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ABSTRACT

Solid-state drives are becoming a viable alternative to magnetic

disks in database systems, but their performance characteristics,

particularly those caused by their erase-before-write behavior, make

conventional database indexes a poor fit. There have been various

proposals of indexes specialized for these devices, but to make such

indexes practical, we must address the issue of concurrency control.

Good concurrency control is especially critical to indexes on solid-

state drives, because they typically rely on batch updates, which

may take long and block concurrent index accesses. We design,

implement, and evaluate an index structure called FD+tree and an

associated concurrency control scheme called FD+FC. Our evalu-

ation confirms significant performance advantages of our approach

over less sophisticated ones, and brings out insights on data struc-

ture design and OLTP performance tuning on solid-state drives.

1 Introduction

Solid-State Drives (SSDs) have become a viable alternative to mag-

netic disks in database systems [9, 12, 4]. SSDs perform random

reads one to two orders of magnitude faster than magnetic disks.

However, a write may necessitate first erasing a large region of

data (called an erase block). This erase-before-write nature makes

random writes one to two orders of magnitude slower than reads.

SSDs’ fast random reads benefit tree indexes like the B+tree used

extensively in database systems. However, the conventional B+tree

performs random in-place writes, making it a poor fit for SSDs.

The unique characteristics of SSDs have led database researchers

to new tree indexes such as BFTL [22], LA-tree [2], FD-tree [13],

and SkimpyStash [7]. A foundational idea behind these new indexes

is to convert the small random writes caused by index modifica-

tions into large sequential writes, by somehow buffering modifica-

tions and then updating the index with a batch reorganization. Such

reorganizations may take long, as illustrated by Figure 1. While

they make efficient use of SSD characteristics, there is a serious

issue: if the index does not employ proper concurrency control

techniques, an ongoing reorganization can prevent concurrent in-

dex accesses, hence causing large variance in access latency. For

example, without proper concurrency control, the completion times

shown in Figure 1 would translate into response times experienced

0 50 100 150 200
0

1

2

3

Insertions (in 10,000’s)

R
e
s
p
o
n
s
e
 t
im

e
 (

in
 s

e
c
)

 

 

 FD−tree

Figure 1: Completion time of an insertion request—including

any index reorganization triggered—for (an improved version

of) FD-tree [13], over the course of two million insertions, start-

ing with an empty index. The insertions are grouped into buck-

ets each containing 10,000 requests; we plot the longest ob-

served time per request in each bucket.

by concurrent accesses: some accesses may complete in millisec-

onds or less, but others blocked by a long-running reorganization

can take seconds. Thus, there is a particularly pressing need for ef-

ficient concurrency control for tree indexes on SSDs, which stems

from potentially long-running index reorganizations—an issue not

found in traditional indexes designed for magnetic disks.

An index with good concurrency control should do better on

three crucial requirements: a) low average access latency, b) low

variance across latencies, and c) low worst-case latency. While

most database performance research and specifically those on SSD

indexes focus on (a), requirements (b) and (c) are equally (perhaps

more) important in practice. Users feel variance in performance

more than they feel the average [15]. Engineers at Web-based com-

panies like Facebook and Amazon are concerned about minimizing

variance and ensuring that the “edge cases” are not bad, even at the

potential cost of higher average latency [1, 8].

Contributions First, we identify concurrency as a critical issue in

making SSD indexes practical. We show that straightforward con-

currency control schemes are inadequate. A global readers-writer

lock incurs unacceptably high variances and worst-case access la-

tencies. An alternative is for each index reorganization to write a

new version of the updated portion of the index and “switch it in” at

the end of the organization; hence, readers can access the old copy

of the index without being blocked. However, this scheme dou-

bles the space requirement, making it unattractive for SSDs, which

continue to be much smaller and more expensive than magnetic

disks. Furthermore, as we shall see later in the paper, because cru-

cial resources held by the old copy cannot be devoted to incoming

modifications until the current organization finishes, this scheme

continues to suffer from worst-case modification latency as high as

using a global readers-writer lock.

We propose FD+FC, a novel indexing and concurrency con-

trol scheme for SSDs. FD+FC allows concurrent accesses by both
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Figure 2: Illustration of high-level ideas in FD+tree. Maximum capacity of

each level is delineated by dashed lines.
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Figure 3: An example FD+tree. Blocks visited by the

lookup for key 25 are marked with “+”.

readers and writers during ongoing index reorganizations, improv-

ing both response time and throughput of the index. Furthermore,

FD+FC does so without the extra space requirement of a space-

doubling scheme. Achieving these features requires careful design

of the data structure and algorithms. At a high level, FD+FC em-

ploys a reorganization procedure that sweeps a wavefront across

a portion of the index, progressively converting it while ensuring

that the converted and unconverted parts remain connected as a co-

herent structure supporting concurrent accesses. Most parts of the

index have a single sequential writer and multiple random readers;

this special access pattern is exploited by FD+FC’s efficient concur-

rency control protocol. We have implemented and empirically eval-

uated FD+FC against alternative schemes. To our knowledge, we

are the first to evaluate concurrency control for SSD indexes. We

include a full-fledged empirical comparison of FD+FC, its alterna-

tives, and Berkeley DB [18], an highly optimized industry-strength

B+tree implementation with concurrency control.

Finally, the basis for FD+FC is an index called the FD+tree,

which modifies and extends the FD-tree proposed by Li et al. [13].

FD+tree is a contribution in its own right because of several new

features aimed at making it practical: one-pass merge makes index

reorganization more efficient and simpler for concurrency control;

level skipping speeds up reads by skipping small, unnecessary lev-

els; level tighteningmakes it possible for the tree to shrink in height

in the presence of deletions; and underflow-triggered merges pro-

vide performance guarantees for workloads involving deletions.

2 FD+Tree without Concurrency Control

Overview and Intuition Before presenting our full indexing and

concurrency control scheme, we need to describe its underlying in-

dex, FD+tree. As mentioned earlier, FD+tree modifies and extends

FD-tree [13]. Conceptually, both indexes employ the techniques of

the logarithmic method [3] and fractional cascading [6].

The logarithmic method turns in-place random writes into batch

sequential writes. Data reside across layers of sequential files (“lev-

els”) whose maximum capacity increases geometrically from top

to bottom. Modifications are not applied in place, but are instead

added to the top level. Upon reaching its maximum capacity, a level

is merged into a lower one; sometimes multiple levels will need to

be merged so that the result level is within its maximum capacity.

Figure 2 illustrates the idea.

Fractional cascading speeds up search across levels. Each level

is sorted by key. By strategically placing, in each level, pointers to

locations within the next level, we leverage the effort of searching a

level in searching the next level, as illustrated in Figure 2. Without

fractional cascading, each level would be searched from scratch.

