
Bob: A Free Signal Processing and Machine Learning
Toolbox for Researchers

André Anjos, Laurent El Shafey, Roy Wallace, Manuel Günther, Chris McCool,
Sébastien Marcel

Idiap Research Institute
Centre du Parc, rue Marconi 19, PO Box 592

CH-1920, Martigny, Switzerland
{andre.anjos,laurent.el-shafey,roy.wallace,manuel.guenther,christopher.mccool,

sebastien.marcel}@idiap.ch

ABSTRACT
Bob is a free signal processing and machine learning tool-
box originally developed by the Biometrics group at Idiap
Research Institute, Switzerland. The toolbox is designed
to meet the needs of researchers by reducing development
time and efficiently processing data. Firstly, Bob provides
a researcher-friendly Python environment for rapid devel-
opment. Secondly, efficient processing of large amounts of
multimedia data is provided by fast C++ implementations
of identified bottlenecks. The Python environment is inte-
grated seamlessly with the C++ library, which ensures the
library is easy to use and extensible. Thirdly, Bob supports
reproducible research through its integrated experimental
protocols for several databases. Finally, a strong emphasis
is placed on code clarity, documentation, and thorough unit
testing. Bob is thus an attractive resource for researchers
due to this unique combination of ease of use, efficiency, ex-
tensibility and transparency. Bob is an open-source library
and an ongoing community effort.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: General; I.4 [Image Process-
ing and Computer Vision]: General

General Terms
Algorithms

Keywords
Open Source, Signal Processing, Machine Learning, Com-
puter Vision, Pattern Recognition, Biometrics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’12, October 29–November 2, 2012, Nara, Japan.
Copyright 2012 ACM 978-1-4503-1089-5/12/10 ...$15.00.

1. INTRODUCTION
The software requirements of researchers are quite unique.

Firstly, to perform effective research requires a software de-
velopment environment that allows for rapid prototyping
and testing of experimental ideas. Yet at the same time,
the implementation of the software must be fast enough to
allow the researcher to run experiments on massive amounts
of data. This is especially true in research covering the fields
of multimedia and its applications. Finally, for research, the
code needs to be clear and self-explanatory, with minimal
dependence on other libraries that obfuscate the details of
the implementation.

This paper presents Bob, a free signal processing (SP) and
machine learning (ML) toolbox that is designed to meet
the needs of researchers described above. Bob provides a
researcher-friendly Python environment for rapid develop-
ment, yet remains efficient for processing large amounts of
multimedia data through the use of fast C++ implementa-
tions of identified bottlenecks. Bob is designed with repro-
ducible research in mind, and currently provides an API
to easily query and interface with several database proto-
cols. In particular, several protocols for well-known biomet-
ric databases are integrated with the aim of improving the
reproducibility and comparability of scientific publications.
A strong emphasis is placed on code clarity, documentation,
and thorough unit testing, with readability and maintain-
ability always preferred over aggressive optimisation.

Bob has a broad scope in terms of SP that is intended
to cover both computer vision and audio processing. In
ML, it already includes many tools for dimensionality re-
duction, clustering, generative modelling, and discrimina-
tive classification. Most importantly, Bob is designed to
be extensible. Specifically, the Bob library makes it easy
for researchers to prototype their ideas and algorithms in
a user-friendly Python environment, then later port easily
to C++ for speed, all the while operating within the scope
of the Bob library. Bob includes a clean Python environ-
ment and clean C++ environment, with transparent inter-
action facilitated by a thin layer that the researcher does
not see and does not have to worry about. The researcher
can thus quickly develop an idea in Python while seamlessly
exploiting the fast C++ codebase provided by Bob. This
demonstrates the great power of Bob, that new combina-
tions and variations of feature types and algorithms can be
implemented and tested quickly.

By supporting the development needs of researchers

Figure 1: Original concepts from Torch: DataSet,
Trainer and Machine. the Trainer uses data from
the DataSet to train a Machine.

through the use of a common open-source software frame-
work, the vision of Bob is to improve the reproducibility
of publications across the multimedia research field into the
future.

