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ABSTRACT

Multicore communications processors have become the main com-
puting element in Internet routers and mobile base stations due to
their flexibility and high processing capability. These processors
are designed and equipped with enough resources to handle peak
traffic loads. But network traffic varies significantly over time and
peak traffic is observed very rarely. This variation in amount of
traffic gives us an opportunity to save power during the low traffic
times. Existing power management schemes are either too conser-
vative or are unaware of traffic demands. We present a predictive
power management scheme for communications or network pro-
cessors. We use a traffic and load predictor to pro-actively change
the number of active cores. Predictive power management provides
more power efficiency than reactive schemes because it reduces the
lag between load changes and changes in power adaptations since
adaptations can be applied before the load changes. The proposed
scheme also uses Dynamic Voltage and Frequency Scaling (DVFS)
to change the frequency of the active cores to adapt to variation in
traffic during the prediction interval. We perform experiments on
real network traces and show that the proposed traffic aware scheme
can save up to 40% more power in communications processors as
compared to traditional power management schemes.

Categories and Subject Descriptors

C.2.6 [Internetworking]: Routers; C.1.4 [Processor Architec-
tures]: Parallel Architectures

General Terms

Performance, Design

Keywords

Power Management, Network Processors, P-States, C-States

1. INTRODUCTION

The Internet infrastructure contributes to about 2% of world’s
energy consumption [13, 49, 32]. This contribution is likely to
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increase in future with exponential growth in number of users and
high bandwidth services. According to different studies, routers are
major contributors of power in Internet infrastructure [16, 32]. The
energy consumption in routers is reaching the limits of air cool-
ing [16, 14]. For example, a fully configured Cisco CRS-1 router
can consume up to one megawatt of power [14]. A typical router
has a set of line cards and each line card has one or more network
processors [8, 2, 42]. Multicore network processors have become
the major computing element in routers due to their flexibility and
high processing capability. FreeScale’s P4080 [5], Intel IXP [12]
and Tilera processors [10] are some examples of multicore proces-
sors being used in networking applications. Power consumption
of a single line card can reach up to 500 Watts [2, 6]. Modern
routers can have hundreds of line cards. For example, a CISCO
CRS-1 router can house up to 1152 line cards in different chassis.
These line cards are densely packed in routers. High power con-
sumption can result in high temperature of parts and failure due to
thermal stress. Such failures affect the reliability and availability
of networks. This results in lower quality of service and increased
expenditures in replacement parts. High power consumption of
equipment leads to higher cooling costs and results in increased op-
erational expenditure of the network. According to Erricson’s vice
president, “The cost of electricity over lifetime of network equip-
ment is more than the cost of network equipment itself" [23]. With
increasing traffic rate demands and computational complexity, the
number and complexity of cores in network processors are on the
rise resulting in more and more power consumption. Tight power
budgets and dense integration requirements call for design of power
efficient network processors.

The multicore packet processing systems are usually designed
and provisioned with enough resources to satisfy peak traffic load.
But network traffic varies with time and reaches the peak value for
only a small portion of time. Figure 1 shows traffic observed over
two days by CAIDA monitor [20] at Internet backbone in Chicago.
There is a huge variation in packet rates and thus different process-
ing requirements at different times of the day. Most of the time the
traffic rate is below the maximum traffic and we do not need to run
the processors at full capabilities. The low activity periods can be
exploited to save power in network processors by running them in
low power modes and/or by turning off some processing cores.

We propose a predictive power management scheme whereas
previous schemes proposed for Network Processors [42, 41] are
reactive in nature. Predictive power management provides more
power efficiency than reactive schemes because it reduces the lag
between load changes and changes in power adaptations since adap-
tations can be applied before the load changes. Power management
policies used in general purpose processors are unaware of traffic
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Figure 1: Variation in traffic arrival rates(Kilo Packets Per Sec)
over 2 days at equinix-chicago Internet backbone

demands and provide sub-optimal results for network processors.
In this paper we make following contributions:

e We propose a predictive power management scheme for com-
munications processors which uses a low cost traffic and load
predictor.

e The proposed scheme aims at reducing both active and idle
power by utilizing P and C-states of the processor.

e We propose a new parameter called traffic_factor which com-
bines traffic prediction and application processing require-
ments into a single parameter for efficiently predicting re-
quired number of active cores.

e We perform experiments on real network traces and show
that the proposed scheme can save up to 40% more power as
compared to traditional schemes (Section 5).

2. BACKGROUND

Modern processors are equipped with capabilities to save power
during active periods (P-states) and during idle periods (C-states).
P and C-states are part of an open industrial standard called Ad-
vanced Configuration and Power Interface (ACPI) [33]. ACPI was
proposed by Intel, Microsoft and Toshiba to facilitate the devel-
opment of Operating System based power management. Policies
to manage P and C-states are usually implemented as Operating
System modules. Almost all modern operating systems have such
modules or governors. In this section we give short background
of P and C-states. We also provide an overview of existing poli-
cies for C and P-states and explain why these policies may result in
un-optimal power management in case of network processors.