Beyond conceptual similarities, FD+tree differs from FD-tree in

significant ways, which we highlight in Section 2.4. Our overar-

ching goal is to make the index more practical, with performance

guarantees for workloads involving deletions, simpler and more ef-

ficient index reorganization, etc. To this end, FD+tree maintains

a richer set of data structure invariants, and performs more careful

bookkeeping, pre-reorganization planning, and post-reorganization

adjustment. A representative example of the differences between

FD+tree and FD-tree is how they handle the case when multiple

levels need to be merged. Not knowing in advance which level

the merge would stop at, FD-tree merges records down one level

at a time until the result fits. Though conceptually simple, this

approach is executionally complex and suboptimal—it writes up-

per levels multiple times and generates multiple intermediate index

states violating invariants—which complicates concurrency con-

trol. In contrast, FD+tree determines the number of levels involved

in the merge upfront, and merges multiple levels in a single pass.

Though planning is conceptually more complex, it is computation-

ally trivial, and leads to more efficient and much simpler execution

that is better suited for concurrency.

2.1 Data Structure

For simplicity of presentation, we assume a unique index; i.e., there

is at most one record with any given key value. Extension to handle

duplicates is straightforward.

An FD+tree (illustrated in Figure 3) consists of a sequence of

levels denoted L0, L1, . . . , Lh−1, where h is the height of the tree.

Levels below L0 are linked lists of disk blocks1 compactly stor-

ing sorted runs of entries. L0 is a standard data structure (e.g.,

a B+tree) that supports lookup, in-place insert and delete, and or-

dered scan. L0 is small enough that we keep it in main memory;

persistence can be achieved by separate logging.2

An FD+tree level can be skipped or materialized (and alternate

between these states over time). The top and bottom levels (L0 and

Lh−1) are always materialized. Intuitively, lookups bypass skipped

levels, thereby saving disk accesses. In this paper, when we refer to

the level above (or below) Li, we mean the next materialized level

above (or below) Li, denoted Lprec(i) (or Lsucc(i), respectively).

The entries in an FD+tree have two types: data and fence. Ev-

ery entry has a key and a payload. A data entry can be an insert

or delete entry. For a data entry, the payload contains the record

pointer or value being indexed. For a fence entry f , the payload

contains a pointer to a block in the next materialized level; all en-

tries in that block have keys no less than f ’s key. The bottom level,

Lh−1, has no fences or delete entries.

In the presence of deletions, the tree may contain multiple data

entries with the same key; e.g., a delete entry can effectively “can-

cel out” an insert entry with the same key in a lower level. There-

fore, the tree may be “bloated” in the sense that it stores more en-

tries than necessary. To limit bloating, we maintain two counters,

N∆ and N∇, which respectively track the total number (across all

levels) of insert data entries and that of delete data entries currently

in the tree. While the total number of data entries in the tree is

N∆ +N∇, the true number of elements indexed is N∆ −N∇ be-

cause every delete entry cancels out exactly one insert entry.

1In this paper, a “block” refer to a page or “block” in the traditional sense
of the word, i.e., a unit of disk transfer. It does not refer to an erase block.
2Alternatively, L0 can be stored in a so-called locality area in an SSD
where random writes have similar performance as sequential writes [5, 13].
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Let β denote the block size, as measured by the number of entries

that fit within one block. Let γ denote the size ratio parameter that

controls how fast the maximum size grows between adjacent levels

(see (I3) below). LetB(Li) denote the actual size of level Li in the

number of blocks. An FD+tree maintains the following invariants

(FD-tree maintains only the first three):

• (I1) All-blocks-fenced: For every block of Li (for all i > 0)
there is a fence in the level above pointing to that block.

• (I2) Fence-first: The first entry in every block of Li (for all

i ≥ 0) is always a fence.3

• (I3) Max-size: Let κi denote the maximum size allowed for Li

measured in blocks. B(Li) ≤ κi for all i ≥ 0; and κi =
γκi−1 = γiκ0 for all i > 0.

• (I4) Min-size: If h > 2, B(Lh−1) > κh−2; i.e., the bottom

level has so much data that it cannot be stored as a higher level.

• (I5) Skip-limit: For any level Li (i < h − 1), B(Lsucc(i)) ≤
κi+1; i.e., we can skip level(s) below Li only if Li is not re-

quired to store more than the maximum number of fences that

it is supposed to store for Li+1.

• (I6) No-underflow:
N∇
N∆
≤ 1

3
, or, equivalently,

N∆−N∇
N∆+N∇

≥ 1
2
,

which guarantees that the number of data entries stored by the

tree is at most twice the true number of elements indexed.

2.2 Modification and Lookup

For an insertion, we simply add an insert data entry to L0. For

a deletion, we check whether L0 contains an insert entry with the

same key: if yes, we delete that entry and decrement N∆; other-

wise, the entry being deleted is below L0, so we add a delete entry

to L0 and increment N∇. An update is handled as a deletion fol-

lowed by an insertion.

If the new entries we add toL0 overflow it, we trigger amerge, as

described later in Section 2.3. If
N∇
N∆

> 1
3
(i.e., (I6) is violated), we

also trigger a merge. We call these two types of merges overflow-

triggered and underflow-triggered, respectively.

Lookup for a given key proceeds top-down through the levels,

starting with L0. On a level Li, we look for all data entries with

key . The modification procedure for L0 and the merge procedure

guarantee that there are only four cases: Li has 1) no data entries

with key ; 2) a single insert entry with key ; 3) a single delete entry

with key ; or 4) one delete entry with key followed by one insert

entry with key . In Case 3, we report that key is not found and stop.

In Cases 2 and 4, we return the insert entry and stop. In Case 1,

we look in Li for the fence f with the largest key no greater than

key .4 The search continues to the block in Lsucc(i) pointed to by f .
If we encounter Case 1 in Lh−1, we report that key is not found

and stop. Figure 3 illustrates the process of lookup.

2.3 Merge

Merge reads and replaces the top m + 1 levels (L0, . . . , Lm) for

some m ≥ 1. Levels below Lm that exist before the merge are

not disturbed. Some new levels may be skipped; let Lm be the last

new level that is materialized. Lm consolidates and stores all data

entries from the oldm+1 levels; Lm also stores fences toLsucc(m)

(if any). When the merge ends, new levels above Lm store only

fences. Figure 4 illustrates how merge works. Here, m = m = 3,
and note that level L1 is skipped. In practice,m can be less thanm
when many input entries cancel each other.

3To simplify the discussion of how to maintain this invariant, assume we
index a dummy data entry with key −∞, which precedes all real keys.
4It is easy to see that this fence must be found on the same block as the data
entries with key , because the entries are sorted by key and the first entry in
a block is always a fence (I2).
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Figure 4: Illustration of FD+tree merge and motivation for

level skipping. From right to left, we show the old levels, the

new levels that would have been produced by merge without

level skipping, and the actual new levels produced by merge

(with level skipping). FD+FC directly produces the new levels

on the right without going through the state in the middle.

