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ABSTRACT
In many real-world applications, tagging is imperfect: incomplete,
inconsistent, and error-prone. Solutions to this problem will gen-
erate societal and technical impacts. In this paper, we investigate
this arguably new problem: learning from imperfect tagging. We
propose a general and effective learning scheme called the Multi-
view Imperfect Tagging Learning (MITL) to this problem. The
main idea of MITL lies in extracting the information of the imper-
fectly tagged training dataset from multiple views to differentiate
the data points in the role of classification. Further, a novel dis-
criminative classification method is proposed under the framework
of MITL, which explicitly makes use of the given multiple labels
simultaneously as an additional feature to deliver a more effective
classification performance than the existing literature where one la-
bel is considered at a time as the classification target while the rest
of the given labels are completely ignored at the same time. The
proposed methods can not only complete the incomplete tagging
but also denoise the noisy tagging through an inductive learning.
We apply the general solution to the problem with a more specific
context — imperfect image annotation, and evaluate the proposed
methods on a standard dataset from the related literature. Experi-
ments show that they are superior to the peer methods on solving
the problem of learning from imperfect tagging in cross-media.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Retrieval models; H.2.8 [Database Management]:
Database Applications—Data mining, Image databases

General Terms
Algorithms, experimentation

Keywords
Imperfect tagging; multi-label space; image annotation completion,
correction and prediction
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Figure 1: (a) An example of an incompletely tagged image. (b)
An example of a noisily tagged image.

Tagging, as one of the content forms contained in multimedia,
demonstrates a strong power in helping develop effective solutions
to many important real-world problems, especially in the cross-
media field. For example, with an appropriate tagging to images
as part of the annotation, one can develop powerful image anno-
tation and/or image retrieval techniques [15]; with an appropriate
tagging to movies as part of the reviews, one can develop powerful
movie recommendation systems [25]; and with an appropriate tag-
ging to Web-pages as part of the comments, one can develop more
powerful search engines [10].

However, with the typically explosive amount of data to be tagged,
one can hardly do tagging manually. Consequently, social tagging
has become an effective alternative to many such problems [11],
also partly due to the ubiquitous access to the Internet. For social
tagging, the tagging results can never be expected to be perfect.
The imperfect tagging may result in either of or both of the fol-
lowing two possible tagging scenarios: (1) incomplete tagging, and
(2) noisy tagging. Incomplete tagging means that the given tags
to a document still fail to give a complete description of the con-
tent of the document up to all the details. Figure 1(a) shows such
an example for the tags as the annotation to an image. The given
annotations of this image are buildings, cityscape, sky, and street.
However, it is clear from this image that the given annotation tag-
ging is far away from being actually complete. There are many
other things missed to be tagged, such as person, tree, water, foun-
tain, and street lamp. Noisy tagging means that the given tags to a
document contain errors; in other words, some of the tags are incor-
rect in describing the content of the document or even completely
irrelevant to the document. Figure 1(b) shows such an example of
noisy tagging. One of the given tags for the image of Figure 1(b) is
fish, while it is obvious that the animal in the image of Figure 1(b)
is bird instead of fish, and the label fish is given incorrectly.

In general an N -class classification problem can always be de-
composed intoN binary classification problems in one-vs-all (OVA)
mode. Figure 2 shows examples of perfect tagging and imperfect
tagging in such an OVA binary classification problem. Figure 2(a)
is an example of perfect tagging where all the data points are cor-
rectly tagged. Figure 2(b) visualizes the OVA binary classification
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Figure 2: (a) Perfect tagging (The asterisks are tagged as pos-
itive ones; the circles are tagged as negative ones). (b) Incom-
plete tagging (The asterisks are tagged as positive ones; the cir-
cles are untagged ones). (c) Noisy tagging (The asterisks are
tagged as positive ones; the circles are tagged as negative ones).

with incomplete tags where the asterisks are the given correctly
tagged but incomplete data from the positive class, and the circles
are the untagged data points possibly from both classes. Figure 2(c)
is an example of the OVA binary classification with noise where
both the asterisks and the circles contain the data from the posi-
tive and the negative classes, and consequently, are cross-tagged in
error in the two classes. In fact, incomplete tagging can be consid-
ered as a special case of noisy tagging where all the given positive
samples are correct.

It is easy to understand that the more tags the data are given,
the more information the tag space contains. However, most of
the discriminative methods for the multi-label classification prob-
lem only consider the multi-label space as the classification target,
and fail to make use of the information contained in the multi-label
space effectively. Especially in the OVA mode, these classification
methods only consider one tag at a time as the classification target
while at the same time completely ignore the rest of the tags. In
this paper, we explicitly consider all the given tags simultaneous as
an additional feature which further helps improve the classification
performance. Figure 3 shows exemplar images with multiple tags.
The images in the first row in Figure 3, which are all tagged as
fish, always have the accompanied tags of water, coral, and ocean,
while the images in the second row in Figure 3, which are all tagged
as bird, always have the accompanied tags of sky, cloud, grass, and
tree. Obviously, these accompanied tags can be utilized as an addi-
tional feature to help better distinguish images tagged as fish from
images tagged as bird.

This paper addresses the arguably new problem of learning from
imperfect tagging not only to complete the incomplete tagging but
also to denoise the noisy tagging through an inductive learning.
Even though there is recent literature to address the incomplete
tagging and noisy classification separately, combining them as a
single, overall problem and thus developing a synergistic solution
to address them together in a single framework to this problem are
still significant and challenging. On the other hand, an effective
solution to this problem shall benefit not only the research commu-
nity but also the society in substantially improving the quality of the
techniques and technologies that rely on social tagging, generating
great societal and technical impacts. Further, this paper proposes
a new way to make use of the given multiple tags simultaneously
as an additional feature to deliver a more effective classification in
solving a general multi-label classification problem.

While it is a challenge for a classifier to learn from imperfect tag-
ging, if a multi-view based technique is ready to apply to this prob-
lem, an effective classification framework can be constructed to
take advantage of the imperfect tagging. The multiple views to be
used in the proposed classification framework are similar to the var-
ious records obtained by different historians independently on the

Figure 3: Exemplar images with multiple tags.

same historical event. Though there exist overlaps in these records,
the most valuable benefit lies in the non-overlap parts, which help
contribute systematically to recovering the whole event or even cor-
recting the sporadic subjectivity existing in the individual records
obtained by different historians. Likewise, the classification can be
completed or corrected under the multiple classifiers’ results sys-
tematically in the multi-view based classification framework.

