V, v 6= o do
3: All shortest max. 2-segmented routes (o, p, v) : p ∈P
4: return P

The algorithm is kept rather generic and might compute
the same communication patterns over and over again. This
can be avoided by exploiting the structure of the network
topology in question. In symmetric topologies it is suffi-
cient to enumerate all n-segment routes from one specific
origin node to all other nodes (due to the wraparound).
For instance, it is sufficient to consider only the routes from
the top-left most node (chosen for convenience) in a regu-
lar torus topology to compute all desired patterns (see Al-
gorithm 3). A similar optimization can also be done for
bidirectional tori - with the only exception that it is more
convenient to chose a node at the center of the grid as ori-
gin e.g., at coordinates (dm

2
e, dm

2
e) with respect to the grid

defined by an m×m-bidirectional torus.

Example 4. Consider the 3×3 torus as shown by Fig-
ure 4. The candidate set for this network, consisting of the
shortest 2-segment routes form the top-left node (marked by
a filled circle in the figure) to any other node, is given by
{e, ee, s, es, se, ees, see, ss, ess, sse, eess, ssee}. If it were
a bidirectional torus the candidate set would be {wn, nw, n, en,
ne, w, e, ws, sw, s, es, se}.

During the computation of the candidate set, it is trivial
to track classes of equivalent communication patterns, i.e.,
all those patterns that deliver a message from a given source
node in the NoC to the same destination node.

Definition 8. The equivalence class of a communication
pattern p ∈ P , denoted by the function EC : P → P(P),
consists of all communication patterns in P that, given a
specific source node in the NoC, deliver a message to the
same destination node.

4.3 Schedule Construction
After computing the set of candidate patterns the actual

schedule is constructed using Algorithm 4 by iteratively per-
forming four steps: (1) selecting a pattern from the candi-
date set, (2) finding a suitable time slot for the candidate
within the partial schedule constructed so far, (3) appending
corresponding routes to the final schedule, and (4) remov-
ing all communication patterns equivalent to the selected
candidate form the candidate set.

On every iteration, a candidate is selected to be sched-
uled next, using the SelectCandidate function. In order to
keep the algorithm simple (and reasonably fast), the sched-
ule constructed so far is not taken into account during the
candidate selection. However, we consider a heuristic that
tries to prevent conflicts with the candidate selected in the
preceding iteration of the algorithm. For our experiments
(Section 5) we evaluate four different selection strategies:

• Selection of a random pattern of the candidate set:

SelectCandidateRnd(P) = random p ∈ P

Algorithm 4 Schedule(P) – Derive a symmetric, conflict-
free, all-to-all communication schedule from a set of candi-
date patterns.

Require: P . . . A set of candidate patterns
G = (V,E). . . An instance of a network topology

Ensure: A symmetric and conflict-free schedule S = (R, T)

1: while P not empty do
2: // Find a good candidate pattern
3: let p = SelectCandidate(P)

4: // Find time slot
5: let t = ScheduleCandidate(R, T, p)

6: // Append routes to schedule
7: for all v ∈ V do
8: Construct a route r starting at v using p
9: Append r to R

10: Assign r to time step t via T
11: // Remove equivalent patterns
12: remove all patterns in EC(p) from P
13: return S = (R, T)

• Selection of any of the shortest candidate patterns:

SelectCandidateSht(P) = random p ∈ P s.t.

@q ∈ P, |q| < |p|

• Selection of any of the longest candidate patterns:

SelectCandidateLng(P) = random p ∈ P s.t.

@q ∈ P, |q| > |p|

• Selection of the longest candidate pattern avoiding con-
flicts with p′, the candidate of the previous iteration:

SelectCandidateCnfl(P) = random p ∈ P s.t.

@q ∈ P : |q| > |p| ∧
(@i, j ∈ N0 : p(i) = p′(j) ∨
∀r ∈ P, |r| = |p| : ∃i, j ∈ N0 : r(i) = p′(j))

The selected candidate is then scheduled at the earliest
time instant that is not yet assigned to another communi-
cation pattern of a previous iteration and that avoids all
conflicts with all the communication patterns scheduled so
far. Conflicts are easily determined for every possible time
instant according to the conflict relation as given by Defini-
tion 7. More efficient conflict-detection schemes that track
available time slots are possible, but are not considered in
this work. More formally the scheduling function is defined
as follows:

ScheduleCandidate(R, T, p) = minimal t ∈ N0 s.t.