In Section 2 we highlight Bob’s contributions with respect
to prior software packages, followed by an overview of the
Bob library in Section 3. The application of Bob to a sim-
ple pattern classification example is presented in Section 4.
The extensibility of the Bob library is discussed in Section 5
before concluding with a description of future work in Sec-
tion 6.

2. PRIOR WORK
A number of packages developed for ML and/or SP are

currently available. Among others, Java-ML [1], scikit-
learn [2], Shark [3] and OpenCV [4] are among the most
solid, well maintained examples. Yet none of these libraries
provide a complete set of tools for managing all aspects of
research experimentation, including database interfaces, al-
ternative clean APIs for sped-up implementations, as well
as scriptable plotting utilities. The OpenCV library is de-
veloped primarily in C++ and unfortunately lacks dataset
APIs or integrated analysis utilities. Java-ML and Shark
suffer from similar problems. Among all choices, scikit-learn
is possibly the closest competitor to Bob. It provides dataset
APIs and ML algorithms, but lacks basic SP functionality
and a clean C++ API for eventually speeding up identi-
fied bottlenecks. Users of those platforms will be inevitably
confronted with either a lack of a convenient programming
environment for research, or speed problems.

Specifically in computer vision, many libraries are al-
ready available such as VXL [5], RAVL [6], OpenCV [4],
Torch3vision [7]1, and others. Of these, Torch3vision is
particularly notable for its use of a unified and modu-
lar framework based on the prior work of the ML library
Torch3 [8]. A particularity of Torch3 is its specific concep-
tual design (Fig. 1) of ML algorithms as a DataSet, Ma-
chine or Trainer. This enabled a modular implementation
of ML algorithms that are essential tools for most pattern
recognition tasks such as object detection or recognition in
images, but also speech recognition in audio signals for in-
stance. Torch3vision was later proposed to augment Torch3
with functionalities to manipulate and process images di-
rectly with ML algorithms.

More recently, Torch3 has diverged into two different evo-
lutions, Torch5 [9] and finally Torch7 [10] using a Matlab-like
environment powered by the lua [11] programming language.
Unfortunately, a large proportion of the most popular ML

1http://torch3vision.idiap.ch/

algorithms from Torch3 have not been ported to Torch5 nor
Torch7, and the original conceptual design is not as strong.
Furthermore, Torch5 and Torch7 are based on an unusual
language (lua) that prevents them from taking advantage
of recent scientific resources (e.g. SciPy, Python Imaging
Library) that are all written in a widely adopted language:
Python.

Bob is a library that (1) leverages on the strong original
concept from Torch3 and its ML algorithms, (2) general-
izes the image processing from Torch3vision to more gen-
eral SP, (3) uses a simple yet effective programming lan-
guage (Python) as a convenient development environment
for researchers, (4) provides extensive documentation (user
and developer guides) and (5) guarantees the quality of the
source code to foster reproducible research.

3. OVERVIEW
At the implementation side, Bob can be considered as a

collection of tools and interfaces implemented in both the
C++ and Python languages. When first introduced to Bob,
users get in touch with its Python application programming
interface (API). This approach allows a laboratory-like fast
pace development with scriptable constructions and includes
plotting, automatic name completion and built-in reference
documentation. Hidden behind the Python API, program-
ming savvy users will find a collection of C++ utilities. Con-
structions in C++ are exclusively used when developers wish
to speed-up execution time of their Python code.

The fundamental data structure of Bob consists of multi-
dimensional arrays. In SP and ML, arrays are a suitable rep-
resentation for many different types of digital signals such as
images, audio data or features of various kinds. At the C++
level, this support is achieved with Blitz++ [12], whereas at
the Python level, NumPy [13] arrays are used. To exchange
data between C++ and Python, Bob makes use of the Boost
template libraries [14]. This allows transparent movement
of data structures from C++ to Python and vice-versa, as
efficiently as possible. It allows both the Python and the
C++ code to be developed independent of each other and
to be based on native constructions.