In this paper, we develop a general and synergistic solution which
we call Multi-view Imperfect Tagging Learning (MITL) to the prob-
lem of learning from imperfect tagging. The main idea of this work
lies in extracting the information of the imperfectly tagged training
dataset from multiple views to differentiate the data points in the
role of classification. Further, a novel discriminative classification
method (MSS-2K) which takes advantage of the information con-
tained in the multi-label space is proposed under the framework
of MITL. We apply the general solution to the problem with a
more specific context — imperfect image annotation, and demon-
strate through extensive evaluations using real data that the pro-
posed methods perform well in comparison with the peer methods
as an effective and promising solution to the problem of learning
from imperfect tagging in cross-media.

2. RELATED WORK
We begin by reviewing the literature in the incomplete tagging

and noisy classification areas, and then review the related work on
multi-view learning. Finally, we introduce the literature in the field
of image annotation and retrieval for we apply MITL to the problem
of learning from imperfect tagging with a more specific context —
imperfect image annotation.

Most of the existing classification methods, based on either su-
pervised learning or semi-supervised learning, assume that the tagged
training data are perfect, which means that there are no incomplete
tags or noisy tags contained in the training set. There has been work
of incomplete tagging learning and noisy data learning separately
in the literature. Partially supervised learning [14] studies the prob-
lem where the training set contains a small set of positive examples
and a large set of unlabeled examples within both positive and neg-
ative instances, as shown in Figure 2(b). In [8, 14, 17], instances
which are with the highest confidence to be negative are extracted
as the labeled negative examples used to train the classifier based
on supervised or semi-supervised learning. Compared with the par-
tially supervised learning of the binary classification problem, Sun
et al. [24] propose the Weak Label Learning method which con-
siders the correlation between the labels to solve the weak label
problem as a type of multi-label learning. Qi et al. [22] consider
the partially annotated image learning as a multi-label problem and
solve it by a statistical model.

The noise among the data is categorized into two types: attribute
noise and class noise. In this paper, we focus on eliminating the bad
effect raised by the class noise. There are a number of denoising
methods for classification; they can be further classified into two
categories: filtered preprocessing of the data and robust design of



the algorithms. In the former category, filtered preprocessing is de-
veloped to remove the noise from the training set as much as possi-
ble [27, 32]. For the latter category, robust algorithms are designed
to reduce the impact of the noise in the classification [16, 19, 26].
Lin and Wang [16] propose the fuzzy SVM to classify the noisy
data by assigning a fuzzy membership to the cost of a target func-
tion. Liu and Zheng [19] propose the soft SVM, which is capable
of dealing with binary as well as real-valued class memberships.

Data represented by multiple views exist in many real-world ap-
plications. It has been shown extensively in the literature that lever-
aging the redundancy among the multiple views can improve the
learning performance [6, 13, 23]. Farquhar et al. [6] incorporate
the correlation between two views into a single classifier called
SVM-2K. Rosenberg et al. [23] plug the multi-view kernel into
the standard kernel methods that are based on data-dependent reg-
ularization in reproducing kernel Hilbert spaces. However, all the
above multi-view approaches use datasets of perfectly tagged in-
stances as the training set, and ignore the noisy and incomplete
tags of the training instances in the real-world scenarios.

The image annotation and retrieval problem has been cast as
a multi-label learning problem in the literature with various ap-
proaches proposed [5]. One category of these approaches is to
introduce a set of bridge variables to learn the joint distribution
between the image features and the semantic labels by generative
models. Barnard et al. [1] propose the mixture of multi-modal
Latent Dirichlet Allocation model using the latent variables as the
bridge. Blei and Jordan [2] propose the correspondence Latent
Dirichlet Allocation model under which each label shares a latent
variable with a randomly selected image feature descriptor in one
image. In [7, 12], the annotated images in the training set are
used as the connection variables to compute the joint probability
between the labels and the image regions.

Different from the above approaches, another paradigm for im-
age annotation is to reduce the problem to a set of binary clas-
sification problems solved by discriminative methods where each
semantic label is considered as an independent class. Boutell et al.
[3] introduce several transformation methods that map the multi-
label learning problem into the single-label classification problem.
A more complicated situation beyond the multi-label learning prob-
lem is when an image is represented as a bag of instances, and be-
longs to a bag of classes. Hence, the original annotation problem
becomes a multi-instance and multi-label learning problem. Zhou
and Zhang [30] solve this multi-instance and multi-label learning
problem by mapping it into a single-instance and multi-label learn-
ing problem. The representative technique for this category of ap-
proaches is the classification technique such as the Support Vec-
tor Machine (SVM), which demonstrates a strong discrimination
power [9, 21, 29]. Yang et al. [29] propose an asymmetrical support
vector for region-based image annotation. Qi and Han [21] propose
an automatic image annotation system, which integrates the multi-
ple instance learning (MIL)-based and global-feature-based SVMs
for annotation. However, most of these discriminative methods for
image annotation only consider the multi-label space as the clas-
sification target, and fail to make use of the given multiple labels
simultaneously as an additional feature.

There has been work on image tag refinement in the literature.
Wang et al. [28] address the tag optimization problem given the
tagging labels of images obtained by a classifier; Zhu et al. [31]
propose a classification method to address the noisy tagging prob-
lem; neither of the methods explicitly tackles the incomplete tag-
ging problem. Liu et al. [18] propose a solution that denoises the
noisy tagging and enriches the incomplete tagging, while their en-
richment can only add synonyms and hypernyms, and needs the

availability and assistance from WordNet. In addition, the classifi-
cation solutions in [18] and [31] are not inductive in learning.

Compared with the existing work which is either only able to
handle the incomplete tagging learning problem and the noisy data
learning problem separately, or is transductive learning only, our
work tackles the imperfectly tagged data synergistically not only to
make the incomplete tagging to be more complete, but also to make
the noisy tagging to be more noise-free through an inductive learn-
ing. By reducing the image annotation problem to a set of binary
classification problems, the proposed methods are successfully ap-
plied to solving the problem of learning from imperfectly annotated
images. Further, our work explicitly considers all the given labels
simultaneously as an additional feature. Hence, the information
contained in the multi-label space can be taken as an advantage to
improve the performance of the classification.