@r ∈ R : T (r) = t ∧
@r ∈ R, T (r) 6= t : t + |p| = T (r) + |r| ∧
@r ∈ R, t < T (r) < t + |p|, i ∈ {0, . . . , t + |p| − T (r)} :

p(T (r)− t + i) = r(i) ∧
@r ∈ R, T (r) < t < T (r) + |r|, i ∈ {0, . . . , T (r) + |r| − t} :

r(t− T (r) + i) = p(i)

Routes are then constructed for every node in the network
using the selected candidate pattern. These routes are ap-
pended to the final schedule and assigned to the previously
determined time slot. Note that in regular, non-symmetric
networks the boarder of the grid defined by the network has

to be accounted for, i.e., routes are not constructed for a spe-
cific source node in case the communication pattern would
reach out over the boarder of the grid.

Finally, all patterns that are in the equivalence class of
the selected candidate pattern are removed from the candi-
date set in order to avoid duplicated routes. The result is a
symmetric, conflict-free, all-to-all communication schedule.

Example 5. Assuming the longest candidate selection strat-
egy and the candidate set of the 3×3 torus in Example 4,
Algorithm 4 proceeds as follows: initially the entire candi-
date set is available in P and the communication schedule
is empty. The selection strategy randomly chooses to sched-
ule one of the longest patterns in P , say eess (l. 3). Since
the schedule is empty, the pattern can be scheduled at time
instant 0 (l. 5) and corresponding routes are added to the
communication schedule for every node in the network (l. 8).
Next, eess and ssee are removed from P since both are in
the equivalence class EC(eess) (l. 11), i.e., given a source
the same destination is reached by both patterns. In the next
iteration, the algorithm selects the see pattern, which can be
scheduled at time instant 4 the earliest due to conflicts (Def-
inition 7). Along with this pattern also the equivalent ees

pattern will be removed from P . The algorithm then con-
tinues to select patterns, append routes to the communica-
tion schedule, and eliminate equivalent patterns by schedul-
ing sse, se, ee, s, and e at time instant 5, 1, 3, 8, and 9.

4.4 Correctness
This section covers correctness considerations of our pattern-

based approach in general as well as considerations with re-
gard to the heuristic scheduling algorithm.

Lemma 1. A symmetric, conflict-free, all-to-all commu-
nication schedule for a symmetric or regular network is a
feasible all-to-all communication schedule (see Section 2.3).

Proof. A symmetric, all-to-all schedule is an all-to-all
communication schedule. Furthermore, the definition of routes
(see Definition 4) does not allow us to specify stalling mes-
sages, i.e., all incoming messages at the router of a node are
immediately forwarded on the next time instant.
Recalling Definition 6 and 7, we thus only have to show that
at most one message is transmitted over a link in the net-
work at any moment in time, i.e., feasibility. For this we
have to consider three cases:
Sending: The link between a sending node and its router
is used at most once, since, following Definition 6, a single
communication pattern is permitted to commence on every
time instant only.
Receiving : The link between a receiving node and its router
is used only once, due to Definition 7.
Routing : A link between the routers of two nodes is used
only once, due to Definition 7.

Theorem 1. Algorithm 1 yields a symmetric, conflict-
free, all-to-all schedule for symmetric or regular networks.

Proof. We will informally sketch a proof for each of the
three properties:
Symmetry: The schedule is symmetric since all routes as-
signed to a time instant are constructed using the same can-
didate pattern (Algorithm 4, l. 6), no other pattern can be
assigned to the same time instant (see ScheduleCandidate),
and a pattern can only be scheduled once (l. 11).

