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Abstract

We investigated how shape features in natural images influence emotions aroused in human 

beings. Shapes and their characteristics such as roundness, angularity, simplicity, and complexity 

have been postulated to affect the emotional responses of human beings in the field of visual arts 

and psychology. However, no prior research has modeled the dimensionality of emotions aroused 

by roundness and angularity. Our contributions include an in-depth statistical analysis to 

understand the relationship between shapes and emotions. Through experimental results on the 

International Affective Picture System (IAPS) dataset we provide evidence for the significance of 

roundness-angularity and simplicity-complexity on predicting emotional content in images. We 

combine our shape features with other state-of-the-art features to show a gain in prediction and 

classification accuracy. We model emotions from a dimensional perspective in order to predict 

valence and arousal ratings which have advantages over modeling the traditional discrete 

emotional categories. Finally, we distinguish images with strong emotional content from 

emotionally neutral images with high accuracy.
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1. INTRODUCTION

The study of human visual preferences and the emotions imparted by various works of art 

and natural images has long been an active topic of research in the field of visual arts and 

psychology. A computational perspective to this problem has interested many researchers 

and resulted in articles on modeling the emotional and aesthetic content in images [10, 11, 

13]. However, there is a wide gap between what humans can perceive and feel and what can 

be explained using current computational image features. Bridging this gap is considered the 

“holy grail” of computer vision and the multimedia community. There have been many 

psychological theories suggesting a link between human affective responses and the low-

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that 
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first 
page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

xinlu@psu.edu. 

HHS Public Access
Author manuscript
Proc ACM Int Conf Multimed. Author manuscript; available in PMC 2019 September 18.

Published in final edited form as:
Proc ACM Int Conf Multimed. 2012 ; 2012: 229–238. doi:10.1145/2393347.2393384.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



level features in images apart from the semantic content. In this work, we try to extend our 

understanding of some of the low-level features which have not been explored in the study 

of visual affect through extensive statistical analyses.

In contrast to prior studies on image aesthetics, which intended to estimate the level of visual 

appeal [10], we try to leverage some of the psychological studies on characteristics of shapes 

and their effect on human emotions. These studies indicate that roundness and complexity of 

shapes are fundamental to understanding emotions.

• Roundness - Studies [4, 21] indicate that geometric properties of visual displays 

convey emotions like anger and happiness. Bar et al. [5] confirm the hypothesis 

that curved contours lead to positive feelings and that sharp transitions in 

contours trigger a negative bias.

• Complexity of shapes - As enumerated in various works of art, humans visually 

prefer simplicity. Any stimulus pattern is always perceived in the most simplistic 

structural setting. Though the perception of simplicity is partially subjective to 

individual experiences, it can also be highly affected by two objective factors, 

parsimony and orderliness. Parsimony refers to the minimalistic structures that 

are used in a given representation, whereas orderliness refers to the simplest way 

of organizing these structures [3].

These findings provide an intuitive understanding of the low-level image features that 

motivate the affective response, but the small scale of studies from which the inferences have 

been drawn makes the results less convincing. In order to make a fair comparison of 

observations, psychologists created the standard International Affective Picture System 

(IAPS) [15] dataset by obtaining user ratings on three basic dimensions of affect, namely 

valence, arousal, and dominance (Figure 1). However, the computational work on the IAPS 

dataset to understand the visual factors that affect emotions has been preliminary. 

Researchers [9, 11, 18, 23, 25, 26] investigated factors such as color, texture, composition, 

and simple semantics to understand emotions, but have not quantitatively addressed the 

effect of perceptual shapes. The study that did explore shapes by Zhang et al. [27] predicted 

emotions evoked by viewing abstract art images through low-level features like color, shape, 

and texture. However, this work only handles abstract images, and focused on the 

representation of textures with little accountability of shape.

The current work is an attempt to systematically investigate how perceptual shapes 

contribute to emotions aroused from images through modeling the visual properties of 

roundness, angularity and simplicity using shapes. Unlike edges or boundaries, shapes are 

influenced by the context and the surrounding shapes influence the perception of any 

individual shape [3]. To model these shapes in the images, the proposed framework 

statistically analyzes the line segments and curves extracted from strong continuous 

contours. Investigating the quantitative relationship between perceptual shapes and emotions 

aroused from images is non-trivial. First, emotions aroused by images are subjective. Thus, 

individuals may not have the same response to a given image, making the representation of 

shapes in complex images highly challenging. Second, images are not composed of simple 
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and regular shapes, making it difficult to model the complexity existing in natural images 

[3].