3. MODEL FORMULATION
We assume the existence of different views to a dataset, which is

typically true in many real-world problems such as image annota-
tion where we have different views to an image dataset from image
texture, color, shape, correlated text information, etc. We claim
that leveraging the redundancy among the multiple views can im-
prove the performance when learning from the dataset with imper-
fect tags. It is easy to understand that an instance which is classified
into the same category from most of the multiple views is a valuable
representation of this category in the role of classification. On the
other hand, an instance which is classified into different categories
from most of the multiple views is a useless representation of any
category in the role of classification. Due to the existence of im-
perfect tags, different weights should be given to different training
instances from the combination of multiple views to reflect their
confidence of classification. Without loss of generality, we focus
on two views, and develop an iterative learning approach to update
the imperfect tagging with a better tagging by leveraging the com-
plementary information from the two views. Further, a novel dis-
criminative classifier based on two views is proposed, which takes
advantage of the information contained in the multi-label space to
improve the performance when learning from imperfect tagging.

3.1 Data Representations and Symbols
We denote a training dataset as I. Two views of the dataset I

are denoted as F (a) and F (b), respectively. Ideally, the two views
are conditionally independent. Each instance Ii ∈ I is tagged
with various tags. The whole tag vocabulary for I forms the S-
dimensional multi-label space T . When one tag Tr (1 ≤ r ≤ S)
is chosen as the classification target, the other tags can form the
additional feature space of tags, denoted as L. Obviously, dim(L)
is S − 1. For each Ii ∈ I, there exist feature descriptors x

(a)
i

and x
(b)
i in F (a) and F (b), respectively. Let an S-dimensional vec-

tor di = (di,1, di,2, . . . , di,S)
′ be the tag representation for Ii,

where di,r ∈ {0, 1}, 1 ≤ r ≤ S represents the occurrence of
the rth tag Tr for Ii. For each tag Tr , 1 ≤ r ≤ S, an imper-
fectly tagged training set of Dr data points is denoted as Dr =

{Ii}Dr
i=1 = {x(a)

i ,x
(b)
i ,di}Dr

i=1. For each Ii in Dr , we denote yi,r
as the weight of Ii, f

(a)
i,r and f (b)

i,r as the returned values of the clas-

sifiers for Ii in F (a) and F (b), respectively. Further, p(a)i,r and p(b)i,r

are the calibrated posterior probabilities for Ii in F (a) and F (b),
respectively (see Section 3.4).

3.2 The Overall Framework of MITL
We now apply a learning scheme to the imperfectly tagged train-

ing dataset by iteratively updating the weight yi,r of each data point



Calibrate the
Posterior Prob-

ability p(a)t
Weight the

Training Data

Calibrate the
Posterior Prob-

ability p(b)t

View F (a) Training Data View F (b)

Classify the
Training Data Train the Classifiers

Classify the
Training Data

yt

p(a)t p(b)t

yt+1

Figure 4: The flow chart of the MITL approach.

Ii in the training set Dr from views F (a) and F (b). The flow chart
of MITL is shown in Figure 4. First, we extract feature vectors
x
(a)
i and x

(b)
i in views F (a) and F (b), respectively. Second, the

feature vectors and the weights of the training data are used to
train classifiers. Third, the training data are re-classified using the
trained classifiers, and the returned f (a)

i,r and f (b)
i,r are transformed

to the posterior probability p(a)i,r and p(b)i,r in F (a) and F (b), respec-
tively. Finally, we update the weights of the training data which are
the prior of the next iteration. Through updating the weight yi,r
from the combination of the two views, the model progressively
identifies the missing tags and the incorrect tags, and ultimately
makes the classification in each view more precise and complete.
Although different views are used jointly during the training pro-
cess, each view can be utilized independently when predicting tags
of any new, untagged instance after the training.

In principle, any classification method which uses the weights of
the training data as the prior can be used in the framework of MITL.
In this paper, we have developed the Multi-label Soft Support Vec-
tor Machine in two views (called MSS-2K) as the core classifier to
facilitate incorporating the information contained in the multi-label
space, and use the Sigmoid model to calibrate the posterior proba-
bility of the classifier. The methods to weight the training data in
Figure 4 are different between dealing with the incorrect tags and
dealing with the missing tags. The algorithm of the MITL approach
is described in Algorithm 1. We discuss the details of the different
components of the MITL approach in the following subsections.
For the reference purpose, we call the MITL with MSS-2K as the
core classifier as MITL in the rest of the paper.

3.3 Classification: MSS-2K
In the two views learning, we assume that the data in the target

dataset are of the following formulation: Ii = {x(a)
i ,x

(b)
i , li}ni=1,

where x
(a)
i (x(b)

i ) is a feature vector of Ii in view F (a) (F (b)),
and li ∈ {−1,+1} is a class label of Ii. The classic SVM-based
classification is achieved through minimizing the distance between
support planes constrained by the plane equations of the support
vectors. In the two views learning, additional constraints are intro-
duced to maximize the similarity between the classification results
of the same instances in the two views. These two views constraints
are presented as follows:

∀ni=1 : |w(a)Tx
(a)
i + b̂(a) −w(b)Tx

(b)
i − b̂(b)| ≤ ηi, ηi ≥ 0 (1)

where w(a), b̂(a) (w(b), b̂(b)) are the weight and bias of the SVM
in F (a) (F (b)), respectively.

The SVM-based methods solve the binary classification problem
by finding the division plane to separate the instances of the two
classes. In the OVA mode, these methods only utilize one tag of the
data at a time, and ignore the other tags the data contain at the same
time. It is easy to understand that the more the number of the tags,

Algorithm 1: MITL algorithm

1 Initialize y0i,r
2 foreach Tr, 1 ≤ r ≤ S do
3 foreach Ii ∈ Dr do
4 y0i,r = 2 · di,r − 1;

5 Let t = 0;
6 while t < the maximum number of iterations do
7 foreach Tr, 1 ≤ r ≤ S do
8 Select two-thirds instances of Dr randomly
9 to form the set K t

r , S t
r = Dr −K t

r ;

10 Train MSS-2K using yti,r , x(a)
i , x(b)

i , and di of each
11 instance Ii ∈ K t

r ;
12 foreach Ii ∈ Dr do
13 Compute the returned values f (z)ti,r of MSS-2K

14 in F(z), z = a, b;

15 Train the Sigmoid models using f (z)ti,r and yti,r of

16 each instance Ii ∈ S t
r in F(z), z = a, b;

17 foreach Ii ∈ Dr do
18 Calibrate p(z)t+1

i,r through the Sigmoid models

19 in F(z), z = a, b;

20 Update yt+1
i,r using p(a)t+1

i,r , p(b)t+1
i,r , and yti,r ;

21 Let t = t+ 1;

the more the information contained in the tag space. Hence, the
multi-label space can not only be considered as the classification
target, but also be considered as an additional feature to improve
the performance of the classification. However, most of the SVM-
based methods fail to utilize the given multiple tags simultaneously.

