
Client-side Backprojection of Presentation Slides into
Educational Video

Yekaterina Kharitonova†∗, Qiyam Tung†, Alexander Danehy†, Alon Efrat†, Kobus Barnard‡†∗
U. of Arizona: †Department of Computer Science, ‡School of Information: Science, Technology and Arts;

∗The iPlant Collaborative
{ykk, qwvako, adanehy, alon, kobus}@email.arizona.edu

ABSTRACT
A significant part of many videos of lectures is presentation
slides that occupy much of the field of view. Further, for a
student studying the lecture, having the slides sharply dis-
played is especially important, compared with the speaker,
background, and audience. However, even if the original
capture supports it, the bandwidth required for real time
viewing is substantive, especially in the context of mobile
devices. Here we propose reconstructing the video on the
client side by backprojecting high resolution slide images
into the video stream with the slide area blacked out. The
high resolution slide deck can be sent once, and inserted into
the video on the client side based on the transformation (a
homography) computed in advance. We further introduce
the idea that needed homography transformations can be
approximated using affine transformations, which allows it
to be done using built-in capabilities of HTML 5. We find
that it is possible to significantly reduce bandwidth by com-
pressing the modified video, while improving the slide area
quality, but leaving the non-slide area roughly the same.

Categories and Subject Descriptors
K.3 [Computing Millers]: Computers and Education

Keywords
presentation slides, lecture video, homography, affine trans-
formation, backprojection

1. INTRODUCTION
Mobile devices are becoming one of the most common

ways to access the Web. They are also being utilized as ed-
ucational tools as part of the growing field of mobile learning.
Videos of lectures and talks are becoming more prevalent as
more universities and companies record or stream the pre-
sentations and make the videos available online ([1], [8],
[6], [3], [4]). In a typical presentation the camera operator

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’12, October 29–November 2, 2012, Nara, Japan.
Copyright 2012 ACM 978-1-4503-1089-5/12/10 ...$10.00.

Figure 1: Overview of the method. Top left shows
the original video, top right shows the slide removed
and replaced with black pixels. The bottom shows
the slide backprojected over the slide area. Notice
that it is not crucial that the non-black area in the
top right image is crisp, but that making the slide
area crisp is important for educational users.

does not change the camera settings very often. The op-
erator usually makes the projected slide fill much of the
video frame. Quite often the presentations are captured
using a relatively inexpensive camera that produces a low
quality recording. Even if a presentation was recorded in a
high-definition format, the video is typically post-processed
and compressed for reasonable on-line access. The post-
processing typically reduces the video bit-rate, compressing
it, and making it blurry even if it was not already so. The
poor video quality makes it hard to read the content of the
presentation slides or to discern which slide is being shown.

We propose a solution that considers the slide area and
the region outside it separately. We modify the video so that
the slide area is blacked out allowing further compression.
The slide deck is transfered in a high resolution format, and
inserted into the video stream using appropriate transfor-
mations.

Several systems have been developed where slides are shown
side-by-side with the video stream ([5], [7], [9]). However,
such systems are cumbersome to use on mobile devices with
limited screen resolution. Providing the video with a clearly
visible backprojected slide region eliminates the need to use
additional space on the mobile screen to show the high-
resolution slide image, as considered by others. For example,
Tung et al. [16] backproject presentation bullet points for

kobus
Text Box
Preprint of a paper to appear in ACM MM'12.

viewing on mobile devices. The advantage of our method
is that it doesn’t require server-side backprojection of the
entire video, reducing the amount of data sent to the client.
Performing backprojection on the client-side, thus produces
the best possible results in terms of video quality and band-
width conservation.

2. BACKPROJECTION
Our approach relies on the accurate geometric transfor-

mations (homographies) between the slides and the frames.
The process of projecting the images of slides back into the
corresponding video frames is referred to as backprojection.

Substituting high-resolution images of slides into a video
produces sharper-looking slide content than what originally
appeared in the video. Given the homogeneous slide points,
s = [x, y, w]T , they are projected into the points on a frame,
p = [u, v, w′]T , by a homography H:

p = Hs (1)

We use this correspondence to link the frame pixels to the
areas of the slide that they map to. As shown in Figure 2, a
single pixel of a frame can map to an area of a slide consisting
of multiple high resolution pixels. We use the approach of
Winslow et al. [17], to backproject the pixels from the frame
to the corresponding slide regions. This method uses the
iterative scanline algorithm to map every pixel of a video
frame to the slide area and then determines the average of
the corresponding slide pixels. Automated matching of the
slides to video frames and the accurate computation of H
has been developed by Fan et al. and others [10–15].

Figure 2: An illustration of a single frame pixel (the
axis-aligned red box) maps onto a larger area of the
slide image, which consists of full and partial pixels
(represented by the shaded grid).