#links
mesh torus bid. torus

side-length #nodes – r. p. r. p.
3 9 24 18 36 36 72
4 16 48 32 64 64 128
5 25 80 50 100 100 200
6 36 120 72 144 144 288
7 49 168 98 196 196 392
8 64 224 128 256 256 512
9 81 288 162 324 324 648

10 100 360 200 400 400 800
11 121 440 242 484 484 968
12 144 528 288 576 576 1152
13 169 624 338 676 676 1352
14 196 728 392 784 784 1568
15 225 840 450 900 900 1800

Table 1: Overview of network topology variants and
sizes (r. and p. denote regular and pipelined vari-
ants respectively).

Conflict freedom: This follows immediately from the defini-
tion of ScheduleCandidate.
All-to-all communication: Assume two nodes s and d of the
network for which there exists no route from s to d in the
final schedule. It is easy to see that the function Candidates

computes at least one communication pattern for every pair
of nodes in the network – in particular, the candidate set
also contains a pattern p suitable for a route r = (s, p, d).
Since r has not been scheduled some other equivalent pat-
tern p′ must have been scheduled, causing the removal of p
from the candidate set (see Algorithm 4, l. 11). However,
this implies the existence of a route (s, p′, d) in the schedule,
which contradicts our initial assumption.

As indicated in Section 4.2, it is not necessary to compute
the patterns for all pairs in symmetric networks, due to the
wraparound at the boarder of the grid defined by the net-
work. The preceding proof can easily be adopted in order to
account for this optimization by showing that the resulting
patterns still ensure all-to-all communication.

5. EXPERIMENTS
We evaluated our heuristic algorithm to compute commu-

nication schedules for various instances of the mesh, torus,
and bidirectional torus topologies over a square grid (see
Section 2.1) with a side length between 3 to 15 nodes. In
our experiments we thus consider networks consisting of be-
tween 9 and 225 nodes interconnected by between 18 and
1800 links – see Table 1 for an overview. According to our
experiments, the bidirectional torus topology appears to be
the most interesting network topology, we thus considered
even larger network configurations of up to 900 nodes and
3600 links. For the torus and bidirectional torus topology
we considered both, the regular and the pipelined variants.

All measurements were performed on an AMD Fusion E-
350 (stepping 0) dual-core processor running at 1.6 GHz;
having a 2× 512 KiB L2-cache and 2 GiB of main memory.
We used a 64-bit, Linux-based operating system with kernel
version 2.6.37.6 (OpenSuse 11.4). Time measurements were
taken over several runs on an otherwise unloaded machine.

Note that the experimental setup was designed to evalu-
ate the scheduling algorithm. The following numbers thus
do not cover hardware requirements, e.g., to synthesize the

#patterns
#nodes mesh torus bid. torus

9 40 12 12
16 84 24 24
25 144 40 40
36 220 60 60
49 312 84 84
64 420 112 112
81 544 144 144

100 684 180 180
121 840 220 220
144 1012 264 264
169 1200 312 312
196 1404 364 364
225 1624 420 420

Table 2: Number of candidate patterns enumerated
for various network topologies.

schedule tables, nor measurements of the network utilization
by specific applications, e.g., load, latency, or throughput.

5.1 Candidate Enumeration
The first phase of our approach (Algorithm 2 from Sec-

tion 4.2) computes candidate patterns that are considered
for the construction of the final communication schedule.
The number of those patterns depends on the network topol-
ogy and its symmetry. In our experiments we only consider
2-segment routes, which consist of a horizontal segment fol-
lowed by an optional vertical segment, or the other way
around. Note that also other kinds of candidate patterns
could be considered. For the symmetric torus topology the
number of candidate patterns is moderately increasing with
the number of nodes in the network from 12 to 420 – as
shown by Table 2. Note that pipelining on the links is only
relevant to the length of the enumerated patterns but not
their number, i.e., regular as well as the pipelined variants
result in the same number of candidate patterns. Even
though the bidirectional torus offers twice the number of
links compared to the torus topology the number of candi-
date patterns remains the same for networks with the same
number of nodes. This is explained by the fact that the
patterns induced by the additional links are redundant. In
addition, due to the bidirectional connectivity, the maximal
length of the shortest routes between any two nodes is re-
duced, which leads to even more redundant patterns. The
opposite is true for the mesh topology. Here many more can-
didate patterns have to be enumerated, because of the miss-
ing links compared to a torus, which would wrap around the
grid. The number of candidates thus is between 40 and 1624.