2.1 Active Power Management Using P-states

P-states refer to the different performance states of the proces-
sor and provide choices for different power/performance points to
adapt to dynamic processing requirements. P-states are an imple-
mentation of Dynamic Voltage and Frequency Scaling (DVFS) and
are aimed at reducing dynamic power. Recall that dynamic power
is given as

2
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where k is a workload and processor dependent parameter deter-
mined by switching capacitance and activity of the processor. Dy-
namic power can be saved if we lower frequency and voltage. P-
states define frequency and voltage levels of the processor so that
during times of low processing requirements, frequency and volt-
age are lowered to save power and energy. P-states are named nu-
merically form Py to Py. Py is the highest performance state. Per-
formance and power consumption reduces with increasing P-state
numbers. Table 1 shows example P-states for a typical processor
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[18]. These P-states are similar to the P-states of AMD Opteron
Processor [1].

P-state  Frequency Voltage
PO 0o Vo
P1 F0x0.85 V0x0.96
P2 F0x0.75 V0x0.90
P3 FO0x0.65 V0x0.85
P4 F0x0.50 V0x0.80

Table 1: Example P-states of a typical processor

2.2 Idle Power Management Using C-states

Processor’s C-states represent the capability of processor to save
power during idle periods. States are named numerically starting
from Cy to C', where Cy represents the active state. As the C-
state number increases, the power consumption of the processor
decreases and wakeup latency increases. Designers employ dif-
ferent techniques to implement C-states. Low latency techniques
include clock and fetch gating whereas high latency techniques in-
clude voltage scaling and power gating. Table 2 shows an example
of C-states. The table shows only three C-states. Modern proces-
sors have a large number of C-states. For example, Intel Core 2
Duo has five C-states [50] and some processors even have up to
eight C-states [3]. Wakeup latency of processors increases as we

C-state  Response Latency Relative Power
C0 100%
Cl 10 uS 40%
C2 100 uS 5%

Table 2: Example C-states

move to deeper sleep states. It only makes sense to enter a C-state
if inactive time is equal or greater than break even time T [17].
The break even time is composed of two terms: the total transition
time (i.e., Tt = Tenter + Texit ) and minimum time that has to
be spent in that state to compensate for the additional power during
transition. If power consumption during transition is less than or
equal to on-state power (this is what we assume in this study) then
TsE = Tir. This break even time is usually used as a threshold for
transitioning into deeper states. For Table 2, the break even time
will be 20 ps for C1 and 200 ps for C2. Also note that modern
operating systems support a tick-less kernel i.e., idle CPUs do not
have to respond to periodic ticks. These CPUs are allowed to re-
main idle and are woken up by interrupts when a new job arrives
for them. We assume such a tick-less kernel in this study.

2.3 Policies for C-state Management

2.3.1 Using Idle Time

Most implementations of C-state management use Fixed Timeout
policy. For example, Ladder governor in Linux is used to imple-
ment C-state management [11, 9]. This governor uses elapsed idle
time to predict the total duration of the current idle period. When
a processor becomes idle a counter starts. This idle time counter
is then compared with pre-defined thresholds. When the counter
reaches C'ly, value, the system is forced into a sleep state C1. The
counter continues counting until the processor is woken up by an
external event. If the counter reaches C'2;,, the system transitions
to C2 and so on. The processor keeps transitioning to deeper C-
states until it reaches the lowest power state or it is woken up by
an external event. The CPU starts from C1 again when it becomes
idle the next time.



As described in Section 2.2, the threshold values are decided
based on break even times which are of the order of hundreds of mi-
croseconds. This scheme works well to exploit idle time in general
purpose applications e.g., time waiting for user input or response
from I/O subsystem where the waiting times are very high. But
in case of NPs, the inter-packet arrival times viewed by multiple
cores are usually smaller than these thresholds even if the number
of active cores is more than the required to sustain a certain amount
of traffic. In other words, this scheme might be too conservative
and wastes a lot of power saving opportunity which could be ex-
ploited if we directly have information about traffic and processing
demands. Furthermore, this is a reactive scheme and some power
saving opportunity is lost in waiting from threshold times to elapse.
In contrast, we present a predictive scheme which uses direct infor-
mation about traffic to more efficiently manage power.

2.3.2  Using Number of Idle Threads

The scheme proposed by Luo et al. [42, 43] targets multicore
NPs and is the closest related work to our proposal. This scheme
monitors the number of idle threads in the thread queue during an
interval. If the number of idle threads is more than the required
number of cores for majority of the interval, it shuts down the ad-
ditional threads and cores. Using the number of idle threads works
fine if we assume that each processor runs at maximum frequency.
But if each core is allowed to change its frequency, the number of
idle threads does not effectively represent the load. For example,
consider a situation where two processors are active and running
at half of the maximum frequency. These processors will be uti-
lized 100% of the time to handle a traffic which a single processor
could handle at full speed. But the threads running on slow cores
will never enter the thread queue and hence we will never be able
to turn off any cores. Hence the number of idle threads does not
represent processing requirements in this situation.