In the OVA mode, when one tag Tr is chosen as the classifi-
cation target, the other tags can form the additional feature space
of the tags L. It is a reasonable assumption that the similarity of
the classification is inversely proportional to the distance of the in-
stances in L. Closer instances in L have a higher similarity in the
classification. We denote the feature vector of Ii in L as Li, where
Li = (di,1, . . . , di,r−1, di,r+1, . . . , di,S)

′. The neighborhood of
Li in L (including Li itself) is denoted as N (Li). The informa-
tion of the multi-label space can then be added into the two views
learning by introducing the following constraints:

∀ni=1 and ∀j ∈ Ni :

|w(a)Tx
(a)
i + b̂(a) −w(b)Tx

(b)
j − b̂(b)| ≤ η(ab)ij , η

(ab)
ij ≥ 0 (2)

|w(b)Tx
(b)
i + b̂(b) −w(a)Tx

(a)
j − b̂(a)| ≤ η(ba)ij , η

(ba)
ij ≥ 0 (3)

where Ni , {j|Lj ∈ N (Li)}. Combining these two views con-
straints (2) and (3) with the typical SVM constraints and allow-
ing different regularization constants, we obtain the following op-
timization:

min
w(a),w(b)

1

2
‖w(a)‖2 +

1

2
‖w(b)‖2 + C(a)

n∑
i=1

ξ
(a)
i + C(b)

n∑
i=1

ξ
(b)
i

+

n∑
i=1

∑
j∈Ni

Cij(η
(ab)
ij + η

(ba)
ij )

Cij =

{
C i = j

C∗/edis(Li, Lj) i 6= j (C∗ < C)
(4)

s.t. ∀ni=1 : li(w
(a)Tx

(a)
i + b̂(a)) ≥ 1− ξ(a)i , ξ

(a)
i ≥ 0

li(w
(b)Tx

(b)
i + b̂(b)) ≥ 1− ξ(b)i , ξ

(b)
i ≥ 0

∀ni=1 and ∀j ∈ Ni :

|w(a)Tx
(a)
i + b̂(a) −w(b)Tx

(b)
j − b̂(b)| ≤ η(ab)ij , η

(ab)
ij ≥ 0

|w(b)Tx
(b)
i + b̂(b) −w(a)Tx

(a)
j − b̂(a)| ≤ η(ba)ij , η

(ba)
ij ≥ 0



where dis(Li, Lj) represents the distance between Li and Lj in
L.

In order to reduce the optimization complexity, we need to ap-
proximate the optimization by reducing the constraint (3). We show
that constraint (3) can be approximately obtained from constraint
(2), and vice versa. For ∀ni=1, ∀j ∈ Ni, we obtain the following
constraint from constraint (2):{

|w(b)T x
(b)
i + b̂(b) − w(a)T x

(a)
j − b̂(a)| ≤ η(ab)ji if i ∈ Nj

|w(b)T x
(b)
i + b̂(b) − w(a)T x

(a)
j − b̂(a)| ≤ η̃ij if i /∈ Nj

(5)

where η̃ij = η
(ab)
ij + η

(ab)
ii + η

(ab)
jj . When i ∈ Nj , η(ba)ij = η

(ab)
ji ,

and (5) coincides with constraint (3) strictly; when i /∈ Nj , for
η
(ab)
ii (η

(ab)
jj ) < η

(ab)
ij , (5) coincides with (3) approximately with a

little larger constraint variable. Hence, we only select constraint (2)
as the multi-label constraint in order to decrease the dimensionality
of the parameters, as well as the computational complexity.

Further, in order to use the various weights of the training data
in the role of classification, the range of the class label li is relaxed
from {−1,+1} to an interval [−1, 1], which means that li can take
any real value in [−1, 1] other than only two values in {−1, 1}.
Consequently, MSS-2K is appropriate to be used in MITL by uti-
lizing yi, the weight of each instance Ii in the training set, as the
class label. In MSS-2K, yi is decomposed into two parts: the sign
and the absolute value, i.e., yi = sgn(yi) · |yi|, where sgn(yi) is
the indicator of the classification, and |yi| reflects the confidence
of the classification. Since sgn(yi) ∈ {−1,+1}, the constraint in
MSS-2K is analogous to the typical SVM constraints:

sgn(yi) · (wTxi + b̂) ≥ |yi| − ξi, ξi ≥ 0. (6)

Hence, the optimization is reduced to

min
w(a),w(b)

1

2
‖w(a)‖2 +

1

2
‖w(b)‖2 + C(a)

n∑
i=1

|yi|ξ
(a)
i

+C(b)
n∑

i=1

|yi|ξ
(b)
i +

n∑
i=1

|yi|
∑

j∈Ni

Cijη
(ab)
ij

Cij =

{
C i = j

C∗/edis(Li, Lj) i 6= j (C∗ < C)
(7)

s.t. ∀ni=1 : yi(w
(a)Tx

(a)
i + b̂(a)) ≥ |yi|2 − |yi|ξ

(a)
i , ξ

(a)
i ≥ 0

yi(w
(b)Tx

(b)
i + b̂(b)) ≥ |yi|2 − |yi|ξ

(b)
i , ξ

(b)
i ≥ 0

∀ni=1 and ∀j ∈ Ni :

|w(a)Tx
(a)
i + b̂(a) −w(b)Tx

(b)
j − b̂(b)| ≤ η(ab)ij , η

(ab)
ij ≥ 0

With the Lagrange multipliers, we have the target function

L =
1

2
‖w(a)‖2 +

1

2
‖w(b)‖2 + C(a)

n∑
i=1

|yi|ξ
(a)
i

+ C(b)
n∑

i=1

|yi|ξ
(b)
i +

n∑
i=1

|yi|
∑

j∈Ni

Cijη
(ab)
ij

−
n∑

i=1

α
(a)
i

[
yi(w

(a)Tx
(a)
i + b̂(a))− |yi|2 + |yi|ξ

(a)
i

]
−

n∑
i=1

α
(b)
i

[
yi(w

(b)Tx
(b)
i + b̂(b))− |yi|2 + |yi|ξ

(b)
i

]
−

n∑
i=1

(µ
(a)
i ξ

(a)
i + µ

(b)
i ξ

(b)
i )−

n∑
i=1

∑
j∈Ni

[
µ
(ab)
ij η

(ab)
ij

+ β
(ab)+
ij (η

(ab)
ij −w(a)Tx

(a)
i − b̂(a) +w(b)Tx

(b)
j + b̂(b))

+β
(ab)−
ij (η

(ab)
ij +w(a)Tx

(a)
i + b̂(a) −w(b)Tx

(b)
j − b̂(b))

]
(8)

where α(a)
i , α(b)

i , β(ab)+
ij , β(ab)−

ij , µ(a)
i , µ(b)

i and µ
(ab)
ij are the

Lagrange multipliers. We claim that if the KKT condition of (8)
shown in (9) is satisfied, the solution to (7) is the same as that to its
dual problem.