The code base is subdivided into packages. There is no
notion of layering in the software architecture. Bob is actu-
ally composed of a number of re-usable components that can
be deployed either separately or jointly depending on user
requirements. The diagram in Figure 2 may help in un-
derstanding what is the (loose) inter-dependency of Bob‘s
internal packages and external software. Optional packages
and external dependencies are marked with dashed lines.
Functionality shipped with binary builds depend on soft-
ware availability during compilation.

Below we outline some of the major features currently
provided by Bob’s packages:
Math and signal processing (math; sp): ML algorithms
and SP usually rely on a sequence of low level mathematical
operations. For efficiency purposes, eigenvalue decomposi-
tion, matrix inversion and other linear algebra are available
and implemented using LAPACK [15] routines at the C++
level. In addition, the Fast Fourier Transform is made avail-
able via a bridge to the FFTW library [16].
Image processing (ip): Numerous image processing tools
are provided such as filtering (Gaussian, Median, Gabor), vi-
sual feature extraction (LBP, SIFT bridge to VLFeat [17]),

http://torch3vision.idiap.ch/

Figure 2: Internal software organization of Bob.

geometric normalization, illumination normalization and op-
tical flow.
Machine learning (machine; trainer): Bob has been de-
veloped by researchers tackling many machine vision prob-
lems. Several ML algorithms have been integrated into
the library. Dimensionality reduction is supported using
Principal Component Analysis, Linear Discriminant Anal-
ysis and its probabilistic variant. There are data cluster-
ing algorithms such as k-means and classification is possible
using both generative modeling techniques (Gaussian mix-
ture models, Joint Factor Analysis) and discriminative ap-
proaches such as Multi-Layer Perceptrons or Support Vector
Machines (via a LIBSVM [18] bridge).
Input and output (io): The library has been designed to
run on various platforms and to be easily interfaced with
any other software. We have chosen the open and portable
HDF5 [19] library and file format as our core feature for stor-
ing and managing data. HDF5 is very flexible and hence
allows us to store simple multi-dimensional arrays as well
as complex ML models. Many tools for viewing, and ana-
lyzing the data are already available. In addition, we also
support loading and storing most image formats thanks to
ImageMagick [20], videos through FFmpeg [21] as well as
standard Matlab file using MatIO [22].
Database support (db): The library currently provides
an API to easily query and interface with database proto-
cols. In particular, several protocols for well-known bio-
metric databases are integrated with the aim at improving
reproducibility and comparability of scientific publications.
Performance Evaluation (measure): A module of the li-
brary is dedicated to performance evaluation. This includes
the computation of false alarm and false rejection rates,
equal error rates as well as the generation of plots such as
ROC, DET or EPC curves.

4. EXAMPLE
In this section, we briefly describe how Bob is applied

to pattern recognition tasks in general and provide a very
simple example for the reader.

For a typical pattern recognition task, the Bob processing
flow chart consists of four main steps, as shown in Figure 3.

Figure 3: A flow chart of the general processing
chain for pattern recognition tasks in Bob.

The first step is the optional, but highly recommended, use
of a database protocol. To facilitate reproducible research,
each database protocol (in bob.db) specifies how the con-
tents of a database should be used for experiments, such as
what data can and cannot be used for training, development
and performance evaluation. The second step is to train
a machine (see bob.trainer and bob.machine), using the
specified training data. The third step is to use the result-
ing machine to process a set of evaluation data. The fourth
and final step is to measure the performance of the system
(bob.measure), for example by reporting the classification
error rate or creating a detection error tradeoff (DET) plot.

As an example of how to use Bob, we now describe the
implementation of a simple one-versus-all classification task
on the Iris flower data set[23]2. In a Python environment,
the first step is to import the Bob library, then load the
database that is pre-defined in the bob.db package.