Furthermore, this scheme is also a reactive scheme and uses only
clock gating. The transition overheads for clock gating are small so
the reactive scheme works well. Since this scheme is targeted for
280 nm, leakage power is not a big issue and clock gating works
fine. But in modern technologies, the power consumption is usu-
ally dominated by leakage power and hence it is important to uti-
lize deep sleep states which have additional power savings even
beyond DVFS and clock gating. These deep sleep states have high
overheads in terms of transition delays and reactive scheme may
result in opportunity loss for power saving. A predictive scheme is
needed so that the lag between power adaptation and load changes
is minimized.

2.4 Policies for P-State Management

2.4.1 Using Processor Utilization

P-state management policies are generally aimed at saving power
during performance-insensitive phases of programs. For example,
power can be saved during memory-bound phase of a program by
reducing clock frequency. Many implementations of these policies
use processor utilization to drive P-states. These policies try to
maintain processor utilization within a certain range [18, 15, 30,
9]. Processor utilization or activity level represents the ratio of code
execution time (active time) to wall clock time (active + idle time)
ie.,

Timeactive
(Timeacti'ue + Timeidle)

(@)

utilization =

Listing 1 shows an implementation of Linux “Ondemand" governor
[11]. The algorithm monitors processor utilization for an interval

and then makes a decision whether to increase or decrease the fre-
quency.

#define up_threshold 0.90
for (each sampling interval) {

if (utilization > up_threshold)
freq = max_freqg;

else
freqg = next_lower_freqg;

Listing 1: Linux ondemand frequency Governor

Ondemand governor is the most aggressive governor in Linux im-
plementations because it tries to settle to lowest frequency in case
of zero load and will settle to the highest frequency at peak load.
Another relevant governor is a conservative governor [11] which
is similar to power management module found in Vista [15]. This
governor tries to maintain the processor utilization within a range
say 0.3 to 0.6.

The policy which uses CPU utilization does not factor in traffic
demands and suffers from several pitfalls. First, CPU utilization
is a function of mixture of events (e.g., performance of memory,
1/0 devices etc.) and does not directly indicate load requirements.
Second, if this policy is too conservative, it will lose a lot of oppor-
tunities to save power and if it is too aggressive then it may result
in performance degradation in terms of traffic loss.

2.4.2  Minimizing Energy Per Instruction

Herbert et al. proposed a greedy search method to minimize En-
ergy Per Instruction (EPI) [30, 31] for CMPs. This method is an
extension of the technique proposed by Magklis et al. [44]. The
P-state controller attempts to operate at frequency level which min-
imizes EPI assuming EPI is a bath-tub shaped function of voltage
and frequency levels. This algorithm assumes the availability of
current sensors which help to approximate EPI. After each inter-
val, the controller compares current EPI with the EPI of previous
interval. If EPI is improved, the controller makes a move in the
same direction as last one. If the EPI has increased, it is assumed
that controller has overshot the optimal frequency level. It makes
a transition in opposite direction as the last one and stay there for
N = 5 intervals. After the holding period the controller continues
exploration in a direction opposite to one which preceded the hold.
This type of scheme is un-aware of traffic demands and may result
in running at lower frequency than needed and may result in extra
packet loss.

3. PREDICTIVE TRAFFIC AWARE POWER
MANAGEMENT (PTM)

An efficient power management scheme for NP has to make the
following decisions:

1. Predicting load for the next interval

2. Deciding required number of active cores N, for the pre-
dicted load

3. Deciding frequency f; for each active core 7.

In this section we provide details of our proposed PTM scheme and
explain how PTM makes the three above mentioned decisions.



3.1 Prediction of Load

The computational requirements for NPs depend on both traf-
fic arrival rate and the computation complexity of the applications.
We propose a new parameter called Traffic_factor which combines
both traffic rate and computational complexity to give a true esti-
mation of load to be handled by the NP.

3.1.1 Traffic Prediction

PTM uses Double Exponential Smoothing Predictor (DES) for
traffic prediction. A more complex predictor may result in greater
accuracy in some situations but a low overhead predictor is de-
sirable for energy efficiency. Recently, Igbal et al. [34] studied
many real network traces and have shown that Double Exponential
Smoothing (DES) predictor is a low overhead predictor with accu-
racy comparable to complex predictors like Artificial Neural Net-
work (ANN) or Wavelet transform based predictors. This makes
DES very suitable for our application. This study uses DES pre-
dictor but designers can use the proposed scheme with any other
predictor based on their requirements. We will give a brief intro-
duction to DES predictor in this section and a short comparison of
different predictors is presented in Section 5.2.