We observed that while backprojection requires accurate
homographies for all frames, most of the transformations
in a typical video can be approximated using affine trans-
formations. In a typical presentation, a camera operator
may occasionally zoom-in on the slide, zoom-out to show
the speaker and the audience, and pan the camera. These
events do not require applying the full homography to all
frames – instead, the transformations may be approximated
by scaling and translating the first frame image in the event
sequence, which has been backprojected using an appropri-
ate homography. The recent advancements in the HTML
technologies provide the ability to apply these transforma-
tions directly on the client-side.

3. HTML5 <CANVAS> ELEMENT
The HTML5 <canvas> element is a drawable bitmap re-

gion displayed on a web page. It can be used to dynami-
cally draw and script graphics using JavaScript. It has sev-
eral built-in methods for adding and manipulating images.
canvas also provides a native integration with the HTML
<video> tag. Thus, it gives us the ability to manipulate
a backprojected slide image independently from the video
frame. By combining the two, we can overlay images of
slides onto the video frames directly in the client’s browser.

While it can be desirable to execute the complete homog-
raphy transformation on the client-side, the canvas element
does not natively support doing so, and thus this “direct”
method is computationally expensive. However, the can-

vas provides a built-in transform() method, which supports
translation, scale and rotation, possibly taking advantage of
graphics hardware.

For video frames where the affine transformation is too
erroneous, we reinitialize by drawing a server-side computed
homography-backprojected image of a slide on a transparent
background. We then manipulate it using the computed
affine transformations to achieve the desired backprojection
effect. Thus, instead of backprojecting a video on the server-
side, we only send the client a small set of images, which can
be transformed on-demand right in the browser. If, however,
the mobile device has a powerful CPU, then it is still possible
to perform a direct pixel-wise manipulation in the canvas,
achieving the true backprojection on the client-side.

4. HOMOGRAPHY APPROXIMATION
Our goal is to approximate the transformation of a slide

S throughout the sequence of frames {F j , ..., Fn}. Let’s
define the four points corresponding to the slide S’s cor-
ners as sk = {s1, s2, s3, s4}. Their homogeneous image co-

ordinates are: s1 =
[
0 0 1

]T
, s2 =

[
Swidth 0 1

]T
,

s3 =
[
Swidth Sheight 1

]T
, s4 =

[
Sheight 0 1

]T
.

Let Ha be a homography transformation for frame F a.
Applying Ha to the corner points, sk, produces a set of four
points projected into the frame, F a (see Figure 3).

Figure 3: Projecting the corners of slide S (left) into
the video frame F a (right).

These points can be represented by a 3x4 matrix P (a) =[
p
(a)
1 p

(a)
2 p

(a)
3 p

(a)
4

]
, where each column is given by p

(a)
k =[

u
(a)
k v

(a)
k 1

]T
. These homogeneous coordinates were ob-

tained from Hask =
[
x
(a)
k y

(a)
k w

(a)
k

]T
, scaled by w

(a)
k

(where k = 1, ..., 4). Because we calculated the true homo-

graphies, we can compute these projected coordinates, P (a),
for all frames.

Consider two frames F a and F b. We can approximate
the points from F b by applying an affine transformation,
T b, to the points of frame F a. Such transformation can be
represented by a homogeneous matrix T b:

T =

t11 t12 t13
t21 t22 t23
0 0 1

 (2)

which, since the last row is fixed, we can express by the two
row vectors t1 =

[
t11 t12 t13

]
and t2 =

[
t21 t22 t23

]
, so

that T =

[
t1
t2

]
.

Let q
(b)
k =

[
x
(b)
k

y
(b)
k

]
be the image points on frame F b that

were approximated by applying T b to the corresponding im-

age coordinates, p
(a)
k , from the previous frame, F a.

p
(b)
k ≈ q

(b)
k = T bp

(a)
k (3)

Then, for each projected corner point, q
(b)
k , we get the

following coordinates

x
(b)
k = t1p

(a)
k = t11u

(a)
k + t12v

(a)
k + t13 (4)

y
(b)
k = t2p

(a)
k = t21u

(a)
k + t22v

(a)
k + t23 (5)

We want to find such T b that would minimize the dis-
tance between the true projected coordinates p

(b)
k and the

unknown points q
(b)
k .