Leveraging the proposed shape features, the current work attempts to automatically 

distinguish the images with strong emotional content from emotionally neutral images. In 

psychology, emotionally neutral images refer to images which evoke very weak or no 

emotions in humans.

Also, the current study models emotions from a non- categorical or discrete emotional 

perspective. In previous work, emotions were distinctly classified into categories like anger, 

fear, disgust, amusement, awe, and contentment, among others. This paper is, to our 

knowledge, the first to predict emotions aroused from images by adopting a dimensional 

representation (Figure 2). Valence represents the positive or negative aspect of human 

emotions, where common emotions, like joy and happiness, are positive, whereas anger and 

fear are negative. Arousal describes the human physiological state of being reactive to 

stimuli. A higher value of arousal indicates higher excitation. Dominance represents the 

controlling nature of the emotion. For instance, anger can be more controlling than fear. 

Researchers [2, 12, 28] have investigated the emotional content of videos through the 

dimensional approach. Their emphasis was on the accommodation of the change in features 

over time rather than low-level feature improvement. However, static images, with less 

information, are often more challenging to interpret. Low-level features need to be 

punctuated.

This work adopts the dimensional approaches of emotion motivated by recent studies in 

psychology, which argued for the strengths of dimensional approaches. According to 

Bradley and Lang [6], categorized emotions do not provide a one-to-one relationship 

between the content and emotion of an image since participants perceive different emotions 

in the same image. This highlights the utility of a dimensional approach, which controls for 

the intercorrelated nature of human emotions aroused by images. From the perspective of 

neuroscience studies, it has been demonstrated that the dimensional approach is more 

consistent with how the brain is organized to process emotions at their most basic level [14, 

17]. Dimensional approaches also allow the separation of images with strong emotional 

content from images with weak emotional content.

In summary, our main contributions are:

• We systematically investigate the correlation between visual shapes and 

emotions aroused from images.

• We quantitatively model the concepts of roundness-angularity and simplicity-

complexity from the perspective of shapes using a dimensional approach.

• We distinguish images with strong emotional content from those with weak 

emotional content.

The rest of the paper is organized as follows, Section 2 provides a summary of previous 

work. Section 3 introduces some definitions and themes which recur throughout the paper. 

The overall framework followed by details of the perceptual shape descriptors are described 
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in Section 4. Experimental results and in-depth analyses are presented in Section 5. We 

conclude in Section 6.

2. RELATED WORK

Previous work [11, 26, 18] predicted emotions aroused by images mainly through training 

classifiers on visual features to distinguish categorical emotions, such as happiness, anger, 

and sad. Low-level stimuli such as color and composition have been widely used in 

computational modeling of emotions. Affective concepts were modeled using color palettes, 

which showed that the bag of colors and Fisher vectors (i.e., higher order statistics about the 

distribution of local descriptors) were effective [9]. Zhang et al. [27] characterized shape 

through Zernike features, edge statistics features, object statistics, and Gabor filters. 

Emotion-histogram and bag-of-emotion features were used to classify emotions by Solli et 

al. [24]. These emotion metrics were extracted based on the findings from psycho-

physiological experiments indicating that emotions can be represented through 

homogeneous emotion regions and transitions among them.

The first work that comprehensively modeled categorical emotions, Machajdik and Hanbury 

[18] used color, texture, composition, content, and semantic level features such as number of 

faces to model eight discrete emotional categories. Besides the eight basic emotions, to 

model categorized emotions, adjectives or word pairs were used to represent human 

emotions. The earliest work based on the Kansei system employs 23 word pairs (e.g., like-

dislike, warmcool, cheerful-gloomy) to establish the emotional space [23]. Along the same 

lines, researchers enumerated more word pairs to reach a universal, distinctive, and 

comprehensive representation of emotions in Wang et al. [25]. Yet, the aforementioned 

approaches of emotion representation ignore the interrelationship among types of emotions.