3.1.2  Double Exponential Smoothing (DES) Predic-
tor

Exponential Smoothing assigns exponentially lower weights to
older observations. Single exponential smoothing does not work
well when there is a trend in data [4]. Trend means that the average
value of the time series increases or decreases with time. However,
Double Exponential Smoothing adds trend component for estima-
tion and is considered more appropriate for data with trends. The
equation for DES based prediction for a time series X (¢) is given
as

Xit1 =St + by 3)
where
St =aX:+ (1 — a)(Se—1 + bi—1) 4
and
b = (St — St—1) + (1 — )bt —1 (%)

St and b, are smoothed value of stationary process and trend value
respectively. S; and b; are added together to get the prediction for
next interval. « defines the speed at which older values of S; are
damped. When « is close to 1, dampening is quick and when «
is close to 0, dampening is slow. -y is similar smoothing constant
for b:. The values of a and ~ are obtained using non-linear op-
timization techniques and are learned during the training phase of
the predictor. Note that this is a very low cost predictor. It requires
only four registers for storing a, vy, S¢—1 and b;—1. To make a pre-
diction it requires six multiplications and four addition operations.
This low overhead and reasonable accuracy makes it an appropriate
predictor for the purpose of power management.

3.1.3  Traffic Factor

We propose a new parameter called Traffic_Factor which com-
bines traffic rate and application’s processing capability to give a
true estimation of processing requirement. Traffic rate is the rate
at which packets arrive at the input and is represented as Packets
Per Second (PPS). We are naturally tempted to use this parameter
directly to exploit traffic variability. But different applications have
different processing requirements and hence can support different
packet rates i.e., a complex application will require more resources
to sustain a particular traffic rate when compared to a simple appli-
cation. This means packet rate directly cannot be used for power
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management purposes. But if we can incorporate applications pro-
cessing requirements with input packet rate, we can use this infor-
mation to drive the power management scheme. If we know Cycles
Per Instruction (CPI) and Instructions Per Packet (IPP), we can di-
rectly find Cycles Per Packet (CPP) i.e., CPP = IPP x CPI.
We define Traffic_Factor as

PPSpTedicted x CPP

T ic_Factor =
raffic_Factor (max_cpu_MHZ X num_cores)

6

where PP Sy, cdicted is the traffic predicted using DES predictor
explained above. Traffic Factor incorporates both application per-
formance requirements and traffic rate into a single parameter and
is an excellent parameter for use in power management schemes.
Note that CPP is independent of the frequency level i.e., cycles per
packet will remain constant with changing frequency and hence this
parameter does not suffer from the same limitations as the proces-
sor utilization used by previous schemes. Processor utilization is
a direct function of frequency whereas CPP does not depend upon
frequency if we assume that there are limited off-chip memory ac-
cesses. This assumption is valid in network processors since the
packet processing applications are small and fit into caches and
the packet queues are also implemented on on-chip memories [12].
Furthermore, we do not need any additional resources to measure
this parameter. Many network processors like P4080 provide per-
formance counters to measure PPS, IPP and CPI directly [7]. Table
3 lists the performance counters which can be used for measuring
these parameters.

Metric Performance Counters Formula
Core Cycles CE:Ref:1 CE:Ref:1
Ins. Count CE:Ref:2 CE:Ref:2
Pkt. Count SE:Ret:36 SE:Ret:36
CPI CE:Ref:1 CE:Ref:2/CE:Ref:1
CE:Ref:2
IPP SE:Ref:36 CE:Ref:2/SE:Ref:36
CE:Ref:2
PPS SE:Ret:36,CE:Ref: 1 SE:Ref:36/A
CE:Ref:1 A=(CE:Ref:1/Freq)

Table 3: P4080 Counters to measure CPL, IPP and PPS

3.2 Deciding Number of Active Cores

Required number of active cores P can be directly calculated
from the Traffic Factori.e., P = Traf fic_Factor X total_cores
and number of active cores are adjusted as shown in Listing 2. The
sampling interval used is 500 uS.

for (every sampling interval) {

p = traffic_factor x total_cores;

if (p > active_cores )

wakeupCores (p — active_cores);

else if (p < active_cores)
killCores (active_cores - p);

Listing 2: Algorithm to decide number of active cores

If P is less than the current number of active cores, we can shut-
down all the extra cores. When a core goes into a sleep state, it
first goes into C1, where it stays for 2 sampling intervals and then
it goes to state C2. In our scheme, we have used C2 as the deepest
sleep state. Note that the difference between ladder governor and
our proposed scheme is different input parameters. Instead of using
idle time, we are using traffic_factor to drive C-state management.



In order to wakeup cores, we look at the input queue length in ad-
dition to traffic_factor (See Listing 3). And if the size of the queue
length reaches a certain threshold, we wakeup one of the sleeping
cores.

3.3 Finding P-states of Active Cores

If the load predictor over-predicts, or there is variation in traffic
during prediction interval, we can make use of DVFES to further
save power at smaller timescales. At regular intervals (50 uS), we
check the size of the input queue and based on size of the queue
we decide whether to increase or decrease the power levels. When
a packet arrives at the input interface, the interface control logic
stores the packet in the input queue until it is picked and serviced
by an available processor. Figure 3 shows a simplified model of a
network processor. If the input queue is nearly empty most of the
time, we have enough resources to handle the traffic load and if it is
near full, it means we need more processing capability. Length of
the input queue gives a direct indication of whether we need more
resources or not. The algorithm for finding the appropriate P-state
is shown in Listing 3. If the queue is nearly empty, we assume
that we have excess processing capability and we go to a lower
frequency level. When the queue starts to grow, it means that the
current processing capability is lower than what is needed and we
increase the frequency level.