If we re-write T as a column vector t =

[
tT1
tT2

]
, we can

compute the coordinates for all four approximated projected

points q
(b)
k by arranging the coordinates of the points p

(a)
k

into a new matrix, U :

p(b) ≈ q(b) =



x
(b)
1

y
(b)
1

x
(b)
2

y
(b)
2

x
(b)
3

y
(b)
3

x
(b)
4

y
(b)
4


=



u
(a)
1 v

(a)
1 1 0 0 0

0 0 0 u
(a)
1 v

(a)
1 1

u
(a)
2 v

(a)
2 1 0 0 0

0 0 0 u
(a)
2 v

(a)
2 1

u
(a)
3 v

(a)
3 1 0 0 0

0 0 0 u
(a)
3 v

(a)
3 1

u
(a)
4 v

(a)
4 1 0 0 0

0 0 0 u
(a)
4 v

(a)
4 1




t11
t12
t13
t21
t22
t23



(6)

Thus, q(b) = Ut, where q(b) is an 8x1 column vector with
the projected x and y coordinates for each of the four corner
points.

Now, we can find such t (corresponding to T b) that would
minimize the error between the true projected coordinates

p
(b)
k and the estimated coordinates q

(b)
k . Using the linear

least squares, we solve for t that would minimize the squared
error, E = |e|2 = eT e, where

e = Ut− p(b)k (7)

The solution to the above equation is

t = U†p
(b)
k (8)

where U† = (UTU)−1UT is the pseudoinverse of U .
We can now estimate the position of the slides in the video

frames using the linear transformations encoded by t.

τ = 2 Size τ = 3 Size
frames 3637 127 Mb 2124 74 Mb
affine
matrices

2175 15 Mb 3688 8.6 Mb

Table 1: The number of backprojected frames to be
sent to the client based on the pixel coordinate dis-
tance threshold τ in a test video. The affine homo-
graphies are computed between every other frame.
This test video had 117 slide transitions and a total
of 71387 frames.

5. SYSTEM IMPLEMENTATION
Geometric Transformations. Since we are projecting

slides onto a video, we need accurate frame-to-slide corre-
spondences and the homographies between all frame-slide
pairs. Using these homographies we compute the coordi-
nates of the slide corners in each frame. Then, using the
method described in the previous section, we estimate the
affine transformation between the successive frames. Fi-
nally, we backproject the corners using the computed affine
transformations and compare these new projected coordi-
nates, q, to the ones obtained using the homographies, p.
If the average re-projection error (in pixels) of the approxi-
mated points is within the threshold τ of the homography-
transformed points, then we use an affine transformation
for that frame. Otherwise, we use that frame’s homography
to project the corresponding slide onto a transparent im-
age. The greater the threshold τ , the further we let the ap-
proximated points drift from the homography-transformed
points, and the fewer images we have to send to the client.
Note that for each slide change in the video, we need to send
a backprojected image.

Since our sample presentation videos had no camera move-
ment, we determined an optimal value of τ by analyzing a
short video featuring many camera transitions. The results
for different values of the threshold are shown in Table 1.

Video Backprojection. To verify that our modifica-
tions can reduce bandwidth, we created two types of videos
for comparison. One has backprojected slides and the other
has the slide area blacked out. To do this, we first extract
all video frames, backproject each with the appropriate slide
(or black slide), and then reassemble the video.

We first compress the videos under the same settings as
the original video (600 kbps), using the Theora video codec
as it is compatible with HTML5. The videos are compressed
using the program ffmpeg2theora [2] with variable bitrate
(VBR). We choose to use VBR so that ffmpeg2theora could
reduce the bitrate for scenes whenever possible. We then
experimented with additional average video bitrates for the
video with black slides to reduce the size without signifi-
cantly degrading the visual quality. Table 3 shows the space
savings resulting from using different compression settings.

6. EXPERIMENTS AND EVALUATION
To evaluate the effectiveness of the proposed method, we

used videos with ground-truth frame-to-slide matches (seg-
mentation) as well as the location of slide corners in the
video frames.

We compared the visual quality of the video backprojected
with the black slide against the original, non-backprojected
video. We found that we can lower the compression rate

Video ID WC FB LA
Compression Setting (kbps) 600 400 200 600 400 200 600 400 200

Backprojected Video 171.9 129.1 52.7 227.8 159.4 90.4 227.0 165.2 95.2
Modified Video 102.9 75.1 47.1 135.4 107.6 73.5 117.8 94.1 70.3

Video Saving 40.1% 41.8% 10.6% 40.6% 32.5% 18.7% 48.1% 43% 26.2%
Overall Saving 39.1% 40.5% 7.4% 40.0% 31.7% 17.4% 46.5% 40.9% 22.4%

Table 3: The sizes (in Mb) of the three backprojected videos and the modified videos, which were created
by backprojecting a black slide. The overall savings take into account the slide image data.