Suppose the tree height is h before the merge. A merge that reads

all levels is called a full merge. A full merge with m = h grows

the tree by one level. A full merge withm < h− 1 shrinks the tree
(possibly by more than one level).

Merge has three steps detailed below: merge-prepare determines

which levels are involved; merge-execute combines the old levels

into a new one, and creates fence-only upper levels as needed; fi-

nally, merge-finalize adjusts the merge result by skipping unneces-

sary fence-only levels and/or shrinking the tree when possible.

Merge-Prepare We first determine m, i.e., which levels are to

be replaced. For an underflow-triggered merge, we always do a

full merge, and m = h − 1. For an overflow-triggered merge, we

calculate m as follows. An upper bound on the size (in blocks) of

the run obtained by merging L0, . . . , Li is:

Û(i) =






⌈∑i

j=0 B(Lj)−
1
β

∑i

j=1 B(Lj)
⌉

for i < h− 1;

⌈(N∆ −N∇)/β⌉ for i = h− 1.
(1)

The second summation in the case for i < h− 1 is a lower bound

on the total number of fences in levels above Li, which will be

ignored by the merge. In the case of i = h−1, we in fact know the

exact size of the run with the help of counters N∆ and N∇. We set

m =

{
h if Û(h− 1) > κh−1;

argmini(Û(i) ≤ κi) otherwise.
(2)

In other words, we try to merge as few levels as possible provided

that the last level has enough space to accommodate the result.5

There are two points worth noting about merge-prepare. First,

calculating Û(i) and m is computationally trivial. Second, while

accurate for insertion-only workloads, Û(i) can be a conservative

estimate in the presence of deletions, because a sequence of insert

and delete entries with the same key can be merged into as few as

zero entries. It turns out that we can easily extend FD+tree with

some additional bookkeeping such that we can always accurately

determine the merge result size and the optimal choice ofm, but we

find the simpler approach here suffices practically. See Remark A.1

in appendix for a detailed discussion.

Merge-Execute To execute the merge, we read all materialized

levels among L0, . . . , Lm in key order in parallel and output the

new levels Lnew
0 , . . . , Lnew

m .6

5In the worst case, Û(h − 1) < κh, so a full merge of all h levels into a
new Lh (thereby growing the tree by one level) will surely work.
6Note that we could reclaim space in L0, . . . , Lm as we process their en-
tries, so the total space taken by old and new levels is roughly no more than
that taken by the old levels when the merge started. We ignore the details
here, but will revisit this point in Sections 3 and 4.
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During the merge, we maintain plast, a pointer to the last block in
Lsucc(m) for which we have added a fence toL

new
m . This information

is needed to ensure (I2) and, specifically, that the first entry in every

Lnew
m block is a fence.

Consider all entries in the old L0, . . . , Lm with the smallest key

key yet to be processed. If among them is a fence f pointing to

Lsucc(m), we will add f to Lnew
m . Fences pointing to Lm or above

are simply ignored. Let S0, . . . , Sm denote the sets of data entries

with key from L0, . . . , Lm. We coalesce these data entries into a

final set S to add to Lnew
m . S captures the net effect of applying

the insert and delete operations in Sm, Sm−1, . . . , S0 in order. It

is easy to see that 0 ≤ |S| ≤ 2 and there are just four cases as

described in Section 2.2. We update N∆ and N∇ to reflect the

effect of replacing Sm, Sm−1, . . . , S0 with S.
If the last block of Lnew

m has enough space to accommodate f
(when applicable) and S, we simply add them and move on to the

next key. If f was added to Lnew
m , we also update plast.

If Lnew
m has insufficient space, we begin a new block of Lnew

m to

add f (when applicable) and S. To maintain (I2), the first entry for

this block needs to be a fence. If we happen to have f to add, we

are fine; otherwise, we add a fence with key and plast as the first

entry of the new block.

When we begin a new block of Lnew
m , we need to add to Lnew

prec(m)

a fence to this block. If Lnew
prec(m)’s last block has no space left, we

begin a new block for Lnew
prec(m) to put the fence in (which automat-

ically satisfies (I2)). A fence to this new block must then be added

to Lnew
prec(prec(m)). Such fence additions may propagate all the way

up to Lnew
0 ; merge-prepare ensures that Lnew

0 has enough space.

After all entries from the old L0, . . . , Lm have been processed,

Lnew
0 , . . . , Lnew

m become the new L0, . . . , Lm.

Merge-Finalize The result of merge-execute needs further tweak-

ing for several reasons. The first reason is that we need a way for an

FD+tree to shrink in height, when there have been enough deletions

and a merge produces a bottom level violating (I4).

The second reason is more subtle. Performance becomes sub-

optimal when large merges generate long chains of single-block

levels. After merge-execute, the new levels above Lm store only

fences. The sizes of these levels decrease rapidly at the rate of 1/β,
so typically, all but a few levels above Lm would have one block

each, as illustrated in Figure 4. Hence, lookups perform poorly.

This inefficiency may be further aggravated by merge-prepare’s

overestimation of the merge result size, as discussed earlier.

Thus, to allow an FD+tree to shrink, and to guard against in-

efficiency, we take the third step of merge, merge-finalize. Based

on the actual sizes of the new levels produced by merge-execute,

merge-finalize skips new levels that are unnecessary, and adjusts

level numbers for the remaining materialized new levels. It may

modify L0, but no other levels’ contents.

For a new level Li produced by merge-execute, we compute oi,
a new level number for Li, as follows:

oi = argminj

(
B(Li) ≤ κj ∧B(Lsucc(i)) ≤ κj+1

)
. (3)

The two operands of the conjunction above correspond to (I3) and

(I5), respectively. Intuitively, we “tighten” the level number for a

new level as much as possible while preserving all invariants.

Let z = argmaxi(oi = 0); i.e., Lz is the last new level that can

be relabeled L0. Merge-finalize proceeds as follows. 1) If z > 0,
replaceL0’s content with that ofLz , and skip levelsL1, L2, . . . , Lz .

2) For each materialized level Li with z < i ≤ m, relabel it as Loi

unless i = m and Lm is not the bottom level.7

7For a technical reason that we discuss in Remark A.3, we do not adjust the
last new level’s number unless we have a full merge.

Figure 4 illustrates how merge-finalize improves lookup perfor-

mance by reducing the effective tree height.

2.4 Discussion

FD+tree’s performance guarantees are summarized below. See Re-

mark A.15 for the proof.

Theorem 1. Let N denote the true number of elements indexed.