int pstate[numcores];
for (every sampling interval) {

if (avg < low) {
core = findMin (pstate);
pstate[core] = pstate[core]+l;
}
else if (avg < highp) {}
else{
core = findMax (pstate);
if (core -1)
WakeUpCore (1) ;
else
pstate[core] =

pstate[core]-1;

Listing 3: Algorithm to find P-state values

Note that Listing 3 uses a global governor which makes decisions
based on queue size instead of having a separate governor for each
core. The array pstate[numcores] holds the p-states of each core.
Each core can have five possible P-states similar to Table 1. The
function findMin() and findMaz() return indices of fastest and
slowest cores respectively. In case the queue size is less than the
threshold value low.,, we lower the frequency of the fastest core
and in case it is higher than the high., we increase the frequency
of the slowest core. Also note that if frequency cannot be increased
further, we increase the number of cores. This allows us to adjust to
dynamic variation in traffic during the interval or under prediction
and helps us avoid dropping any packets.

3.3.1 Measuring Queue Length

We use the average queue length during the sampling interval
to make decision about choosing the appropriate P-states. We use
a low pass filter to calculate the average queue size as proposed
in the RED algorithm [24]. Thus short term increase in traffic
which results from bursty traffic or transient network congestion
does not affect the average queue length. The filter used is expo-
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nential smoothing filter and is given as

O]

where glength is the instantaneous size of the queue and « defines
the speed at which older values are dampened. We use an « of
0.025 in this study. Many congestion control algorithms like RED
[24], rely on occupancy of the input queue and modern network
processors provide hardware support for these congestion control
algorithms. P4080 processor provides a dedicated hardware (QMan)
for queue management. QMan implements a variant of RED al-
gorithm and keeps track of the input queue length. Thus queue
length can be used for power management purposes and it does not
require additional resources since it is already monitored for con-
gestion control purposes. Even if it is not readily available in any
processor, it is easy to add functionality in the interface logic to
keep track of the queue length or simple dedicated hardware to do
the purpose.

3.3.2  Deciding Threshold Values

The algorithms proposed in Listing 2 and 3 monitor length of
the input queue and compare it with the predefined threshold val-
ues to decide the state of the processor. We allow the thresholds to
change dynamically to adjust to changing traffic load and thus do
not need to find a common value for all traffic rates and applica-
tions. The optimum value of high., depends on the wake up time
for a core in deep sleep state. When glength reaches this threshold
value and all the active processors are running at highest frequency,
we need to turn on additional cores in order to avoid dropping pack-
ets. Assuming the wakeup time of 200 .S, we need to find extra
buffer space which is enough such that no additional packets are
dropped before an additional core is on line. In our experiments
we found the maximum packet rate to be 200 KPPS. Assuming this
is the worst case increase in the packet rate, we need an additional
buffer space for 40 packets before the core is on line. If maximum
queue size 1S Qmaz, We Use Qmaz — 40 as the value of highyp.
We have used a Qmaqz value of 80 in our simulations. The value
of low,, can be chosen from a wide range. Essentially, it should
not be too close to highs, to avoid avg_glength to oscillate be-
tween low and high thresholds. We chose low;, to be such that
highi, = 4 X low,. Essentially, P-state manager tries to keep
input queue to be less than 50% full all the time. But if the traffic
rate is higher than what P-states can manage, the queue length will
increase more than high.,. When queue length exceeds this value
we know that current number of processor are not enough to man-
age the traffic and an additional processor is woken up. If value
of queue length reaches 95%, we know that we turned on a new
processor too late and Clp,, low,y, and high:p, value are decreased
by 10%. If glength never reaches CY; value for 10 consecutive
intervals, we increase all the thresholds by 10%.

avg = a X qlength + (1 — a) X avg

4. EVALUATION METHODOLOGY

4.1 Simulation Infrastructure

Our simulation infrastructure is based on SCE simulator from
UC Irvine [22] and follows host compiled simulation approach pro-
posed in [27, 28]. This approach pairs a high level functional model
with back annotation of statitically determined timing and power
estimates in order to achieve fast and accurate simulation. At the
highest level, the user application consists of a set of back annotated
tasks that are controlled and interact with underlying OS model.
Figure 2 shows the back annotation flow which is similar to the flow
proposed in [28]. The packet processing applications are compiled
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Figure 3: Simulation Model of Network Processor
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Figure 2: Back Annotation Flow[28]