ID
Number
of slides

Slide deck
size

Number
of frames

Video
size

WC 48 1.7 Mb 71387 187.6 Mb

FB 37 1.2 Mb 87784 229.4 Mb

LA 103 3.6 Mb 91770 240.5 Mb

Table 2: Presentation data statistics for the three
videos. The size of the high-resolution slide deck is
small compared to that of the video.

down to 400 kbps and the area outside of the slide would
still look very close to how it appears in the original video.
Table 3 shows that for all videos the size of the resulting
compressed video was much smaller than the fully backpro-
jected video.

If the client has sufficient CPU resources, direct homogra-
phy computation can be done using the canvas. With this
method, the bandwidth requirements consist of the modified
video, the slide images (small, see Table 2), and the homog-
raphy data (negligible). The overall savings, as a function
of the compression settings, are shown in Table 3.

If the client cannot perform computationally-intensive op-
erations, then we fall back on applying the affine method
with canvas. The bandwidth needed beyond that for the
direct method is due to any extra slide images needed to
keep the average reprojection error less than τ pixels using
affine transformations. Thus the extra bandwidth needed
depends on how much camera change there is, and the map-
ping error threshold τ (see Table 1).

The three videos in Table 3 have little camera change, and
thus the savings using the affine approximation method are
similar to those using direct backprojection. Note that the
affine method uses less CPU which may be significant for
some applications.

We have run our algorithm on one of the test videos, which
had 87784 frames. For τ = 3, the resulting bandwidth cost
consisted of 107.6 Mb modified video (400 kbps), 38 Mb
for 1189 affine transformation files and about 41 Mb for
the homography-transformed images. That’s 18% savings,
given that the corresponding backprojected video file was
227.8 Mb.

7. ACKNOWLEDGEMENT
Resources from the iPlant Collaborative contributed to

the research results reported in this paper. The iPlant Col-
laborative is funded by a grant from the National Science
Foundation (# DBI-0735191).
URL: www.iplantcollaborative.org

8. REFERENCES
[1] Academic Earth. http://academicearth.org/.
[2] ffmpeg2theora. http://v2v.cc/~j/ffmpeg2theora/.

[3] Free Online MIT Course Materials.
http://ocw.mit.edu/OcwWeb/web/courses/av/.

[4] Open Yale Courses. http://oyc.yale.edu/courselist.

[5] Semantically Linked Instructional Content (SLIC).
http://slic.arizona.edu/.

[6] UC Berkeley Webcasts.
http://webcast.berkeley.edu/courses.php.

[7] Video Lectures. http://videolectures.net/.
[8] YouTube EDU. http://www.youtube.com/edu.

[9] E. Altman, Y. Chen, and W. C. Low. Semantic exploration
of lecture videos. Proceedings of the tenth ACM
international conference on Multimedia - MULTIMEDIA
’02, page 416, 2002.

[10] N.-M. Cheung, D. Chen, V. Chandrasekhar, S. S. Tsai,
G. Takacs, S. A. Halawa, and B. Girod. Restoration of
out-of-focus lecture video by automatic slide matching. In
Proceedings of the international conference on Multimedia,
MM ’10, pages 899–902, New York, NY, USA, 2010. ACM.

[11] Q. Fan, A. Amir, K. Barnard, R. Swaminathan, and
A. Efrat. Temporal modeling of slide change in presentation
videos. In International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), 2007.

[12] Q. Fan, K. Barnard, A. Amir, and A. Efrat. Accurate
alignment of presentation slides with educational video. In
IEEE International Conference on Multimedia & Expo
(ICME), 2009.

[13] Q. Fan, K. Barnard, A. Amir, and A. Efrat. Robust
spatiotemporal matching of electronic slides to presentation
videos. IEEE Transactions on Image Processing,
20(8):2315–2328, 2011.

[14] Q. Fan, K. Barnard, A. Amir, A. Efrat, and M. Lin.
Matching slides to presentation videos using sift and scene
background matching. In 8th ACM SIGMM International
Workshop on Multimedia Information Retrieval, 2006.

[15] G. Gigonzac, F. Pitie, and A. Kokaram. Electronic slide
matching and enhancement of a lecture video. IET
Conference Publications, 2007(CP534):9–9, 2007.

[16] Q. Tung, R. Swaminathan, A. Efrat, and K. Barnard.
Expanding the point: automatic enlargement of
presentation video elements. In Proceedings of the 19th
ACM international conference on Multimedia, MM ’11,
pages 961–964, New York, NY, USA, 2011. ACM.

[17] A. Winslow, Q. Tung, Q. Fan, J. Torkkola,
R. Swaminathan, K. Barnard, A. Amir, A. Efrat, and
C. Gniady. Studying on the move: enriched presentation
video for mobile devices. In Proceedings of the 28th IEEE
international conference on Computer Communications
Workshops, INFOCOM’09, pages 224–229, Piscataway, NJ,
USA, 2009. IEEE Press.