The space consumption isO(N/β) blocks. The worst-case I/O cost

of a lookup is O(logγ
N

κ0β
) and the amortized I/O cost of an inser-

tion or deletion is O( γ

β−γ
logγ

N
κ0β

).

As mentioned earlier in this section, FD+tree differs from FD-

tree [13] in significant ways. Out of FD+tree’s six invariants pre-

sented in Section 2.1, FD-tree maintains only the first three: (I1),

(I2) and (I3). More importantly, FD+tree improves practicality by

addressing the following three issues.

First, although FD-tree supports deletion, it does not tighten lev-

els, and its merges are triggered by overflows only. Therefore,

FD-tree provides no performance guarantee for workloads involv-

ing deletions; the complexity bounds and proofs in [13] assume

insertion-only workloads. Remark A.4 gives examples where the

lack of level tightening or underflow-triggered merges can lead to

sustained poor performance. In contrast, our Theorem 1 applies to

any workload, and its bounds are stated in terms of the true number

of elements indexed, not in terms of the number of entries stored in

the tree (which would have been a weaker guarantee).

Second, FD-tree does not have level skipping; all levels are mate-

rialized and fences always point to the immediate next level. There-

fore, unlike FD+tree, FD-tree is susceptible to performance degra-

dation by chains of single-block levels, as described in the discus-

sion of merge-finalize.

Third, as discussed at the beginning of Section 2, compared with

FD+tree’s one-pass multi-level merge, an FD-tree merge proceeds

in multiple passes, combining only two levels at a time. When

L0 overflows, FD-tree first merges L0 and L1, producing a new

L1 (and a new fence-only L0). In general, if the result of merg-

ing Li−1 and Li can be accommodated by Li, FD-tree stops the

merge; otherwise, FD-tree proceeds to merge Li and Li+1, rewrit-

ing L0, . . . , Li with new fences in the process. Although FD-tree

and FD+tree merges cost asymptotically the same, FD+tree’s one-

pass multi-level merge in most cases is the clear winner both in

terms of actual cost and in terms of number of writes (which is im-

portant to SSDs because of write wearing). Also, concurrency con-

trol for the FD-tree merge is more difficult because multi-pass two-

level merges have more complex read/write patterns; such a merge

may rewrite a level multiple times, while a one-pass multiple-level

merge writes each level once.

3 Towards Concurrency

Section 1 has motivated the need for concurrency control in tree

indexes for SSDs. Before presenting our full solution in Section 4,

we first present two other approaches to concurrency control in

FD+tree, which further motivate our design choices.

FD+XM (FD+Tree with Exclusive Merge) FD+XM uses a sin-

gle readers-writer lock for the entire FD+tree. The tree supports ei-

ther multiple concurrent lookups, which must acquire shared locks

(s-locks), or a single insertion or deletion request, which must re-

quire an exclusive lock (x-lock). If a modification triggers a merge,

the x-lock is released only after the merge completes.

FD+XM has low CPU overhead because each request makes a

single lock call, and merges run uninterrupted with exclusive ac-

cess to the tree. For workloads consisting of nearly all lookups or

4



those whose modifications are issued far apart in time from other

requests, we expect FD+XM to work well.

However, FD+XM offers no concurrency between lookups and

modifications. As a merge x-locks the entire tree, lookups must

wait until the merge completes. Since merges are long, such waits

severely lengthen lookup response times to the point of impractical.

FD+DS (FD-Tree with Concurrency by Doubling Space) The

key idea is to trade space for concurrency. During a merge, instead

of emptying the old levels as we go, we simply leave them intact

while producing the new levels on the side. Meanwhile, lookups

can still proceed through the old levels. When the new levels are

ready, they replace the old levels in an atomic step, and the space

taken by the old levels can then be reclaimed. Thus, FD+DS im-

proves lookup response times because readers of the old levels are

not competing with any writer; merges run faster too, because the

single writer of the new levels is not competing with any reader.

While FD+DS is conceptually simple, implementing it still re-

quires some care, as we have discovered from our experience. First,

some concurrency control is still needed. For example, before re-

claiming the space taken by the old levels, we must ensure any

ongoing lookups through them have completed; we implement this

check using a counting semaphore. Second, to support concurrent

modifications while a merge is in progress, we need to write these

modifications somewhere, and have lookups search through them

in addition to the old levels, again necessitating concurrency con-

trol. Our implementation of FD+DS adds these modifications to

the new top level being created by merge; when searching the new

top level, lookups do not follow fences (while lookups through the

old levels still do).8

One main drawback of FD+DS is that it doubles the index space

while merges are ongoing. This higher space requirement is es-

pecially costly for SSDs, which are still much smaller and more

expensive than magnetic disks.

There is another subtle yet significant disadvantage to FD+DS’s

simple rule of not modifying the old levels. Recall that the top

level occupies premium memory space (the argument also holds if

the top level resides in the locality area of SSDs, because this area

is small). FD+DS cannot free space in the old top level until after

a merge completes, and therefore cannot use that space to accom-

modate modifications that arrive during the merge. Thus, given

limited space, FD+DS can accommodate fewer new modifications

during a merge before stalling for its completion, so its worst-case

modification response time suffers, as we will see in Section 5. Get-

ting around this issue would require non-trivial patches to FD+DS;

we discuss a number of them in detail in Remark A.17. However,

these patches either introduce other performance issues or com-

plicate FD+DS to the point where it becomes no simpler than our

proposed FD+FC scheme (to be described in Section 4) and yet still

uses more space.

Discussion Our main quest is to achieve the same or higher level

of concurrency offered by FD+DSwithout its space overhead. Since

merges have a regular, sequential access pattern, it should be pos-

sible, with careful updates to the index, to direct lookups to the un-

processed parts of the old levels as appropriate, while space from

the processed parts continues to be reclaimed. The idea of trading

space for concurrency is still applied, but we can limit redundant

storage to data near the “wavefront” of the ongoing merge.

8An alternative is to write these modifications to a dedicated memory buffer,
but they require special handling when the current merge completes, which
would complicate FD+DS even more.

Moreover, better space utilization makes it possible to improve

modification concurrency. As a merge progresses, it consumes en-

tries from the top level. By aggressively reclaiming space taken by

these entries, it should be possible to process new modifications at

the same rate as the merge consumes the old top level.

Next, we show how to realize these possibilities with FD+FC.

4 FD+FC: FD+Tree with Full Concurrency

FD+FC builds on the idea of weaving both unprocessed and pro-

cessed parts of the index during a merge into a single coherent

structure to support concurrent accesses. While this idea is con-

ceptually simple, its realization is far from trivial. For example,

we must consider the overhead introduced by maintaining a single

coherent index during merges. Moreover, with fractional cascad-

ing, cross-level pointers in FD+tree may form a graph, where one

index block may be reached by multiple paths, which makes the

index trickier to handle than traditional ones such as B-tree where

pointers form a tree. In the following, we will start with the concep-

tual overview of FD+FC, and gradually introduce implementation

details and challenges such as those mentioned above.