3. CONCEPT INTERPRETATION

This work captures emotions evoked by images by leveraging shape descriptors. Shapes in 

images are difficult to capture, mainly due to the perceptual and merging boundaries of 

objects which are often not easy to differentiate using even state-of-the-art segmentation or 

contour extraction algorithms. In contemporary computer vision literature [7, 20], there are a 

number of statistical representations of shape through characteristics like the straightness, 

sinuosity, linearity, circularity, elongation, orientation, symmetry, and the mass of a curve. 

We chose roundness-angularity and simplicity-complexity characteristics because they have 

been found previously by psychologists to influence the affect of human beings through 

controlled human subject studies. Symmetry is also known to effect emotion and aesthetics 

of images [22]. However, quantifying symmetry in natural images is challenging.

To make it more convenient to introduce the shape features proposed, this section defines the 

four terms used: line segments, angles, continuous lines, and curves. The framework for 

extracting perceptual shapes through lines and curves is derived from [8]. The contours are 

extracted using the algorithm in [1], which used color, texture, and brightness of each image 

for contour extraction. The extracted contours are of different intensities and indicate the 

algorithm’s confidence on the presence of edges. Considering the temporal resolution of our 
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vision system, we adopted a threshold of 40%. Example results are presented in Figures 3, 4, 

5, and 6. Pixels with an intensity higher than 40% are treated equally, which results in the 

binary contour map presented in the second column. The last three columns show the line 

segments, continuous lines, and curves.

Line segments -

Line segments refer to short straight lines generated by fitting nearby pixels. We generated 

line segments from each image to capture its structure. From the structure of the image, we 

propose to interpret the simplicity-complexity. We extracted locally optimized line segments 

by connecting neighboring pixels from the contours extracted from the image [16].

Angles -

Angles in the image are obtained by calculating angles between each of any two intersecting 

line segments extracted previously. According to Julian Hochberg’s theory [3], the number 

of angles and the number of different angles in an image can be effectively used to describe 

its simiplicity-complexity. The distribution of angles also indicates the degree of angularity 

of the image. A high number of acute angles makes an image more angular.

Continuous lines -

Continuous lines are generated by connecting intersecting line segments having the same 

orientations with a small margin of error. Line segments of inconsistent orientations can be 

categorized as either corner points or points of inflexion. Corner points, shown in Figure 

7(a), refer to angles that are lower than 90 degrees. Inflexion points, shown in Figure 7(b), 

refer to the midpoint of two angles with opposite orientations. Continuous lines and the 

degree of curving can be used to interpret the complexity of the image.

Curves -

Curves are a subset of continuous lines, the collection of which are employed to measure the 

roundness of an image. To achieve this, we consider each curve as a section of an ellipse, 

thus we use ellipses to fit continuous lines. Fitted curves are represented by parameters of its 

corresponding ellipses.

4. CAPTURING EMOTION FROM SHAPE

For decades, numerous theories have been promoted that are focused on the relationship 

between emotions and the visual characteristics of simplicity, complexity, roundness, and 

angularity. Despite these theories, researchers have yet to resolve how to model these 

relationships quantitatively. In this section, we propose to use shape features to capture those 

visual characteristics. By identifying the link between shape features and emotions, we are 

able to determine the relationship between the aforementioned visual characteristics and 

emotions.

We now present the details of the proposed shape features: line segments, angles, continuous 

lines, and curves. A total of 219 shape features are summarized in Table 1.

Lu et al. Page 5

Proc ACM Int Conf Multimed. Author manuscript; available in PMC 2019 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.1 Line segments

Psychologists and artists have claimed that the simplicity-complexity of an image is 

determined not only by lines or curves, but also by its overall structure and support [3]. 

Based on this idea, we employed line segments extracted from images to capture their 

structure. Particularly, we used the orientation, length, and mass of line segments to 

determine the complexity of the images.

Orientation -—To capture an overall orientation, we employed statistical measures of 

minimum (min), maximum (max), 0.75 quantile, 0.25 quantile, the difference between 0.75 

quantile and 0.25 quantile, the difference between max and min, sum, total number, median, 

mean, and standard deviation (we will later refer to these as {statistical measures}), and 

entropy. We experimented with both 6- and 18-bin histograms. The unique orientations were 

measured based on the two histograms to capture the simplicity- complexity of the image.