The average length over all enumerated candidates is, in
general, close to the network’s side length for all topologies.
The pipelined variant of the torus topology and the regular
bidirectional torus are notable exceptions. In the former
case, the average length of candidate patterns is twice the
side length. More interestingly, the average length for the
bidirectional torus is only half the side length, which leads
to much shorter schedules.

5.2 Schedule Construction
The next phase, corresponding to Algorithm 4 of Sec-

tion 4.3, derives a symmetric, all-to-all communication sched-
ule by iteratively selecting one of the candidate patterns

#cycles
mesh torus bid. torus

#nodes heur. opt. rat. heur. opt. rat. heur. opt. rat.
9 28 10 2.80 12 11 1.09 11 10 1.10

16 59 18 3.30 28 26 1.08 20 18 1.11
25 112 34 3.29 57 52 1.10 28 28 1.00
64 481 – – 246 – – 88 – –

100 974 – – 501 – – 158 – –
225 3467 – – 1821 – – 481 – –
400 – – – – – – 1164 – –

Table 3: Best schedule lengths for some selected con-
figurations (heur.), optimal solutions (opt.), and ra-
tio (rat.) between them (in cycles, lower is better).

and assigning it to a time slot. The length of the result-
ing schedule depends, among others, on the order in which
candidate patterns are chosen. We thus compared several
heuristics for the candidate selection function: Rnd, Sht,
Lng and Cnfl, which select a random candidate, one of the
shortest patterns, one of the longest patterns, or one of the
longest patterns without conflict respectively.

Table 3 summarizes the schedule length in cycles for a
selection of network configurations and compares the result
to results derived using an optimal ILP formulation. The
optimal schedules are available for all considered network
topologies up to a size of 25 nodes. The schedule lengths for
the regular mesh topology are within a factor of 3.30 with
regard to the optimal solution. This is hardly surprising,
since some of the available link capacity is wasted by the in-
trinsic assumption of our heuristic that all routers perform
the same actions at all times. The situation changes dras-
tically for torus-based networks. Our heuristic reaches the
optimum for one case and generally is within 10% of the opti-
mum. The results for the bidirectional torus are particularly
interesting, since the schedule lengths remain relatively low,
even for network configurations with hundreds of nodes. For
instance, the schedule length in a bidirectional torus with
100 nodes is only 158 cycles long, i.e., the schedule length is
only about 1.6 times the number of nodes.

Due to the high complexity of the scheduling problem,
which is NP-complete in the general case, optimal numbers
are only available up to a network size of 25 nodes. We thus
additionally consider analytical lower bounds as a reference.
The length of communication schedules can be bounded us-
ing three metrics: (1) a bound induced by the I/O band-
width at each node (2) a bound based on the bisection band-
width and (3) a bound based on the capacity of the network.
The I/O bound for the topologies considered here amounts
to n − 1, where n denotes the number of nodes in the net-
work. The bisection bandwidth is an important metric in
network design that specifies the minimal bandwidth that
is available for the transmission of messages between any
partitioning of the network nodes in two equal-sized sets.
Since we are seeking an all-to-all communication schedule,
the number of messages transmitted between the two node
sets equals (n/2)2. The bisection bound is then given by
dividing this number by the number of links connecting the
two sets. For the torus topology this yields m3/4, where m
denotes the side length of the grid defined by the network’s
layout (for even m). Finally, the capacity bound is given by
dividing the total sum of all minimal-length routes between

25 50 75 100125150175200225250 300 400 500 600 700 800 900
0

250

500

750

1000

1250

1500

1750

2000

2500

3000

3500

4000

Nodes

C
y
c
le
s Sht Rnd Lng Cnfl Bound

Figure 5: Schedule length and lower bound for the regular bidirectional tori (in cycles, lower is better).

any two nodes through the total number of links in the net-
work, i.e., the network’s capacity. The torus topology, for
instance, has a capacity bound of (m3 −m2)/2. We denote
the maximum of the listed bounds as the lower bound for the
remainder of this discussion. As a general rule, this lower
bound is dominated by the bisection bound for the mesh
topology, while it is dominated by the capacity bound for
the torus topology. In the case of the bidirectional torus the
capacity and bisection bounds are virtually identical. Here,
however, for network sizes of up to 49 nodes the I/O bound
dominates. The bounds for torus and bidirectional torus
apply to both, the regular and pipelined variant.