∇L = 0

∀ni=1 : α
(z)
i

[
yi(w

(z)Tx
(z)
i + b̂(z))− |yi|2 + |yi|ξ

(z)
i

]
= 0,

µ
(z)
i ξ

(z)
i = 0, z = a, b

∀ni=1 and ∀j ∈ Ni : µ
(ab)
ij η

(ab)
ij = 0,

β
(ab)+
ij (η

(ab)
ij −w(a)Tx

(a)
i − b̂(a) +w(b)Tx

(b)
j + b̂(b)) = 0,

β
(ab)−
ij (η

(ab)
ij +w(a)Tx

(a)
i + b̂(a) −w(b)Tx

(b)
j − b̂(b)) = 0.

(9)

Let ν(ab)ij = β
(ab)+
ij − β(ab)−

ij . From∇L = 0, we have

w(a) =

n∑
i=1

α
(a)
i yix

(a)
i −

n∑
i=1

∑
j∈Ni

ν
(ab)
ij x

(a)
i

w(b) =

n∑
i=1

α
(b)
i yix

(b)
i +

n∑
i=1

∑
j∈Ni

ν
(ab)
ij x

(b)
j (10)

n∑
i=1

(α
(a)
i yi −

∑
j∈Ni

ν
(ab)
ij ) =

n∑
i=1

(α
(b)
i yi +

∑
j∈Ni

ν
(ab)
ij ) = 0

∀ni=1 : C(a)|yi| − α
(a)
i |yi| − µ

(a)
i = C(b)|yi| − α

(b)
i |yi| − µ

(b)
i = 0

∀ni=1 and ∀j ∈ Ni : β
(ab)+
ij + β

(ab)−
ij + µ

(ab)
ij − |yi|Cij = 0

Substituting the results from (9) and (10) to (8), we obtain the dual
problem of (7) as follows:

max −
1

2

n∑
i,k=1

(α(a)
i yix

(a)
i −

∑
j∈Ni

ν
(ab)
ij x

(a)
i )

· (α(a)
k ykx

(a)
k −

∑
h∈Nk

ν
(ab)
kh x

(a)
k )

+ (α
(b)
i yix

(b)
i +

∑
j∈Ni

ν
(ab)
ij x

(b)
j )

· (α(b)
k ykx

(b)
k +

∑
h∈Nk

ν
(ab)
kh x

(b)
h )

+

n∑
i=1

(α
(a)
i + α

(b)
i )|yi|2

s.t.
n∑

i=1

(α
(a)
i yi −

∑
j∈Ni

ν
(ab)
ij ) = 0

n∑
i=1

(α
(b)
i yi +

∑
j∈Ni

ν
(ab)
ij ) = 0 (11)

∀ni=1 : 0 ≤ α(a)
i ≤ C(a), 0 ≤ α(b)

i ≤ C(b)

∀ni=1 and ∀j ∈ Ni : β
(ab)+/−
ij ≥ 0, β

(ab)+
ij + β

(ab)−
ij ≤ |yi|Cij

3.4 Calibrating the Posterior Probability
After the process of training MSS-2K for each Tr (1 ≤ r ≤ S),

the parameters of the classifiers, w(z)
r and b(z)r (z = a, b), have

been optimized and the returned values of the classifiers f (z)
i,r =

w
(z)T
r x

(z)
i + b̂

(z)
r in view F (z) (z = a, b) can be computed. The

value of f (z)
i,r should be confined to [0, 1] to cast a posterior proba-

bility of the class labels using the Sigmoid model [20] as

p
(z)
i,r = (e

Af
(z)
i,r +B

)/(1 + e
Af

(z)
i,r +B

), z = a, b (12)



Hence, the posterior log-likelihood of the class labels in the training
dataset of size n is

H
(z)
r = log

n∏
i=1

P [sgn(yi,r) = 1|f (z)i,r ]ti,rP [sgn(yi,r) = −1|f
(z)
i,r ]1−ti,r

=

n∑
i=1

ti,r log p
(z)
i,r + (1− ti,r) log(1− p

(z)
i,r ), z = a, b (13)

where ti,r = 1
2
(1+ sgn(yi,r)) is an index variable. The regression

coefficients A and B for each Tr (1 ≤ r ≤ S) in view F (z) (z =
a, b) can be obtained numerically by maximizing the posterior log-
likelihood.

As shown in Algorithm 1, we randomly select two-thirds data
points from Dr to form the set K t

r in each iteration t, which is used
to train MSS-2K for each tag Tr (1 ≤ r ≤ S). The remaining data
points in Dr −K t

r are used to train the sigmoid model, and all the
data points in Dr are re-weighted as the prior to the next iteration.
This iterative process avoids the over-fitting problem [20].

3.5 Weighting the Training Data
The methods to weight the training data in Figure 4, i.e., Step

20 in Algorithm 1, are different between dealing with the incorrect
tags and handling the missing tags. The details of the methods are
shown in Algorithm 2 and Algorithm 3, respectively.

3.5.1 Correcting the incorrect tags
As shown in Figure 2(c), both the asterisks and the circles con-

tain the data from the positive and the negative classes. First, we
give different weights to different data points in the training set by
integrating the results of the two views and shifting the weights to
the range [−1, 1] in Step 2 of Algorithm 2. It is assumed that the
number of the correctly tagged data points is always larger than
that of the incorrectly tagged data points in each class in the train-
ing set. Hence, we reinforce the classification confidence of the
instance and set |yi,r| = 1 if the updated values of yi,r are both
larger than e or both smaller than −e in the consecutive two iter-
ations. Here e is a threshold which is set appropriately in ( 1

2
, 1)

to select the instances with the highest confidence to be positive or
negative.