>>> import bob, numpy

>>> data = bob.db.iris.data()

In the second step we train a machine. In this example,
we train a linear classifier using multi-class linear discrimi-
nant analysis (LDA). This is achieved by first creating the
appropriate trainer (bob.trainer.FisherLDATrainer) that
operates on the data and produces a linear classifier of type
bob.machine.LinearMachine.

>>> trainer = bob.trainer.FisherLDATrainer()

>>> machine, e = trainer.train(data.values())

In the third step we use the machine to process the data by
calling the machine.forward method for each sample in the
database.

>>> out = {}

>>> for species in data.keys():

... out[species] = machine.forward(data[species])

The fourth and final step is to measure the performance
of the system output using the functions in bob.measure.
For the sake of this example, assume we are interested in
measuring the equal error rate (EER) when we classify vir-
ginica versus the other flower species (one-versus-all) using
just the first LDA component. We first find the threshold,
t, that separates the virginica (positive) samples from the
other (negative) samples at the equal error rate (EER).

>>> pos = out[’virginica’][:,0]

>>> neg = numpy.vstack([out[’setosa’],

... out[’versicolor’]])[:,0]

>>> t = bob.measure.eer_threshold(neg, pos)

Next, we calculate the false accept and reject rates at this
threshold (which are equal in this case) and report the re-
sulting EER.

2A more comprehensive overview of this example is given in
the User’s Guide of Bob, http://www.idiap.ch/software/
bob/.

http://www.idiap.ch/software/bob/
http://www.idiap.ch/software/bob/

>>> far, frr = bob.measure.farfrr(neg, pos, t)

>>> print "EER: %.1f%%" % ((far+frr)/2*100)

The program thus produces the desired result: EER: 2.0%.

5. EXTENSIONS
The potential applications of Bob are wide and varied.

While a significant set of functionality has been provided
with the latest release of Bob, of course we could not cover
all possibilities. It is important to note that Bob is exten-
sible and provides a Python API for flexible development.
Thus, the simplest way to expand Bob for your own usage is
to write your own satellite package around Bob that, for in-
stance, reproduces the experiments of your latest research.
To encourage this and facilitate reproducible research, we
have created a page on the Bob website dedicated to satel-
lite packages3. An example of a satellite package is pro-
vided for the recent work presented in [24], another exam-
ple shows how to build face verification systems using Bob
and its database module, and further packages are expected
shortly.

The second way to extend Bob is to join the Bob devel-
oper community and contribute to the expansion of Bob, as
described in the detailed Developer’s Guide4. After fork-
ing the Bob git repository, you can make your own building
blocks for Bob. The structure is designed to make it easy to
contribute your new functionality in a modular fashion. Fi-
nally, a request may be made for the new functionality to be
incorporated into the official Bob repository. If the contri-
bution is sufficiently documented and accompanied by unit
testing it will likely be incorporated within the Bob project,
ready for re-use by the rest of the research community.

6. CONCLUSIONS
This paper presented Bob, a free SP and ML toolbox orig-

inally developed at Idiap Research Institute and written in
a mix of Python and C++. By supporting the development
needs of researchers through the use of a common open-
source software framework, the vision of Bob is to improve
the reproducibility of publications across the multimedia re-
search field into the future.

The Bob library will continue to be extended in several di-
rections. Firstly, support for new databases (biometric and
otherwise) will be added by implementing the correspond-
ing experimental protocols. Secondly, the library will ex-
pand with the implementation of new tools for SP, ML and
analysis. The addition of Windows support is also planned.

As Bob is an open-source library and an ongoing com-
munity effort, contributions are encouraged. We look for-
ward to continuing to develop Bob, in the pursuit of faster
turnaround on research software development and ever in-
creasingly reproducible research.

7. ACKNOWLEDGMENTS
The research leading to these results has received funding

from the European Community’s FP7 under grant agree-
ments 238803 (BBfor2), 257289 (TABULA RASA) and
284989 (BEAT). The authors would like to thank I. Chin-
govska and F. Moulin.