For larger instances of the symmetric topologies, our heuris-
tic approach performs surprisingly well. For the regular
torus the cnfl candidate selection clearly performs best, yield-
ing schedule lengths within about 15% to the lower bound
(see Table 4). The lng approach gives slightly inferior re-
sults. The two other methods (rnd and sht) perform worse,
yet reach the lower bound within 23% to 24%. In the case of
the bidirectional torus topology we observe a similar trend,

torus bid. torus
#nodes rnd sht lng cnfl rnd sht lng cnfl

9 1.11 1.33 1.11 1.11 1.12 1.25 1.25 1.12
16 1.21 1.21 1.08 1.08 1.20 1.27 1.27 1.20
25 1.26 1.18 1.10 1.10 1.25 1.38 1.12 1.08
36 1.16 1.18 1.10 1.09 1.23 1.37 1.23 1.17
49 1.20 1.18 1.11 1.08 1.35 1.44 1.19 1.19
64 1.15 1.19 1.12 1.09 1.42 1.55 1.33 1.34
81 1.22 1.20 1.13 1.10 1.53 1.48 1.21 1.23

100 1.24 1.21 1.14 1.11 1.34 1.45 1.30 1.25
121 1.22 1.22 1.16 1.12 1.34 1.37 1.15 1.16
144 1.22 1.22 1.17 1.13 1.34 1.39 1.25 1.24
169 1.23 1.23 1.17 1.14 1.40 1.34 1.15 1.16
196 1.24 1.24 1.18 1.15 1.31 1.35 1.23 1.21
225 1.23 1.24 1.19 1.15 1.34 1.31 1.14 1.15
900 – – – – 1.37 1.28 1.20 1.15

Table 4: Schedule length in relation with its theo-
retical lower bound for the torus and bidirectional
torus topologies (lower is better).

the cnfl and lng candidate selection clearly perform best.
This time, however, we see an alternating behavior. For
network instances with an even number of nodes the cnfl ap-
proach performs better, for odd numbers lng performs best.
This pattern continues consistently up to the maximal net-
work sizes considered in our experiments (900 nodes). As
of now, we do not have a conclusive explanation for this
behavior.

Figure 5 and 6 illustrate the development of the schedule
length, as computed by our heuristics, with increasing net-
work size for the bidirectional torus and regular torus. The
bidirectional torus allows for considerably shorter schedules
than comparable torus networks. The curve follows a very
gentle, though non-linear slope. For instance, in a network
consisting of 225 nodes, our heuristic yields a schedule length
of 486 versus 1820 cycles for the bidirectional torus and
torus respectively (both within 15% to their respective lower
bounds). The torus thus gives a schedule that is about 3.75
times longer than that of a bidirectional torus. This gap is

25 50 75 100 125 150 175 200 225

250

500

750

1000

1250

1500

1750

2000

Nodes

C
y
c
le
s Sht Rnd Lng Cnfl Bound

Figure 6: Schedule length and lower bound for the
regular torus topology (in cycles, lower is better).

25 50 75 100 125 150 175 200 225
0

1

2

3

Nodes

T
im

e
(s
)

Sht Rnd Lng Cnfl

Figure 7: Execution time of the entire schedule con-
struction for the regular bidirectional torus topology
(in seconds, lower is better).

even further increasing for larger networks. The increasing
gap is explained by the additional network capacity, com-
bined with shorter candidate routes. This difference is a
strong argument for a bidirectional torus: for double of the
wire area the bandwidth is almost quadrupled.

Due to space considerations, we only briefly discuss pipe-
lined network variants for the torus-based topologies. Due to
the additional register on each link and the doubled length
of all routes in the network, one might simply expect an
increase in the schedule length by a factor of two in compar-
ison to a corresponding network without those registers. In-
deed, this intuition is not entirely wrong. As the node count
increases we observe that the ration in the schedule length
approaches a factor of two. For smaller instances of up to 25
nodes, the ratio ranges between a 1.33 and 1.61 for the bidi-
rectional torus topology. This indicates that the additional
registers do not help to realize any bandwidth gains, since
they are counterbalanced by the increased schedule length.
The additional hardware overhead, if not justified otherwise,
is thus better invested elsewhere.