4.1 Data Structure and Conceptual Overview

When there is no ongoing merge, FD+FC’s data structure is the

same as FD+Tree. However, when there is an ongoing merge M

involving L0, . . . , Lm, the data structure consists of the following

parts (as illustrated in Figure 5):

• New top level (Lnew
0 ). Initially empty at the beginning ofM, this

part holds the new modifications that have arrived since; it also

holds fences being produced by M. When M completes, Lnew
0

becomes the new L0.

• Old top level (Lold
0 ). At the beginning of M, this part contains

all of L0. AsM progresses, this part is gradually emptied from

left to right.

• New upper levels (Lnew
1 , . . . , Lnew

m ). Initially empty at the begin-

ning of M, they are populated by M as it progresses. When M

completes, Lnew
m will store all (consolidated) data entries from

L0, . . . , Lm, while the other levels will store only fences.

• Old upper levels (Lold
1 , . . . , Lold

m ). At the beginning of M, they

are L1, . . . , Lm. As M progresses, they are gradually emptied

from left to right.

• Below-merge levels (Lm+1, Lm+2, . . ., ifM is not a full merge).

They do not participate inM and will not change. AsM progress,

it will gradually move fences for Lsucc(m) from Lold
m to Lnew

m .

During M, the first entry in Lold
0 is always a fence which we call

the wavefront fence. This fence serves the special purpose of de-

lineating the old and new parts of the tree. It always points to the

current head block of Lold
succ(0). Its key indicates how far the merge

has progressed, with the following invariant:

• (I7)Wavefront: Consider all data entries and fences forLsucc(m)

in L0, . . . , Lm being merged byM. Those with keys no greater

than the wavefront key have been processed by M and can be

found by searching from Lnew
0 . Those with keys strictly greater

than the wavefront key can be found by searching from Lold
0 .

Conceptually, the wavefront fence partitions the top and upper

levels of the FD+tree into old and new parts. M progressively

pushes the wavefront forward—emptying the old top and upper

levels, consolidating the entries, and populating the new top and

upper levels. Meanwhile, modifications go directly to the new top

level; lookups check the wavefront fence to determine which parts

of the tree need to be searched. M empties the old upper levels in a
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Figure 5: Components of FD+FC during a merge of

L0, . . . , Lm.

careful way such that an old block is reclaimed as soon as no new

lookups can ever go through it.

4.2 From Concept to Implementation

Data Movement fromOld to New Levels A straightforward im-

plementation of merge moves one “tuple” (or more precisely, all

entries with the same key) at a time from Lold
0 , . . . , Lold

m to Lnew
m .

When removing an entry from an old level, we cannot afford to

remove it on the SSD, because that would cause an expensive in-

place write per entry. Caching the block in memory for searches

and updates solves this problem, but there are other performance

issues with this tuple-wise data movement. Every removal from

a block in an old level requires not only updating the block’s in-

memory data structure, but also x-locking appropriate parts of the

tree to avoid conflicts with concurrent lookups that might be read-

ing the old levels. As our performance evaluation reveals, the CPU

overhead of these operations are high. Thus, we choose instead to

implement block-wise data movement. We would never modify a

block in an old level, either on SSD or in memory; we only reclaim

a complete block when its contents are not needed. The memory

requirement is onlyO(hβ). More details are given in Section 4.4.2.

Preemptive Level Skipping As discussed in Section 2.3, FD+tree

performs level skipping in merge-finalize. Unfortunately, the tim-

ing is too late for FD+FC, because concurrent lookups that arrive

during M would miss this optimization and still see suboptimal

tree shapes. Therefore, FD+FC performs preemptive level skip-

ping during merge-prepare, so that even the intermediate tree state

produced by merge-execute skips unnecessary levels. The details

are in Section 4.4.1.

Dynamic Memory Sharing between Top Levels Both Lold
0 and

Lnew
0 are memory-resident. A simple approach would be to allocate

a fixed amount of memory to each, but we can do better at memory

utilization by allowing them to share memory dynamically as M

progresses. We implement Lold
0 and Lnew

0 using a common buffer

of the size allotted for L0. An overflow-triggered merge M begins

when L0 is close to (but below) full capacity and becomes Lold
0 ;

we always reserve κ1 slots for Lnew
0 to accommodate fences to be

produced byM. AsM progresses, space taken by entries removed

from Lold
0 is given to Lnew

0 for new modifications; a modification

may have to wait for M to make new space. At the end of M, Lold
0

becomes empty, and Lnew
0 becomes L0.

Locks For disk-resident levels, we use a readers-writer lock for

each block. Since L0 (or Lnew
0 and Lold

0 ) is in memory, we use a

single mutex to control its access. As the wavefront fence is stored

in Lold
0 , its access is controlled by the same mutex.

4.3 Modification and Lookup

Amodification goes toLnew
0 if there is an ongoing merge; otherwise

it goes toL0. It waits if no space is available inL
new
0 . Then, it locks

Lnew
0 or L0 and proceeds exactly as in Section 2.2. By design,

FD+FC triggers a merge after the modification completes.

If there is no ongoing merge, we process a lookup exactly as in

Section 2.2. If a merge is underway, we compare the lookup key

against the wavefront key:

• If key is strictly greater, we first search Lnew
0 (but without going

below Lnew
0 ). We can stop if we find a data entry with key here.

If not, we search Lold
0 , and through it, the old upper levels and

below-merge levels.

• Otherwise, we search Lnew
0 , and through it, the new upper levels

and below-merge levels.

In either case, lookup uses a standard tree-based locking protocol.

It starts by locking Lold
0 and Lnew

0 , and it always s-locks a block in

the next level before unlocking the current.

4.4 Merge

As with the non-concurrent FD+tree, the merge procedure has three

steps. However, as motivated in Section 4.2, FD+FC’s merge-

prepare performs preemptive level skipping.

4.4.1 Merge­Prepare

We first determine m, i.e., the levels Lold
0 , . . . , Lold

m that need re-

placed, as in Section 2.3. In addition, we make a conservative,

best-effort guess of which result levels to skip, so merge-execute

can avoid materializing unnecessary levels.

Because the sizes of the would-be result levels are generally un-

available at this point, we estimate them as follows, starting with

Û(m), which upper-bounds the number of blocks inLnew
m (Eq. (1)).

Let B̂i (0 ≤ i ≤ m) denote our estimate (and also an upper bound)

for the size of Lnew
i in blocks. We have the following recurrence:

B̂m = Û(m); B̂i−1 = ⌈B̂i/β⌉.