3https://github.com/idiap/bob/wiki/
Satellite-Packages
4Access via http://www.idiap.ch/software/bob/

8. REFERENCES
[1] T. Abeel, Y. V. de Peer, and Y. Saeys, “Java-ML: A

Machine Learning Library,” Journal of Machine
Learning Research, vol. 10, pp. 931–934, 2009.

[2] F. Pedregosa et al., “Scikit-learn: Machine Learning in
Python ,” Journal of Machine Learning Research,
vol. 12, pp. 2825–2830, 2011.

[3] C. Igel, T. Glasmachers, and V. Heidrich-Meisner,
“Shark,” Journal of Machine Learning Research,
vol. 9, pp. 993–996, 2008.

[4] G. Bradski, “The OpenCV Library,” Dr. Dobb’s
Journal of Software Tools, 2000.

[5] “VXL.” http://vxl.sourceforge.net, 2003.

[6] C. Galambos, “RAVL: Recognition And Vision
Library.” http://ravl.sourceforge.net, 2000.

[7] S. Marcel and Y. Rodriguez, “Torchvision the
machine-vision package of Torch,” in Proc. of the
ACM Intl. Conf. on Multimedia, pp. 1485–1488, 2010.

[8] R. Collobert, S. Bengio, and J. Mariéthoz, “Torch: A
Modular Machine Learning Software Library,” tech.
rep., 2002.

[9] R. Collobert, “Torch5.” http://torch5.sourceforge.net/,
2006.

[10] R. Collobert, K. Kavukcuoglu, and C. Farabet,
“Torch7: A Matlab-like Environment for Machine
Learning,” NIPS Workshop BigLearn, 2011.

[11] R. Ierusalimschy, W. Celes, and L. de Figueiredo,
“Lua.” http://www.lua.org/, 1993.

[12] T. L. Veldhuizen, “Arrays in Blitz++,” in Proc. of the
Intl. Scientific Computing in Object-Oriented Parallel
Environments, pp. 223–230, Springer-Verlag, 1998.

[13] T. E. Oliphant, “Python for Scientific Computing,”
Computing in Science Engineering, vol. 9, no. 3,
pp. 10–20, 2007.

[14] R. Demming and D. Duffy, Introduction to the Boost
C++ Libraries; Volume I - Foundations. No. v. 1,
Datasim Education Bv, 2010.

[15] E. Anderson et al., LAPACK Users’ Guide.
Philadelphia, PA: Society for Industrial and Applied
Mathematics, third ed., 1999.

[16] M. Frigo and S. G. Johnson, “The Design and
Implementation of FFTW3,” Proceedings of the IEEE,
vol. 93, no. 2, pp. 216–231, 2005.

[17] A. Vedaldi and B. Fulkerson, “VLFeat: An open and
portable library of computer vision algorithms.”
http://www.vlfeat.org/, 2008.

[18] C.-C. Chang and C.-J. Lin, “LIBSVM: A Library for
Support Vector Machines,” ACM Trans. Intell. Syst.
Technol., vol. 2, pp. 27:1–27:27, May 2011.

[19] The HDF Group, “Hierarchical Data Format, Version
5.” http://www.hdfgroup.org/HDF5, 2000-2010.

[20] M. Still, The Definitive Guide to ImageMagick.
Berkeley, CA, USA: Apress, 2005.

[21] “FFmpeg.” http://ffmpeg.org/, 2012.

[22] “MatIO.” http://matio.sourceforge.net/, 2012.

[23] R. A. Fisher, “The Use of Multiple Measurements in
Taxonomic Problems,” Annals of Eugenics, vol. 7,
pp. 179–188, 1936.

[24] A. Anjos and S. Marcel, “Counter-Measures to Photo
Attacks in Face Recognition: a public database and a
baseline,” in Intl. Joint Conf. on Biometrics, 2011.

https://github.com/idiap/bob/wiki/Satellite-Packages
https://github.com/idiap/bob/wiki/Satellite-Packages
http://www.idiap.ch/software/bob/

	Introduction
	Prior work
	Overview
	Example
	Extensions
	Conclusions
	Acknowledgments
	References