Among all line segments, horizontal lines and vertical lines are known [3] to be static and to 

represent the feelings of calm and stability within the image. Horizontal lines suggest peace 

and calm, whereas vertical lines indicate strength. To capture the emotions evoked by these 

characteristics, we counted the number of horizontal lines and vertical lines through an 18-

bin histogram. The orientation θ, of horizontal lines fall within 0° < θ < 10° or 170° < θ < 

180°, and 80° < θ < 100° for vertical lines.

Length -—The length of line segments reflects the simplicity of images. Images with 

simple structure might use long lines to fit contours, whereas complex contours have shorter 

lines. We characterized the length distribution by calculating the {statistical measures} of 

lengths of line segments within the image.

Mass of the image -—The centroid of line segments may indicate associated 

relationships among line segments within the visual design [3]. Hence, we calculate the 

mean and standard deviation of the x and y coordinates of the line segments to find the mass 

of each image.

Some of the example images and their features are presented in Figures 8 and 9. Figure 8 

presents the ten lowest mean values of the length of line segments. The first row shows the 

original images, the second row shows the line segments extracted from these images and 

the third row shows the 18-bin histogram for line segments in the images. The 18 bins refer 

to the number of line segments with an orientation of [−90 + 10(i — 1), −90 + 10i) degrees 

where i ∈ {1, 2,…, 18}. Similarly, Figure 9 presents the ten highest mean values of the 

length of line segments.

These two figures indicate that the length or the orientation cannot be examined separately 

to determine the simplicity-complexity of the image. Lower mean values of the length of 

line segments might refer to either simple images such as the first four images in Figure 8 or 

highly complex images such as the last four images in that figure. The histogram of the 

orientation of line segments helps us to distinguish the complex images from simple images 

by examining variation of values in each bin.
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4.2 Angles

Angles are important elements in analyzing the simplicity-complexity and the angularity of 

an image. We capture the visual characteristics from angles through two perspectives.

• Angle count - We first calculate the two quantitative features claimed by Julian 

Hochberg, who has attempted to define simplicity (he used the value-laden term 

“figural goodness”) via information theory: “The smaller the amount of 

information needed to define a given organization as compared to the other 

alternatives, the more likely that the figure will be so perceived” [3]. Hence this 

minimal information structure is captured using the number of angles and the 

percentage of unique angles in the image.

• Angular metrics - We use the {statistical measures} to extract angular metrics. 

We also calculate the 6- and 18-bin histograms on angles and their entropies.

Some of the example images and features are presented in Figures 10 and 11. Images with 

lowest and highest number of angles are shown along with their corresponding contours in 

Figure 10. These examples show promising relationships between angular features and 

simplicity-complexity of the image. Example results for the histogram of angles in the 

image are presented in Figure 11. The 18 bins refer to the number of line segments with an 

orientation in [10(i— 1), 10i) degrees where i ε {1, 2,…, 18}.

4.3 Continuous lines

We attempt to capture the degree of curvature from continuous lines, which has implications 

for the simplicity-complexity of images. We also calculated the number of continuous lines, 

which is the third quantitative feature specified by Julian Hochberg [3]. For continuous lines, 

open/closeness are factors affecting the simplicity-complexity of an image. In the following, 

we focus on the calculation of the degree of curving, the length span value, and the number 

of open lines and closed lines. The length span refers to the highest Euclidean distance 

among all pairs of points on the continuous lines.

Length Span(l) = max
pi ∈ l, p j ∈ l

EuclideanDist pi, p j , (1)

where [p1,p2, …,pN} are the points on continuous line l.

• Degree of curving - We calculated the degree of curving of each line as

Degree of Curving(l) = Length Span(l)/N, (2)

where N is the number of points on continuous line l.

To capture the statistical characteristics of contiguous lines in the image, we 

calculated the {statistical measures}. We also generated a 5-bin histogram on the 

degree of curving of all continuous lines (Figures 12 and 13).
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• Length span - We used {statistical measures} for the length span of all 

continuous lines.

• Line count - We counted the total number of continuous lines, the total number 

of open lines, and the total number of closed lines in the image.