For notational convenience, we also write B̂m+1 = B(Lsucc(m)),
whose actual value we readily know. Using calculations similar to

those in FD+ree merge-finalize in Section 2.3 (Eq. 3), we compute

ôi (0 ≤ i ≤ m), an “optimized” level number for what would be

Lnew
i had we simply generated all levels Lnew

0 , . . . , Lnew
m :

ôi = argminj

(
B̂i ≤ κj ∧ B̂i+1 ≤ κi+1

)
.

Again, we try to reduce the level number for each new level as

much as possible while preserving all invariants. The set Ô =
{ôi | 0 ≤ i ≤ m} is a subset of the level numbers in [0, m]. It

can be shown that 0 ∈ Ô and m ∈ Ô. Instead of generating all

m+ 1 levels, the next step of the merge procedure, merge-execute,

would generate only |Ô| levels (always including Lnew
0 and Lnew

m in

particular) bearing the level numbers in Ô.

4.4.2 Merge­Execute

Starting Merge-Execute At this point, the wavefront fence (the

first fence in Lold
0 ) has key −∞ and points to the first block of

Lold
succ(0). The new upper levels do not have any blocks yet; m-

insert, described below, will create them on demand.

Merge-Execute Main Loop We repeat the following three steps

until all entries from the old levels are processed.

• M-stage reads entries from the old levels and puts them in key

order into an in-memory staging area S .

• M-insert moves entries from S to Lnew
m and then adds fences to

levels above as needed.

• M-delete updates the wavefront fence and conceptually “deletes”

from the old levels the entries in S , which have been added to

the new levels by m-insert. Entries in Lold
0 are really deleted,

but for disk-resident levels, m-delete never updates in-place; it

simply reclaims whole blocks.
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M-Stage M-stage buffers in memory the contents of every block

it reads from the old levels, so no block will be read more than once.

The memory required for buffering is at most hβ entries. The first

time it runs, m-stage reads one block from each of Lold
0 , . . . , Lold

m .

In each iteration, m-stage starts with a empty staging area S , and
keeps adding buffered entries in key order to S until some old level

runs out of buffered entries to add. M-stage also ensures that S
contains either all entries with the same key, or none at all. When it

stops, m-stage hands off S to m-insert, and reads in the next block

for any level that is out of buffered entries. While the actual number

of entries in S varies, it is easy to see that the maximum is hβ.

M-stage acquires no locks, because when it is running there are

no other writes.

M-Insert M-insert processes entries in S one group at a time,

where each group contains all entries with the same key. Process-

ing of each group proceeds exactly as in FD+tree’s merge-execute

(Section 2.3). M-insert buffers new blocks in memory until they

are full or it finishes writing; the memory required is hβ entries.

Note that for each group, m-insert writes new levels bottom-up.

Writing to a new block b requires no locking, because at this point

no lookup can access b—there are no fences to b yet since we write
levels bottom-up. On the other hand, to write to an existing block

b, m-insert x-locks b, and unlocks b when it finishes writing and

before it writes a block in the level above. The timing of release is

important to avoid deadlocks with lookups, who might be travers-

ing down the new upper levels with the tree-based locking protocol.

M-Delete Let S0 denote the subset of entries in S from Lold
0 .

First, m-delete updates the wavefront fence in Lold
0 : the key is set

to the last key in S (not S0), and the pointer is set to that of the last
fence in S0 (not S), if any. Then, m-delete deletes all entries in S0
from Lold

0 .

Next, m-delete reclaims blocks in old upper levels that are no

longer needed. Knowing when which blocks are safe to reclaim is

tricky. It turns out that we cannot simply reclaim a block once all

its entries have been processed by m-insert; this block may still be

needed to direct lookups. Therefore, m-delete uses the following

rule: a block can be reclaimed only when m-insert has processed

the first key on the following block on its level. Remark A.5 in

appendix explains the intricacies and why this rule works correctly.

M-delete applies the rule to the old upper levels top-down. For the

head block b of each level, if S contains the first key in b’s following
block, b is reclaimed.

M-delete locks Lold
0 while modifying it. To reclaim a block, m-

delete x-locks it and unlocks it when done; there is no need to x-

lock the next block below before unlocking the current.

EndingMerge-Execute After the merge-execute main loop com-

pletes, we still have a chain consisting of the last blocks from the

old levels. Recall m-delete’s rule of not reclaiming a block unless

the first key on the following block has been processed; the last

blocks do not have following blocks. Thus, we reclaim the chain

explicitly. Starting from Lold
0 , we finally delete the wavefront fence

and make Lnew
0 the new L0; after this point, the remaining old up-

per levels are no longer accessible by lookups. Then, we proceed

top-down to reclaim the blocks in old upper levels.

Modifying Lold
0 requires locking. Then, we follow the standard

tree-based locking protocol to reclaim the blocks, always x-locking

a block in the next level before unlocking the current one. Tree-

based locking is necessary to avoid conflict with any ongoing lookup

that might still be searching the old levels top-down for a (nonexis-

tent) key greater than all existing keys; such a lookup traverses on

the very chain to be reclaimed.

4.4.3 Merge­Finalize

The merge-prepare step may have overestimated the sizes of the

new levels, because it did not account for cancellations between

insert and delete entries. Thus, merge-finalize further tightens the

levels. Recall that merge-execute produces |Ô| materialized new

levels, as determined by merge-prepare. For each such level Li,

we compute oi, a new level number for Li, in a manner similar to

FD+tree merge-finalize in Section 2.3 (Eq. (3)):

oi = argmin
j

((
j > 0 ∧B(Li) ≤ κj ∧B(Lsucc(i)) ≤ κj+1

)

∨ (j = 0 ∧ |Li| ≤ κ1)

)

.

The first term of the disjunction above checks whether we can re-

assign Li to some level Lj below L0; it is identical to the condi-

tion in Eq. (3). The second term of the disjunction, which checks

whether Li can become L0,
9 requires different treatment. Here,

|Li| denotes the number of entries in Li. Although L0 can accom-

modate κ0β > κ1 entries, keep in mind that concurrent insertions

can claim all unreserved slots in L0 during merge-execute. Since

merge-execute has reserved only κ1 slots in L0, κ1 limits the num-

ber of entries a level can have if we want to make it L0.

After calculating oi’s, merge-finalize proceeds in the same way

as FD+-tree merge-finalize described in Section 2.3. The only ex-

ception is that Lz , where z = argmaxi(oi = 0), does not com-

pletely replace L0 because L0 contains entries added while the

merge was running; instead, we remove all fences from L0 and

add Lz’s content to L0.

To ensure the correctness of concurrent lookups, merge-finalize

x-locks L0, removes fences in L0, adds Lz’s fences to it, and un-

locks L0. Then, merge-finalize deletes levels L1, . . . , Lz in a top-

down fashion, x-locking each block before deleting it. This top-

down locking and deletion order ensures that no ongoing lookup

encounters any deleted block.