for target platform and are simulated in GEMS full system simula-
tors [45] to gather detailed performance statistics. GEMS simulator
provides hooks to find statistics for particular piece of code using
special unused opcodes (called magic instructions in GEMS termi-
nology) from the target ISA. We add these magic instructions at
the function boundaries in the source code of the application to get
per function statistics. Performance statistics from GEMS are fed
into MCPAT [40] Power simulator to get power statistics. Power is
multiplied by time to get energy for each iteration of the function
execution. We use average delay and energy consumption of all
iterations of the function for back annotation. MCPAT also allows
to get power numbers for different P-states. The final back anno-
tated application has power and delay numbers for each function
for each possible P-states. This back annotated application is then
simulated on top of an abstract OS model. Figure 4 shows the high
level picture of simulation model. The OS model is responsible
for controlling the power states of the processor which we study in
this work. A Hardware Abstraction Layer (HAL) consists of neces-
sary I/O drivers and implements an interrupt handling mechanism.
A HAL combined with an abstract Transaction Level Modeling
(TLM) layer provides a high level processor model that interfaces
with the TLM backplane. The complete simulation model is based
on System Level Design Language (SLDL) simulation kernel. This
kernel provides basic concurrency and event handling on the host
machine. The SLDL kernel used in this study is based on SpecC
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[26] which is similar in design and philosophy to SystemC [29].
Each core in GEMS simulator is modeled after the processing core
in P4080 network processor and we model a network processor
with 32 processing cores in this study. The detailed configuration
of the processing cores is listed in Table 4. For power modeling in
MCPAT we use 45nm technology.

L1 Cache | L2 Cache | DRAM | Pipeline | Branch Prediction
16KB 64KB 4GB 10 stages YAGS/
2way 4 way 2-wide 64entry BTB

Table 4: Configuration of the processing cores

Figure 3 shows the block diagram of our SpecC based simulation
model. The traffic generator module replays the actual trace with
accurate timing. Each core is an instance of back annotated ap-
plication. Power Management module monitors different statistics
and control the C and P-states of the cores. The power and delay
numbers are looked up from the mapping table of each core based
on its P and C-states.

4.2 Network Traces and Benchmarks

We chose seven packet processing applications from NPBench
[39] and PacketBench [48]. Table 6 lists the application used for
evaluation in this study. We use real network traces from CAIDA’s
equinix-chicago and equinix-sanjose monitors [20] as inputs to these
benchmarks. We performed experiments with large set of traces
but the results of two representative traces (one from each) are pre-
sented in this study. All other traces show similar behavior. CAIDA
monitors capture the traffic traces on OC192 links. The traces in
this data set are of one hour long duration and are captured in year
2011. The network traces are replayed with actual arrival times and
packet sizes in the SpecC to model the real traffic scenario. We also
present some results with synthetic traces to show the effectiveness
of scheme at different traffic rates.



Network Trace Description

equinix-chicago  One hour long traffic trace at

Internet backbone in Chicago

One hour long traffic trace at

Internet backbone in Sanjose

One minute long traffic synthetically
generated traffic traces at different rates

equinix-sanjose

Synthetic

Table 5: Network Traces used in this study

Application | Description

FRAG Packet fragmentation Algorithm

IPVAT IPV4 routing based on trie

IPV4R IPV4 routing based on radix tree
structure

IPSEC IP Security protocol

MPLS Multi Protocol Layer Switching is
forwarding technology based on
short labels

SSLD Secure Socket Layer dispatcher is an
example of content based switching

WFQ Queue scheduling algorithm to serve
packets in order of their finish time

Table 6: Benchmark Applications used in this study

5. RESULTS

We implemented different power management policies for com-
parison purposes. Table 7 lists the policies under consideration.
The C-state policy in Base scheme is similar to Linux ladder gov-
ernor. The thresholds used are based on Table 2. The P-state man-
agement policy is based on Linux ondemand governor explained
in Listing 1. Greedy scheme uses similar ladder governor for C-
state management but the P-state manager is a greedy algorithm of
Section 2.4.2 which tries to minimize EPI. The IdleT policy uses
a scheme similar to one proposed by Luo et al. [42, 43] for man-
aging number of active cores based on number of idle threads in
the given interval. For fair comparison with PTM, we modified this
scheme to go into deeper sleep state if it remain in the current state
for two consecutive intervals. Note that the original scheme just
made use of clock gating and did not utilize deeper sleep states.
We further augmented this scheme to use ondemand governor for
frequency management of individual cores. PTM is the proposed
scheme based on traffic prediction.

Policy  C-state Policy P-state Policy

Base Tadder ondemand
Greedy ladder greedy EPI
1dleT idle threads ondemand

PTM Traffic Factor based Queue Length based

Table 7: Power Management Policies Implemented for Com-
parison

Figure 5(a) and Figure 5(b) show power savings for the equinix-
sanjose and equinix-chicago traces respectively. We use Base pol-
icy as the baseline and results are presented relative to Base. Table
8 shows the absolute numbers for power consumption during the
trace. We can see that the proposed PTM consistently beats the
other policies on all applications. Major portion of the energy sav-
ing comes from having right number of active cores. Table 9 shows
average number of active cores throughout the trace for different
strategies. PTM scheme has the lowest average number of active
cores on all benchmarks. Traffic Factor allows PTM to estimate
minimum number of active cores as compared to other schemes
which base their decisions on idle time. PTM changes number of