4.4 Curves

We used the nature of curves to model the roundness of images. For each curve, we 

calculated the extent of fit to an ellipse as well as the parameters of the ellipse such as its 

area, circularity, and mass of curves. The curve features are explained in detail below.

• Fitness, area, circularity - The fitness of an ellipse refers to the overlap between 

the proposed ellipse and the curves in the image. The area of the fitted ellipse is 

also calculated. The circularity is represented by the ratio of the minor and major 

axes of the ellipses. The angular orientation of the ellipse is also measured. For 

each of the measures, we used the {statistical measures} and entropies of the 

histograms as the features to depict the roundness of the image.

• Mass of curves - We used the mean value and standard deviation of (x, y) 

coordinates to describe the mass of curves.

• Top round curves - To make full use of the discovered curves and to depict 

roundness, we included the fitness, area, circularity, and mass of curves for each 

of the top three curves.

To examine the relationship between curves and positivenegative images, we calculated the 

average number of curves in terms of values of circularity and fitness on positive images 

(i.e., the value is higher than 6 in the dimension of valance) and negative images (i.e., the 

value is lower than 4.5 in the dimension of valance).

The results are shown in Tables 2 and 3. Positive images have more curves with 60% – 

100% fitness to ellipses and higher average curve count.

5. EXPERIMENTS

To demonstrate the relationship between proposed shape features and the felt emotions, the 

shape features were utilized in three tasks. First, we distinguished images with strong 

emotional content from emotionally neutral images. Second, we fit valence and arousal 

dimensions using regression methods. We then performed classification on discrete 

emotional categories. The proposed features were compared with the features discussed in 

Machajdik et al. [18], and overall accuracy was quantified by combining those features. 

Forward selection and Principal Component Analysis (PCA) strategies were employed for 

feature selection and to find the best combination of features.

5.1 Dataset

We used two subsets of the IAPS [15] dataset, which were developed by examining human 

affective responses to color photographs with varying degrees of emotional content. The 
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IAPS dataset contains 1,182 images, wherein each image is associated with an empirically 

derived mean and standard deviation of valance, arousal, and dominance ratings.

Subset A of the IAPS dataset includes many images with faces and human bodies. Facial 

expressions and body language strongly affect emotions aroused by images, slight changes 

of which might lead to an opposite emotion. The proposed shape features are sensitive to 

faces hence we removed all images with faces and human bodies from the scope of this 

study. In experiments, we only considered the remaining 484 images, which we labeled as 

Subset A. To provide a better understanding of the ratings of the dataset, we analyzed the 

distribution of ratings within valence and arousal, as shown in Figure 14. We also calculated 

average variations of ratings in each rating unit (i.e., 1–2, 2–3, … , 7–8). Valence ratings 

between 3 and 4, and 6 and 7, have the maximum variance for single images. Similarly, 

arousal ratings between 4 and 5 varied the most.

Subset B are images with category labels (with discrete emotions), generated by Mikels 

[19]. Subset B includes eight categories namely, anger, disgust, fear, sadness, amusement, 

awe, contentment, and excitement, with 394 images in total. Subset B is a commonly used 

dataset, hence we used it to benchmark our classification accuracy with the results 

mentioned in Machajdik et al. [18].

5.2 Identifying Strong Emotional Content

Images with strong emotional content have very high or very low valance and arousal 

ratings. Images with values around the mean values of valance and arousal lack emotions 

and wered used as samples for emotionally neutral images.

Based on dimensions of valance and arousal respectively, we generated two sample sets 

from Subset A. In Set 1, images with valence values higher than 6 or lower than 3. 5 were 

considered images with strong emotional content and the rest to represent emotionally 

neutral images. This resulted in 247 emotional images and 237 neutral images. Similarly, 

images with arousal values higher than 5.5 or lower than 3. 7 were defined as emotional 

images, and others as neutral images. With similar thresholds, we obtained 239 emotional 

images and 245 neutral images in Set 2.

We used the traditional Support Vector Machines (SVM) with radial basis function (RBF) 

kernel to perform the classification task. We trained SVM models using the proposed shape 

features, Machajdik’s features, and combined (Machajdik’s and shape) features. Training 

and testing were performed by dividing the dataset uniformly into training and testing sets. 