Algorithm 2: Weight the Training Data for Incorrect Tags

1 foreach Ii ∈ Dr do
2 Compute qt+1

i,r = p
(a)t+1
i,r + p

(b)t+1
i,r − 1;

3 if sgn(qt+1
i,r ) = sgn(yti,r) and |qt+1

i,r | > e and |yti,r| > e then
4 sgn(yt+1

i,r ) = sgn(qt+1
i,r ), |yt+1

i,r | = 1;

5 else
6 yt+1

i,r = qt+1
i,r ;

3.5.2 Completing the missing tags
In the binary classification of the OVA mode, the incompletely

tagged training set only contains correctly tagged positive instances
and untagged instances. As Figure 2(b) shows, the asterisks are all
the correctly tagged data points from the positive class, and we do
not know which class each of the circles belongs to. In the initial-
ization, we randomly select the untagged data points to be tagged as
negative instances with the same number of the positive instances
to train the classifiers, i.e., for each Ii ∈ Dr , if Ii is untagged but
selected as an initially negative instance, y0i,r = −1. In the sub-
sequent iterations, different weights are given to all the data points
in Dr , while the initially positive instances, i.e. sgn(y0i,r) = 1,

should be kept positive in all the iterations. Hence, in Step 8 of
Algorithm 3, we shift the initially positive instances, which are set
to negative values in the updating process, from the updating range
to the range [0, c] linearly, where c is set appropriately in (0, 1

2
) for

these instances are not typical as the representations of the positive
category in the training process.

Algorithm 3: Weight the Training Data for Missing Tags

1 foreach Ii ∈ Dr do
2 Compute qt+1

i,r = p
(a)t+1
i,r + p

(b)t+1
i,r − 1;

3 Find Maxr = maxi q
t+1
i,r and Minr = mini q

t+1
i,r ,

when sgn(qt+1
i,r ) = −1 and sgn(y0i,r) = 1;

4 foreach Ii ∈ Dr do
5 if sgn(qt+1

i,r ) = sgn(yti,r) and |qt+1
i,r | > e and |yti,r| > e then

6 sgn(yt+1
i,r ) = sgn(qt+1

i,r ), |yt+1
i,r | = 1;

7 else if sgn(qt+1
i,r ) = −1 and sgn(y0i,r) = 1 then

8 yt+1
i,r = c · (qt+1

i,r −Minr)/(Maxr −Minr),

where 0 < c < 1
2
;

9 else
10 yt+1

i,r = qt+1
i,r ;

4. EXPERIMENTS

4.1 Data and Parameter Setting
We apply our methods, including MSS-2K and MITL, to the

problem of learning from imperfect tagging with a more specific
context — imperfect image annotation. Since the current literature
considers the learning from imperfect tagging problem as incom-
plete tagging learning and noisy data learning two separate prob-
lems, two groups of comparative experiments on these two tasks
are conducted to evaluate the performances of our methods. On the
former task, we compare MSS-2K and MITL with SVM, iter-SVM
[17], co-training (with SVMs as classifiers), and SVM-2K [6] us-
ing the incompletely tagged images as the training set. On the latter
task, we compare MSS-2K and MITL with SVM, fuzzy SVM [16],
co-training, and SVM-2K using the noisily tagged images as the
training set.

The NUS-WIDE [4] image database is used in the experiments.
It includes 269, 648 web images and 81 concepts which we treat
as the ground truth tags. Since the database has a very uneven
distribution for the number of images corresponding to each con-
cept, we choose the top 75 concepts whose numbers of positive
examples are larger than 350 from the database to form the multi-
label space T . Hence, the dimensionality of the additional feature
space of tags (L) for each Tr is 74. For each concept, we ran-
domly choose 150 positive examples and 150 negative examples to
form the perfectly tagged training set. In the testing set, the num-
bers of the positive and negative examples are both 100. The left
100 positive examples and 100 randomly selected negative exam-
ples form the extra untagged data used only for co-training. For the
task of completing missing tags, we formulate the untagged data
of the incompletely tagged training set through combining all the
negative instances of the perfectly tagged training set with v% ran-
domly selected positive instances of the perfectly tagged training
set. The whole incompletely tagged training set, as shown in Fig-
ure 2(b), comprises the newly created untagged instances and the
residual 1−v% positive instances. For the task of correcting incor-
rect tags, s% noise is added into both of the positive and negative
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Figure 5: The F1 measure for the imperfectly tagged training set using MITL when u = 4 and R = 1.2.

examples of the perfectly tagged training set for each concept to
form the noisily tagged training set. In the experiments, the 500-
D bag of words feature based on SIFT descriptions is used as the
feature of view F (a), and the 1000-D bag of text words feature
which describes the text information correlated to the images pro-
vided by the database is used as the feature of view F (b). For the
task of completing the missing tags, SVM, co-training, SVM-2K,
and MSS-2K use the same initialization as MITL does described in
Section 3.5.2 to obtain the initially negative training data from the
incompletely tagged training set.

The size u of the neighborhood N (Li) for each Li is defined
as the count of the nearest neighbors of Li in L. When u = 1
and each |yi| = 1, MSS-2K is reduced to SVM-2K. We define
R as the ratio between different kinds of regularization constants.
For MSS-2K, R =

∑n
i=1

∑
j∈Ni

Cij

/(
n
2
· (Ca + Cb)

)
. The

returned value of the classifiers in two views combined is denoted
as f (ab)

i,r , f (ab)
i,r = 0.5 · (f (a)

i,r + f
(b)
i,r ).

4.2 Results and Discussions
For each tag Tr , let CTr be the number of correctly predicted

examples, GTr be the number of the examples which actually have
the tag as the ground truth, and PTr be the number of all the
predicted examples with the tag. Then the precision Prer , recall
Recr , and F1r measure are defined as

Prer =
CTr

PTr
; Recr =

CTr

GTr
; F1r =

2PrerRecr

Prer +Recr
=

2CTr

PTr +GTr

We evaluate the performances of the methods using the standard
performance measures of Macro-F1 and Micro-F1. Macro-F1 av-
erages the F1 measures on the predictions of different tags; Micro-
F1 computes the F1 measure on the predictions of different labels
as a whole.

F1a =
1

S

S∑
r=1

F1r; F1i =
2
∑S

r=1 CTr∑S
r=1 PTr +

∑S
r=1GTr

We describe the F1 measure for the incompletely tagged training
set and for the noisily tagged training set using MITL as a function
of the iteration in Figure 5(a) and Figure 5(b), respectively. We ob-
serve from Figure 5 that the F1 measures increase 6% to 16% for
the incompletely tagged training set, and 9% to 12% for the noisily
tagged training set after the iteration progresses, which shows that
MITL is effective in completing the missing tags and in correcting
the incorrect tags for the training set. Due to the elimination of the
incompleteness and noise in the training set, the training accuracies
increase. The curves in Figure 5(a) level up more than those in Fig-
ure 5(b), because the initially positive examples are kept positive

during the whole iterations on the task of completing the missing
tags. We choose the maximum numbers of iterations for MITL
based on the F1 measure of the training set. The curves for the F1
measure of MITL in Figure 5(a) and Figure 5(b) all exhibit their
major elevation between the first two iterations, then level off dur-
ing the subsequent iterations and quickly converge, indicating that
MITL converges fast.