cores pro actively and thus reduces the lag between load changes
and power adaptation. Other schemes, being reactive in nature lose
some power saving opportunities since the cores are turned off after
some idle time has been elapsed. Base and Greedy schemes result
in highest number of active cores. C-state management in Base and
Greedy is too conservative in the sense that it waits for break even
time to elapse before going to deep sleep state. Also note that num-
ber of active cores depends on the p-state management as well. For
example, if the active cores are running at lower speed than needed,
they will result in activating more cores than required. PTM calcu-
lates required number of active cores directly using traffic factor
and results in minimum number of cores being active. For IdleT
also, the number of active cores is a function of frequency of in-
dividual cores and results in higher number of cores than needed.
In some situations, Greedy results in more number of cores than
any other policy. The reason is that P-state policy in this scheme is
unaware of traffic at all. It tries to minimize energy per instruction
irrespective of the traffic rate. Thus it results in more cores since
individual cores are running at lower frequency. Consider the situ-
ation presented in Figure 6. The input packet rate is such that it is
required that a single core operates at power level P1 to sustain that
traffic.

equinix-sanjose sanjose-chicago
Base | Greedy | IdleT | PTM [ Base | Greedy | IdleT | PTM
FRAG | 7.82 | 729 593 [353 |74 732 6.6 38
IPV4AT | 6.73 | 7.79 6.11 | 4.10 |6.73 | 691 6.23 | 4.5
IPV4R | 29.80 | 27.80 28.1 [2523]315 |29.1 28.3 | 26.1
IPSEC | 63.20 | 60.69 59.80 | 56.59 | 71.5 | 69.3 68.7 | 62.4

MPLS | 45.03 | 46.6 452 | 40.8 | 555 | 522 51.1 | 463
SSLD | 101.6 | 95.4 96.1 | 90.1 | 994 |94.1 96.1 | 90.1
WFQ | 15.94 | 16.73 16.02 | 12.1 158 | 163 147 | 11.1

Table 8: Power Consumption in Watts for different schemes
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Figure 6: Greedy Algorithm to minimize EPI. Asterisks show
optimum power level

Figure 6 shows the response of greedy algorithm described in
Section 2.4.2 to this input traffic. Since this greedy algorithm is
unaware of the traffic requirement, it continues to move in the di-
rection of lowering EPI and overshoots the required power level and
operates at frequency lower than the required frequency for rest of
the trace. This scheme will results in running 2 cores instead of 1
for the above situation and will result in more power consumption.

Application Base  Greedy IdleT PTM

Frag 310 281 221 1.30
IPVAT 334 3.69 310 142
IPV4R 7.70  7.90 762 550
IPSEC 29.10  30.10 29.00 24.30
MPLS 13.81 15.72 13.81 10.31
SSLD 30.53 31.21 31.11  26.11

Table 9: Average Number of active cores
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Figure 5: Effectiveness of proposed methodology on two real traces.

5.1 Effectiveness of DVFS

Although most of the benefit comes from having right number
of active cores, the ability of individual cores to change frequency
also provide some power benefits. Figure 7 presents a comparison
of proposed PTM scheme with and without the capability of DVFS.
In the scheme without DVFS, the number of cores are controlled
by the traffic aware scheme and there is no DVFES i.e., all the active
cores run at full speed. Although most of the benefit comes from
having right number of active cores but DVFS still has significant
impact on performance. From the figure we see that in most cases
DVES improves the power consumption by 15% and as much as
by 39% in case of FRAG. This benefit comes from the fact that if
we over predicted the workload or there is variation in traffic dur-
ing the prediction interval, then DVFS helps us at reducing power
by lowering the frequencies of the cores. Figure 8 shows poten-

Il Without DVFS
80 [_Iwith DVFS

Power (Wats)

FRAG IPV4T IPV4R IPSEC MPLS SSLD WFQ

Figure 7: Comparison of proposed scheme with and without
DVFS

tial benefit of having the ability to change frequency and voltage of
the cores in addition to adjusting the number of active cores. The
plot is for a 16 core system running IP4R benchmark when traffic
is varied from 0 to 100% which the given configuration can han-
dle. The power consumption is plotted relative to the system which
has ability to change number of active cores but does not have a
per core DVFS. We see that there is a lot of potential power sav-
ing at low to medium traffic. At high traffic, obviously there is less
room for power savings. The dotted line shows potential power sav-
ings if we have global DVFS, i.e., all cores change their frequency
in unison and at any moment all cores are at the same frequency.
Global DVEFES provides a good tradeoff between design complexity
and power savings since it decreases the design complexity and is
able to exploit most of the power saving opportunities. Our P-state
algorithm becomes even simpler if global DVFES is used instead
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of per core DVFS i.e., instead of using findMin() and findMax()
function we can increase or decrease the frequencies of all cores
together based on queue length.

5.2 Effectiveness of DES Prediction

A distinguishing feature of PTM is that the traffic_factor is based
on DES predictor for traffic (Section 3.1). Figure 9 compares the
accuracy of different predictors. The predictors under comparison
are listed in Table 10.

Predictor Description

LV Last observed value is used as prediction
for next interval

MA Moving average of last 8 observations

AR Auto Regression based prediction

ARMA AutoRegressive Moving Average of order

ANN Artificial Neural Network. (3 layers)

DES Double Exponential Smoothing

Table 10: Predictors used for comparison

LV MA AR ARMAANN DES
equinix-sanjose

LV MA AR ARMAANN DES
equinix-chicago

Figure 9: Accuracy Comparison of Predictors. Graphs show
NMSE values (lower bar is better).