As we removed all images with faces and human bodies, we did not consider facial and skin 

features discussed in [18]. We used both forward selection and PCA methods to perform 

feature selection. In the forward selection method, we used the greedy strategy and 

accumulated one feature at a time to obtain the subset of features that maximized the 

classification accuracy. The seed features were also chosen at random over multiple 

iterations to obtain better results. Our analyses showed that the forward selection strategy 

achieved greater accuracy for Set 2, whereas PCA performed better for Set 1 (Figure 15). 

The feature comparison showed that the combined (Machajdik’s and shape) features 

achieved the highest classification accuracy, whereas individually the shape features alone 
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were much stronger than the features from [18] (Machajdik’s features). This result is 

intuitive since emotions evoked by images cannot be well represented by shapes alone and 

can definitely be bolstered by other image features including their color composition and 

texture. By analyzing valence and arousal ratings of the correctly classified images, we 

observed that very complex/simple, round and angular images had strong emotional content 

and high valence values. Simple structured images with very low degrees of curving also 

tends to portray strong emotional content as well as to have high arousal values.

By analyzing the individual features for classification accuracy we found that line count, 

fitness, length span, degree of curving, and the number of horizontal lines achieved the best 

classification accuracy in Set 1. Fitness and line orientation were more dominant in Set 2.

We present a few example images, which were wrongly classified based on the proposed 

shape features in Figures 16 and 17. The misclassification can be explained as a shortcoming 

of the shape features in understanding the semantics. Some of the images generated extreme 

emotions based on image content irrespective of the low-level features. Besides the 

semantics, our performance was also limited by the performance of the contour extraction 

algorithm.

5.3 Fitting the Dimensionality of Emotion

Emotions can be represented by word pairs, as previously done in [23]. However, some 

emotions are difficult to label. Modeling basic emotional dimensions helps in alleviating this 

problem. We represented emotion as a tuple consisting of valence and arousal values. The 

values of valence and arousal were in the range of (1, 9). In order to predict the values of 

valence and arousal we proposed to learn a regression model for either dimension separately.

We used SVM regression with RBF kernel to model the valance and arousal values using 

shape, Machajdik’s features, as well as the combination of features. The mean squared error 

(MSE) was computed for each of the individual features as well as combined for both 

valence and arousal values separately. The MSE values are shown in Figure 18(a). These 

figures show that the valance values were modeled more accurately by Machajdik’s features 

than our shape features. Arousal was well modeled by shape features with a mean squared 

error of 0.9. However, the combined feature performance did not show any improvements. 

The results indicated that visual shapes provide a stronger cue in understanding the valence 

as opposed to the combination of color, texture, and composition in images.

We also computed the correlation between quantified individual shape features and valence-

arousal ratings. The higher the correlation, the more relevant the features were. Through this 

process we found that angular count, fitness, circularity, and orientation of line segments 

showed higher correlations with valance, whereas angle count, angle metrics, straightness, 

length span, and orientation of curves had higher correlations with arousal.

5.4 Classifying Categorized Emotions

To evaluate the relationship between shape features and emotions on discrete emotions, we 

classified images into one of the eight categories, anger, disgust, fear, sadness, amusement, 

awe, contentment, and excitement. We followed Machajdik et al. [18] and performed one-vs-

Lu et al. Page 10

Proc ACM Int Conf Multimed. Author manuscript; available in PMC 2019 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



all classification to compare and benchmark our classification accuracy. The classification 

results are reported in Figure 18(b). We used SVM to assign the images to one of the eight 

classes. The highest accuracy was obtained by combining Machajdik’s with shape features. 

We also observed a considerable increase in the classification accuracy by using the shape 

features alone, which proves that shape features indeed capture emotions in images more 

effectively.

In this experiment, we also built classifiers for each of the shape features. Each of the shape 

features listed in Table 4 achieved a classification accuracy of 30% or higher.