4.5 Discussion

Instead of employing standard locking protocols on FD+tree in a

straightforward manner, FD+FC carefully considers FD+tree’s spe-

cial access patterns in designing correct and efficient protocols.

For example, for the new upper levels, the top-down read pattern

of lookup coexists with the bottom-up write pattern of m-insert,

which means the standard top-down tree-based locking cannot be

applied to both. As another example, for the old upper levels, since

both lookup and m-delete have top-down access patterns, the stan-

dard tree-based locking would work, but FD+FC instead allows

m-delete to deviate by releasing its locks early (before acquiring

child locks). This optimization hinges on the observation that there

is a single writer of the tree levels at any time—the merge pro-

cedure. Without this observation specific to FD+tree, early lock

release would lead to deadlocks between two writers.

In conclusion, FD+FC serializes lookups and modification by

the order in which they lock the top level, and is free of dead-

locks. A discussion of the correctness of FD+FC can be found

in Remark A.16.

In terms of space and I/O complexities, bounds established for

FD+tree in Theorem 1 still hold for FD+FC. Because of block-wise

data movement, a merge may use O(h) (logarithmic inN/β) addi-
tional blocks (without affecting the asymptotic space complexity).

In comparison, the space-doubling FD+DS (Section 3) uses up to

Θ(N/β) additional blocks during a merge.

9This term does not need the condition B(Lsucc(i)) ≤ κj+1 because it is

implied by |Li| ≤ κ1.
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Figure 6: Comparison of FD+XM, FD+DS, and FD+FC on Intel’s X25-E SSD for GR workloads. Performance metrics are: total com-

pletion time (a), average insertion Rp (b), average lookup Rp (c), worst-case insertion Rp (d), worst-case lookup Rp (e), distribution

of lookup Rp’s (f), standard deviation in Rp (g), comparison on Rq (h)-(l).

5 Experimental Evaluation
We implemented FD+XM, FD+DS, and FD+FC in C++. We use

two SSDs in our evaluation: Intel X25-E SLC 32GB SSD and Intel

320 Series MLC 80GB SSD, hereon referred to simply as X25-E

and 320S. At the time when we ran our experiments, 12.5TB had

been written to X25-E, and 1.5TB to 320S. Here we report only

results for X25-E because 320S showed similar trends; for details

see Remark A.11. The indexes are stored on the SSD connected

through SATA to a workstation with an Intel i7 8-core 2.8GHz

CPU, 8GBmainmemory, and Linux 2.6.32 kernel running in single-

user mode without GUI. We used Linux’s ext2 file-system, which

does not have journaling. We set the file-system cache and the

SSD’s internal cache to write-through mode, as recommended by

most database vendors. We also experimented with write-back

mode for SSD’s internal cache; see Remark A.12 for details.

We implemented two workload generators for the evaluation.

The first generator, GR, generates a stream of lookup (l), insertion
(i), and deletion (d) requests with a specified Wl : Wi : Wd pro-

portion. The second generator, GT , generates the stream of requests

by following the TPC-C workload characteristics. Remarks A.7

and A.8 give more details about the two generators. The workload

is stored as a file from which a workload injection thread reads

and populates two request queues: Qr for index lookup requests

(reads), and Qw for index insertion and deletion requests (writes).

We allocate Tr and Tw worker threads to process requests fromQr

and Qw respectively. If the workload injection thread finds Qr or

Qw full, it blocks until slots become available in that request queue.

We measure performance with the following metrics:

• Rp is the time taken by a worker thread to dequeue a request

and process it to completion (including computation, I/O, and

lock wait times).

• Rq isRp plus the time spent by the request waiting in the queue.

• Ro is the overall time between request arrival and completion.

See Remark A.9 for details on how we obtain Ro.

As emphasized in Section 1, we measure (a) average, (b) variance,

and (c) worst-case for the above metrics over each entire workload.

We will focus on theRp and Rq metrics in this section. Results for

Ro are similar and are sampled in the appendix.

When testing with GR, we preload each index with 10M inser-

tions resulting in an index of 120MB; we then run a workload con-

taining 10M requests (with specified Wl : Wi : Wd) and measure

performance after a warm-up of 10K requests. When testing with

GT , we use 10 districts per warehouse and 3000 customers per dis-

trict. The preload step inserts 3 orders per customer.

Defaults for the size of the FD+tree top level (κ0, but measured

in bytes), size ratio (γ), and the main-memory buffer cache size are

256KB, 24, and 15MB respectively. Defaults for the total num-

ber of queue slots (|Qr| + |Qw|) and number of worker threads

(Tr +Tw) are 5000 and 8 respectively. The queue slots are divided
between Qr and Qw according to the ratio Wl : (Wi +Wd). For
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FD+FC and FD+XM, we set Tr = 6 and Tw = 2 because these

indexes process insertions quickly. FD+FC runs merges in an ex-

tra background thread that is woken up by one of the Tw threads

whenever merge is triggered (by overflow or underflow).

5.1 Overall Benefits of Full Concurrency

Varying the Lookup Ratio Figure 6 compares FD+FC against

FD+XM and FD+DS. We consider a spectrum of GR workloads

by varying the ratio of index lookup requests Wl in the workload

from 0 to 1. The non-lookup requests in each workload are dis-

tributed equally between insertions and deletions so as to keep the

total number of indexed records roughly constant throughout work-

load execution. For example, a workload withWl = 0.6 will have

20% each of insertions and deletions. Recall that our default total

workload size is 10M requests.

At a high-level, Figure 6 shows that 1) FD+FC significantly out-

performs FD+XM on worst-case response times, as we expect by

design, but as a bonus, FD+FC also performs better on other met-

rics; 2) FD+FC delivers comparable or better performance than

FD+DS without requiring the double amount of space as FD+DS;

3) Despite of doubling space, FD+DS’s worst-case insertion times

are in fact as bad as FD+XM. We now delve into details below.

Figure 6(a) shows that FD+FC’s throughput is at least as good

as FD+DS and is much better than FD+XM. For a very update in-

tensive workload (Wl ≤ 0.2), FD+FC’s throughput is larger than
FD+DS by around 15%. For other workloads, it is larger by 8–
9%. This is because updates have to wait longer in FD+DS. Over

FD+XM, FD+FC’s advantage on throughput metric is more pro-

nounced. It is around 27% and 20% larger when Wl = 0.6 and

0.8, respectively.