We use Normalized Mean Square Error (N M SFE) to compare
the performance of predictors. This metric is widely used for eval-
uating prediction performance. It is the ratio of mean square error
to the variance of the series.

NMSE = ®)
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Figure 8: Benefit of having DVFS

where X; is the actual value of traffic during interval t, X, is the
predicted value of X; and M is the total number of predictions.
o2 is the variance of time series during prediction. This metric
compares the performance of the predictor with a trivial predictor
(one which always predicts mean of the time series). In case of this
trivial predictor (mean predictor) NMSE = 1. f NMSE > 1,
this means that the predictor is worse than the trivial. NMSE =0
in case of a perfect predictor.

From Figure 9, we can see that DES performs comparably well
as compared to more complex ANN based predictor and it outper-
forms other predictors in the study by big margin. More details
about different traffic prediction techniques can be found in [34].
Figure 10 shows power savings with DES predictor over LV pre-

Power Savings(%age)

FRAG IPV4T IPV4RIPSECMPLS SSLD WFQ

Figure 10: Power Saving when using DES Predictor compared
to LV predictor. The trace used is equinix-snjose.

dictor. The figure shows that a good predictor can result in more
efficient management of power.

5.3 Packet Queue Behavior

Figure 11 shows the queue length values during a portion of the
equinix-sanjose trace. We see that the filtered queue length effec-
tively neglects the short term variation in traffic and is effective in
preventing the system from oscillating between states. Also, the
scheme is effective to adapt with increasing traffic i.e., if the queue
length increases above the threshold values, the system is able to
adapt its resources and brings back the queue length within desired
limits.

5.4 Power Saving at Different Traffic Rates

Figure 12 shows comparison of different power management schemes
at different traffic rates with synthetic traces. The proposed scheme
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adapts well at different traffic rates and is the best performer for all
applications at all rates. It is important to note that PTM does not
gain much benefit from prediction in these traces. These traces are
of constant data rate and reactive schemes, which behave similar to
LV predictor, are also able to accurately predict traffic. For expen-
sive applications like SSLD and IPSEC, there is not much room for
power saving since load is already high but PTM is able to get ben-
efit around 6-10% even for those applications. In general greedy
scheme runs individual cores at lower power levels but results in
activating more number of cores. For IPSEC and MPLS Greedy
scheme seems to perform similar to PTM at some data rates. Al-
though power numbers are similar but Greedy scheme results in
11% packet loss while PTM scheme does not drop any packets.

6. RELATED WORK

Most prior work on power management [18, 31, 44, 35] are not
in communication processors domain, but we discuss the network
related work in this section.

Need for power efficient Internet infrastructure has fueled stud-
ies on design of power efficient network processors. A modeling
framework for network processors was presented by Crowley et
al. [21]. Franklin et al. also developed an analytical model to
explore design space for power efficient network processors [25].
Memick et al. proposed techniques of data filtering to reduce bus
accesses [46]. Reduction in bus activity can help save significant
power. Zane et al. [52] and Kaxiras et al. [36] propose power ef-
ficient TCAM structures to be used in packet processors. Wu et al.
[51] investigate a runtime management system for NPs to exploit
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Figure 12: Power consumption comparison of different power management techniques at different Traffic Rates

variability in network traffic for efficient allocation of processing scheme is able to recognize optimum number of active cores and
tasks to processing cores. The system is able to adapt to varying frequency level of each active core to sustain the input traffic. Tra-
demands of traffic and balance utilization of all resources to max- ditional power management schemes either result in high power
imize throughput. Kuang et al. [38] use DVFS for scheduling of consumption or result in packet loss. Our proposed methodology
pipelined networking applications. This scheme allocates frequen- does not have this weakness as it uses traffic information directly
cies to the pipeline stages statically and is not aimed at exploiting for power management purposes. We have shown that predictive
dynamic traffic variations. Kokku et al. [37] show that variability in power management schemes work well for packet processing. A
traffic can be used for run time scheduling of tasks for conserving simple predictor like DES is able to capture the trends in traffic
energy. Our proposed scheme is not related to scheduling and can behavior. Our scheme adapts to variation within the prediction in-
complement the power efficient scheduling schemes. Another set terval using DVFS by monitoring the queue length. DVFS provides
of studies which can be used to complement our proposed scheme us the capability to adaptation at a finer time scale. Furthermore by
targets various parts of Internet infrastructure for power efficiency. using filtered queue length we minimize the impact of short term
Chiaraviglio et al. [19] present a scheme to turn off links and nodes variation in traffic. Experiments on real network traces show that
during periods of low activity while still guaranteeing full connec- the proposed scheme can save up to 40% more power than tradi-
tivity. Nedevschi et al. [47] show that in addition to putting el- tional schemes.

ements to sleep, link rate adaptation with varying traffic can help

further to save power. Luo et al. [41] used processor idle time for 8. ACKNOWLEDGEMENTS
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