6. CONCLUSIONS

We investigated the computability of emotion through shape modeling. To achieve this goal, 

we first extracted contours from complex images, and then represented contours using lines 

and curves extracted from images. Statistical analyses were conducted on locally meaningful 

lines and curves to represent the concept of roundness, angularity, and simplicity, which 

have been postulated as playing a key role in evoked emotion for years. Leveraging the 

computational representation of these physical stimulus properties, we evaluated the 

proposed shape features through three tasks: distinguishing emotional images from neutral 

images; classifying images according to categorized emotions; and fitting the dimensionality 

of emotion based on proposed shape features. We have achieved an improvement over the 

state-of-the-art solution [18]. We also attacked the problem of modeling the presence or 

absence of strong emotional content in images, which has long been overlooked. Separating 

images with strong emotional content from emotionally neutral ones can aid in many 

applications including improving the performance of keyword based image retrieval 

systems. We empirically verified that our proposed shape features indeed captured emotions 

in the images. The area of understanding emotions in images is still in its infancy and 

modeling emotions using low-level features is the first step toward solving this problem. We 

believe our contribution takes us closer to understanding emotions in images. In the future, 

we hope to expand our experimental dataset and provide stronger evidence of established 

relationships between shape features and emotions.
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Figure 1: 
Example images from IAPS (The International Affective Picture System) dataset [15]. 

Images with positive affect from left to right, and high arousal from bottom to top.
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Figure 2: 
Dimensional representation of emotions and the location of categorical emotions in these 

dimensions (Valance, Arousal, and Dominance).
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Figure 3: 
Perceptual shapes of images with high valance.
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Figure 4: 
Perceptual shapes of images with low valance.
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Figure 5: 
Perceptual shapes of images with high arousal.
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Figure 6: 
Perceptual shapes of images with low arousal.
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Figure 7: 
The corner point and point of inflexion.
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Figure 8: 
Images with low mean value of the length of line segments and their associated orientation 

histograms. The first row is the original images; the second row shows the line segments; 

and the third row shows the 18-bin histogram for line segments in the images.
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Figure 9: 
Images with high mean value of the length of line segments and their associated orientation 

histograms. The first row is the original images; the second row shows the line segments; 

and the third row shows the 18-bin histogram for line segments in the images.
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Figure 10: 
Images with highest and lowest number of angles.
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Figure 11: 
The distribution of angles in images.
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Figure 12: 
Images with highest degree of curving.
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Figure 13: 
Images with lowest degree of curving.
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Figure 14: 
Distribution of ratings in IAPS.
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Figure 15: 
Classification accuracy (%) for emotional images and neutral images (Set 1 and Set 2 are 

defined in Section 5.2).
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Figure 16: 
Examples of misclassification in Set 1. The four rows are original images, image contours, 

line segments, and continuous lines.
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Figure 17: 
Examples of misclassification in Set 2. The four rows are original images, images contours, 

line segments, and continuous lines.
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Figure 18: 
Experimental results. (a) Mean squared error for the dimensions of valance and arousal. (b) 

Accuracy for the classification task.

Lu et al. Page 30

Proc ACM Int Conf Multimed. Author manuscript; available in PMC 2019 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lu et al. Page 31

Table 1:

Summary of shape features.

Category Short Name #

Line Segments Orientation 60

Length 11

Mass of the image 4

Continuous Lines Degree of curving 14

Length span 9

Line count 4

Mass of continuous lines 4

Angles Angle count 3

Angular metrics 35

Curves Fitness 14

Circularity 17

Area 8

Orientation 14

Mass of curves 4

Top round curves 18
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Table 2:

Average number of curves in terms of the value of fitness in positive and negative images.

(0.8, 1] (0.6, 0.8] (0.4, 0.6] (0.2, 0.4]

Positive imgs 2.12 9.33 5.7 2.68

Negative imgs 1.42 7.5 5.02 2.73
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Table 3:

Average number of curves in terms of the value of circularity in positive and negative images.

(0.8,1] (0.6, 0.8] (0.4, 0.6] (0.2, 0.4]

Positive imgs 0.96 2.56 5.1 11.2

Negative imgs 0.73 2.19 4 9.75
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Table 4:

Significant features to emotions.

Emotion Features

Angry Circularity

Disgust Length of line segments

Fear Orientation of line segments and angle count

Sadness Fitness, mass of curves, circularity, and orientation of line segments

Amusement Mass of curves and orientation of line segments

Awe Orientation of line segments

Excitement Orientation of line segments

Contentment Mass of lines, angle count, and orientation of line segments
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