In Table 1, we summarize the F1 measure for the testing set with
the imperfectly tagged training set in ViewF (a), in ViewF (b), and
in two views combined, respectively. On incomplete tagging learn-
ing, we compare our methods with SVM, iter-SVM, co-training,
and SVM-2K when v is selected as 40, 30, 20, and 10, respectively.
On noisy data learning, we compare our methods with SVM, fuzzy
SVM, co-training, and SVM-2K when s is selected as 40, 30, 20,
and 10, respectively.

Compared with our proposed method MITL, SVM with the im-
perfectly tagged training set considers the training set as the per-
fectly tagged set and mistakenly takes the missing or incorrect tags
as perfect tags. MSS-2K also considers the training set as the per-
fectly tagged set, while it utilizes the information contained in the
multi-label space which helps eliminate the incompleteness and
noise in the imperfectly tagged training set. Although iter-SVM
and fuzzy SVM consider the training set as incompletely tagged or
noisily tagged dataset, respectively, they cannot use the information
contained in multiple views synergistically, and cannot consider
all the given multiple tags simultaneously as an additional feature
as MSS-2K and MITL do. SVM-2K utilizes the information con-
tained in multiple views synergistically, but it mistakenly takes the
missing or incorrect tags as perfect tags in the imperfectly tagged
training set. Consequently, from Table 1, we see that MITL per-
forms better than SVM, iter-SVM, SVM-2K, and MSS-2K with the
incompletely tagged training set, and performs better than SVM,
fuzzy SVM, SVM-2K, and MSS-2K with the noisily tagged train-
ing set all in view F (a), in view F (b), and in two views combined
when v and s are selected as 40, 30, 20, and 10, respectively. The
performance of MSS-2K is inferior to the performance of MITL
but superior to the performances of the other methods. The perfor-
mance of MITL is much better than those of co-training both with
incompletely tagged and noisily tagged training sets when v and
s are chosen as 40, 30, and 20, respectively. When the ratios of
the incomplete tags and the noisy tags are small, i.e., v = 10 and
s = 10, MITL performs slightly better than co-training because of
the usage of the extra untagged training set in co-training, which
is not available to MITL. Co-training considers the imperfectly
tagged training data as perfectly tagged data and holds both the



Table 1: The F1 measure for the testing set.
(a) The F1a\F1i for the testing set on incomplete tagging learning in View F (a) and View F (b), respectively.

F1a\F1i in V iew F (a) F1a\F1i in V iew F (b)

v = 40 v = 30 v = 20 v = 10 v = 40 v = 30 v = 20 v = 10

SVM 0.6441\0.6492 0.6816\0.6844 0.6971\0.6988 0.7142\7164 0.7836\0.7855 0.8080\0.8089 0.8255\0.8263 0.8420\0.8438
Iter-SVM 0.6617\0.6675 0.6903\0.6931 0.7033\0.7051 0.7156\0.7179 0.8100\0.8077 0.8149\0.8160 0.8301\0.8292 0.8440\0.8440

Co-training 0.6577\0.6625 0.6877\0.6901 0.7060\0.7076 0.7212\0.7233 0.7887\0.7905 0.8140\0.8147 0.8322\0.8328 0.8505\0.8521
SVM-2K 0.6539\0.6605 0.6904\0.6930 0.6978\0.6993 0.7139\0.7159 0.7889\0.7895 0.8117\0.8124 0.8292\0.8304 0.8483\0.8494
MSS-2K 0.6811\0.6859 0.7092\0.7118 0.7194\0.7208 0.7259\0.7274 0.8101\0.8119 0.8271\0.8276 0.8370\0.8383 0.8505\0.8519

MITL 0.7043\0.7088 0.7227\0.7243 0.7264\0.7266 0.7280\0.7290 0.8346\0.8360 0.8443\0.8445 0.8476\0.8467 0.8554\0.8563

(b) The F1a\F1i for the testing set on noisy data learning in View F (a) and View F (b), respectively.
F1a\F1i in V iew F (a) F1a\F1i in V iew F (b)

s = 40 s = 30 s = 20 s = 10 s = 40 s = 30 s = 20 s = 10

SVM 0.5698\0.5761 0.6279\0.6330 0.6830\0.6852 0.7084\0.7093 0.6065\0.6133 0.7062\0.7099 0.7796\0.7815 0.8314\0.8307
Fuzzy SVM 0.5891\0.5954 0.6430\0.6481 0.6922\0.6944 0.7137\0.7146 0.6288\0.6314 0.7233\0.7261 0.7901\0.7903 0.8352\0.8342
Co-training 0.5768\0.5819 0.6353\0.6401 0.6895\0.6915 0.7148\0.7157 0.6127\0.6176 0.7129\0.7163 0.7857\0.7874 0.8361\0.8352
SVM-2K 0.5708\0.5776 0.6315\0.6375 0.6990\0.7018 0.7087\0.7098 0.6080\0.6116 0.7020\0.7056 0.7702\0.7721 0.8362\0.8362
MSS-2K 0.6036\0.6130 0.6648\0.6737 0.7071\0.7097 0.7210\0.7213 0.6365\0.6433 0.7451\0.7489 0.8076\0.8090 0.8414\0.8410

MITL 0.6265\0.6349 0.6819\0.6896 0.7181\0.7208 0.7268\0.7272 0.6808\0.6863 0.7865\0.7888 0.8328\0.8338 0.8529\0.8521

(c) The F1a\F1i for the testing set in two views combined on incomplete tagging learning and on noisy data learning, respectively.
F1a\F1i in two views combined on incomplete tagging learning F1a\F1i in two views combined on noisy data learning

v = 40 v = 30 v = 20 v = 10 s = 40 s = 30 s = 20 s = 10

SVM 0.7850\0.7887 0.8207\0.8221 0.8381\0.8397 0.8532\0.8549 SVM 0.6140\0.6210 0.7137\0.7184 0.7956\0.7984 0.8452\0.8443
Iter-SVM 0.8177\0.8161 0.8285\0.8304 0.8433\0.8430 0.8543\0.8552 Fuzzy SVM 0.6393\0.6423 0.7337\0.7384 0.8101\0.8101 0.8498\0.8489