5.3 Execution Time
The various phases of our heuristic depend to a large de-

gree on the underlying network topology. However, it is
easy to see that the algorithm is polynomial in the number
of nodes. This is also confirmed by the measured execution
times for our experiments. The measurements show that the
computation of candidate patterns is negligible in practice
and that the total execution time is dominated by the actual
schedule construction. Figure 7 shows the measured execu-
tion time for the bidirectional torus topology up to network
sizes of 225 nodes. The curves for other configurations follow
a similar trend with increased execution times.

6. CONCLUSION
To provide more processing power in real-time systems

several processing cores are integrated on a single chip. A
shared on-chip network allows communication between these

cores. To avoid interference between the cores the commu-
nication on the network has to be statically scheduled.

We presented a heuristic to generate static schedules to
provide all-to-all communication on symmetric network to-
pologies, such as torus and hypercube. For symmetric topolo-
gies it is sufficient to consider only simple communication
patterns that can be replicated at all routers. Therefore,
the size of the search space is heavily reduced and solutions,
within 15% to 20% of theoretical lower bounds, can be found
even for large network instances.

The generated schedules have, furthermore, been used for
an FPGA-based prototype implementation of a NoC with
small micro controllers as processing cores. The schedule
tables generated by our approach are directly synthesized
into ROM tables and thus require minimal space.

Acknowledgments
This work was partially funded under the European Union’s
7th Framework Programme under grant agreement no. 288008:
Time-predictable Multi-Core Architecture for Embedded Sys-
tems (T-CREST).

7. REFERENCES
[1] L. Fleischer and M. Skutella. The quickest

multicommodity flow problem. In Proceedings of the
Conference on Integer Programming and Combinatorial
Optimization (IPCO), pages 36–53. Springer, 2002.

[2] L. R. Ford and D. R. Fulkerson. Constructing maximal
dynamic flows from static flows. Operations Research,
6:419–433, 1958.

[3] K. Goossens and A. Hansson. The AEthereal network
on chip after ten years: Goals, evolution, lessons, and
future. In Proceedings of the Design Automation
Conference (DAC), pages 306–311, 2010.

[4] A. Hansson, K. Goossens, and A. Radulescu. A unified
approach to mapping and routing on a network-on-chip
for both best-effort and guaranteed service traffic. VLSI
Design, 2007:16, 2007.

[5] P. J. LoPresti. Tadpole – an off-line router for the
NuMesh system. Master’s thesis, Massachusetts
Institute of Technology. Dept. of Electrical Engineering
and Computer Science, 1997.

[6] Z. Lu and A. Jantsch. TDM virtual-circuit
configuration for network-on-chip. IEEE Trans. Very
Large Scale Integr. Syst., 16:1021–1034, August 2008.

[7] M. Millberg, E. Nilsson, R. Thid, S. Kumar, and
A. Jantsch. The Nostrum backbone-a communication
protocol stack for networks on chip. In Proceedings of
the Conference on VLSI Design, pages 693 – 696, 2004.

[8] M. Schoeberl, F. Brandner, J. Sparsø, and E. Kasapaki.
A statically scheduled time-division-multiplexed
network-on-chip for real-time systems. In Proceedings of
the International Symposium on Networks-on-Chip
(NOCS), pages 152–160. IEEE, 2012.

[9] R. Stefan and K. Goossens. An improved algorithm for
slot selection in the æthereal network-on-chip. In
Proceedings of the Workshop on Interconnection
Network Architecture: On-Chip, Multi-Chip
(INA-OCMC), pages 7–10. ACM, 2011.

	Introduction
	Background
	Network-On-Chip Topologies
	Routing
	All-To-All Communication

	Related Work
	Pattern-Based Scheduling
	Symmetric Schedules
	Candidate Patterns
	Schedule Construction
	Correctness

	Experiments
	Candidate Enumeration
	Schedule Construction
	Execution Time

	Conclusion
	References