Co-training 0.7927\0.7959 0.8236\0.8248 0.8470\0.8484 0.8636\0.8651 Co-training 0.6190\0.6258 0.7229\0.7271 0.8030\0.8046 0.8563\0.8554
SVM-2K 0.7962\0.7996 0.8271\0.8281 0.8443\0.8455 0.8597\0.8610 SVM-2K 0.6138\0.6188 0.7183\0.7230 0.7965\0.7983 0.8516\0.8510
MSS-2K 0.8175\0.8209 0.8444\0.8454 0.8527\0.8543 0.8623\0.8639 MSS-2K 0.6387\0.6466 0.7614\0.7665 0.8249\0.8265 0.8584\0.8580

MITL 0.8419\0.8447 0.8589\0.8595 0.8606\0.8619 0.8670\0.8681 MITL 0.6841\0.6907 0.7986\0.8030 0.8475\0.8492 0.8672\0.8662

initially positive and initially negative instances unchanged. In the
training process, co-training extracts the instances with the highest
confidence to be positive or negative from the extra untagged set
added into the training set iteratively and progressively from multi-
ple views. The higher the ratios of the imperfect tags in the training
set, the more noisy the instances extracted from the extra untagged
set to be added into the training set by co-training. Consequently,
co-training performs much worse than MITL when more imperfect
tags are contained in the training set. In general, MITL and MSS-
2K perform well with the imperfectly tagged training set not only
on the task of completing the missing tags, but also on the task of
correcting the incorrect tags. Combining the two views delivers a
better performance than using any of the two views independently,
while we also observe from Table 1 that after the training process,
the classifiers in each of the two views F (a) and F (b) can work
independently without the information of the other view, and per-
form more precisely when predicting tags of any new, untagged
image. Further, from Table 1 we also observe that our proposed
methods perform much better than the other methods when the in-
completeness ratio v% increases and the noise ratio s% increases,
respectively.

We describe the F1 measure for the testing set as a function of
u when using MSS-2K and MITL on incomplete tagging learning
and on noisy data learning in Figure 6(a) and Figure 6(b), respec-
tively. We observe from Figure 6 that the F1 measures for the
testing set all increase when the size of the neighborhood for each
N (Li) increases, which shows that it is helpful to use the nearest
neighbors of each Li in L to further improve the classification per-
formance, and that it is able to deliver a more effective classifica-
tion performance when considering all the given tags simultaneous
as an additional feature in the proposed methods. The curves for
the F1 measures of MSS-2K and MITL in Figure 6 all exhibit their
major elevation from u = 1 to u = 4, then level off or even de-
cline a little when u continues to increase, indicating that there is

no need to choose a much larger u which would increase the com-
putational complexity. As we describe before, when u = 1 and
each |yi| = 1, MSS-2K is reduced to SVM-2K. Figure 6 shows
that the performances of MSS-2K and MITL are much better than
that of SVM-2K.

Figure 7(a) and Figure 7(b) show the F1 measure for the testing
set as a function of R when using MSS-2K and MITL on incom-
plete tagging learning and on noisy data learning, respectively. As
we defined before, R represents the ratio between different kinds
of regularization constants. When R increases, the proportion of
the two views constraints in the optimization also increases, while
the proportion of the typical SVM constraints in the optimization
decreases. We observe from Figure 7 that when R increases, the
curves for the F1 measures of MSS-2K and MITL ascend, which
shows that the two views constraints are more valuable than the
typical SVM constraints in MSS-2K and MITL, and that it is help-
ful to take advantage of the information contained in the multi-label
space to further improve the classification performance. Further, in
Figure 7, the performance of MITL is better than that of MSS-2K
regardless of what value R is, indicating the effectiveness of the
general framework of MITL.

Figure 8 shows the F1 measure of each tag for the testing set
using MITL on incomplete tagging learning when v = 30, and
Figure 9 shows the F1 measure of each tag for the testing set using
MITL on noisy data learning when s = 20.

As a further case study to demonstrate the superiority of the
MITL performance, Figure 1(a) is one of the imperfectly tagged
training images in the training data of NUS-WIDE database with
the given ground truth tags to this image as buildings, cityscape,
sky, and street, and Figure 1(b) is another imperfectly tagged train-
ing images in the training data of NUS-WIDE database with the
given ground truth tags to this image as animal and fish. After the
learning with MITL, Figure 1(a) is also tagged with the missing
tags person, tree, and water, which actually are the objects in the
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Figure 6: The F1 measure for the testing set in two views combined using MSS-2K and MITL when R = 1.2.
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Figure 7: The F1 measure for the testing set in two views combined using MSS-2K and MITL when u = 4.

image but are not originally given in the ground truth. With MITL,
the animal in Figure 1(b) is tagged as bird instead of fish, which
is identified as a noisy tag originally given in the ground truth in-
correctly. Further, Figure 1(b) is also tagged with the missing tag
plants, which actually is the object in the image but is not originally
given in the ground truth. This shows that MITL is an effective dis-
criminative method not only to complete the missing tags for the
incompletely tagged training set, but also to correct the incorrect
tags originally given in the noisily tagged training set.

5. CONCLUSION
This paper studies the arguably new and important problem of

learning from imperfect tagging. We argue that this problem exists
in many real-world applications and that the solutions to this prob-
lem shall generate great societal and technical impacts. We then
develop a general and effective solution which we call Multi-view
Imperfect Tagging Learning (MITL) to this problem. The novelty
of the proposed approach is that it can not only use the incompletely
tagged training data to complete the missing tags, but also use the
noisily tagged training data to correct the incorrect tags through an
inductive learning. Multiple views are used in the training process
while each view can be utilized independently when predicting tags
of any new, untagged data, and the performances of the classifiers
in the multiple views are significantly improved after the training.
Further, a novel discriminative classification method called MSS-
2K is proposed under the framework of MITL, which explicitly
makes use of the given multiple labels simultaneously as an addi-
tional feature to deliver a more effective classification performance
than the existing literature where one label is considered at a time
as the classification target while the rest of the given labels are com-
pletely ignored at the same time. We apply our methods MITL and
MSS-2K to the problem with a more specific context — imperfect

image annotation, and evaluate them on a standard dataset from
the related literature in comparison with peer methods from the re-
cent literature. Experimental results demonstrate the effectiveness
and promise of our methods as solutions to the problem of learning
from imperfect tagging.
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Figure 8: The F1 measure of the 75 tags for the testing set using MITL on incomplete tagging learning when v = 30, u = 4, and
R = 1.2.
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Figure 9: The F1 measure of the 75 tags for the testing set using MITL on noisy data learning when s = 20, u = 4, and R = 1.2.
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