Figures 6(b) and 6(c) show the average Rp for insertions and

lookups (deletions are handled just as insertions by FD+trees). When

Wl reaches 0.9, FD+FC processes insertions faster than FD+DS by

25% on average. It is faster by 3.8 times compared to FD+XM. In-

sertions take little time to process by themselves, but for FD+XM

and FD+DS, they wait longer when there is an ongoing merge—

FD+XM waits for the release of the exclusive lock, while FD+DS

waits for the reclamation of the old top level. When we consider av-

erage lookup Rp, all three approaches perform equally well when

tested with a read-only workload. Also, FD+FC performs equally

as well as FD+DS except for update-heavy workloads; lock/unlock

calls of frequently triggered merges slow down the lookups. For

FD+XM, it is much worse, because lookups need to wait when a

merge is ongoing.

Figures 6(d) and 6(e) show the worst observed Rp for insertions

and lookups. While FD+FC’s worst Rp over insertions is around a

second, for FD+DS and FD+XM it is around 33 to 38 seconds—

displaying a crucial advantage of the fully concurrent FD+FC. As

described in Section 3, FD+DS cannot remove entries fromL0 even

after they were added to the new levels. If it does, lookups will

fail. It can delete all the entries only after the merge completes.

When the merge involves many levels (for ex., a full merge), this

scheme is obviously costly. As for lookups, FD+FC and FD+DS

show similar worstRp’s (around 500milliseconds), which are well

below FD+XM, because lookups in both FD+FC and FD+DS do

not need to wait for an ongoing merge to complete.

Figure 6(f) shows equi-width histograms with a bucket length of

2.5 milliseconds for lookup Rp’s of FD+DS and FD+XM. Similar

trends were observed for insertions as well. The Y-axis is in log-

scale. The X-axis shows the first 400 buckets, i.e.,Rp ≤ 1 second;

requests with Rp > 1 second are added to the last bucket in Fig-

ure 6(f)—hence the (red) blip at the end of FD+XM’s histogram.

Figure 6(g) complements Figure 6(f) by showing how the standard

deviation ofRp values for insertions is much lower for FD+FC than

that for FD+DS.

Figures 6(h)-6(l) compare FD+FC and FD+DS on the Rq per-

formance metric (recall that it is Rp plus the time spent by the re-

quest in theQr or Qw queue). FD+FC’s better performance on the

core Rp metric translates into better performance on Rq (and Ro

as well—see Remark A.10 in appendix). For the three concurrency

schemes, average insertion Rq is large when Wl is small. Average

lookup Rq shows an opposite trend. The reason is that, for low

Wl, there are so many updates that processing them becomes the

bottleneck. Hence, insertion requests wait in the queue longer than

lookup requests. As Wl increases, the bottleneck shifts to lookup

processing. Figure 6(k) shows FD+DS and FD+DXM have high

worst-case insertion Rq . FD+FC’s worst-case insertion Rq starts

higher, because the workload is too skewed, and there are always

many insertions waiting in the queue; but as Wl increases, it falls

to 2.5 seconds, where as FD+DS and FD+XM still remain close

to 33 seconds. Figure 6(k) shows FD+XM suffers high worst-case

lookupRq . Figure 6(l) shows higher standard deviation for FD+DS

insertion Rq distribution than that of FD+FC.

Varying the Initial Index Size Figure 7 shows the performance

trends on X25-E as we scale the initial index size to 90M key-value

pairs totaling 1080MB. Size of the workload is set to be equal to the

initial index size. There are 80% lookups in every workload. Note

that the worst-case insertion Rp for FD+DS jumps to 659 seconds

when the database size is 90M. However, FD+FC’s worst inser-

tion Rp still remains under a second. The benefits of FD+FC’s full

concurrency are clear when data sizes increase; its lookup and in-

sertionRp’s remain manageable. These results show that FD+FC’s

concurrency algorithms scale as well as FD+DS.

Workloads based on TPC-C Figure 8 shows the comparison of

the three indexes for GT workloads with TPC-C characteristics.

As the number of warehouses increases from 20 to 100, initial
index size increases from 21MB to 105MB. Note that the insertions

constitute 91.3% of the requests in this workload (see Remark A.8);

the remaining 8.7% are lookups. For such workload characteris-

tics, Figure 8(a) shows that FD+FC’s throughput is higher than both

FD+XM as well as FD+DS. It is higher by 14% than FD+DS when

number of warehouses is 100. Average insertion Rp is slightly bet-

ter for FD+FC (Figure 8(b)), around 13% less when the number of

warehouses is 100. However, FD+DS has better average lookupRp

because for high-insertion workloads, FD+FC’s concurrent block

reclamations constantly interfere with lookups. Nonetheless, FD+FC

still has higher throughput overall, and as Figure 8(c) shows, has

lower worst-case insertion Rp. In fact, there is also a high vari-

ance in the distribution of insertion Rp values (see Figure 8(f)).

FD+FC’s average Rq for update requests is as worse as FD+DS

(Figure 8(d)), this is because the workload is very update inten-

sive. In the worst-case Rq comparision, FD+DS has a high worst-

case response time limitation for insertions (Figure 8(e)).

5.2 Benefits of Design Choices in FD+FC
Having seen the end-to-end benefits of FD+FC, we now drill down

to the benefits provided by individual features.

Dynamic Memory Sharing between Lnew
0 and Lold

0 FD+FC’s

memory sharing feature allows space freed from Lold
0 by a merge to

be added to Lnew
0 immediately (Section 4.4). The plot ‘FD+FC w/o

MS’ in Figure 9(a) compares the performance of FD+FC without

memory sharing against ‘FD+FC w/ MS,’ the regular version of

FD+FC with memory sharing. We include FD+DS performance

data for better illustration of memory sharing feature’s advantage.

FD+DS’s worst insertion Rp is close to that of ‘FD+FC w/o MS,’
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Figure 7: FD+FC vs. FD+DS as index size varies, for a GR workload withWl = 0.8.
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Figure 9: (a) Benefits of memory sharing between Lnew
0 and Lold

0 . (b, c) Performance of FD+FC vs. FD+FC/TUP that shows the

importance of FD+FC’s block-wise data movement.

which is around 32–38 seconds. Worst insertion Rp for FD+FC is

much smaller at around a second.
Block-wise vs. Tuple-wise Data Movement FD+FC uses block-

wise data movement during merges (Section 4.4). To show the ben-

efit of this feature, Figures 9(b) and 9(c) compare FD+FC against

FD+FC/TUP, a variant of FD+FC that uses tuple-wise data move-

ment in the merge procedure. FD+FC/TUP leads to heavy CPU us-

age and long-running merges that impact insertion response times

severely. When Wl = 0.9, average insertion Rp of FD+FC/TUP

is 12 times worse than FD+FC. FD+FC/TUP’s worst-case inser-

tion Rp is much worse than even that of FD+XM, highlighting the

importance of optimizing CPU usage when using SSDs.
Level Skipping and Tightening FD+FC contains the novel level

skipping and tightening features that remove unnecessary levels

from the index (Section 4.4). To see the benefits of level skipping,

we created an FD+tree with γ = 12 and κ0 = 64KB. We inserted

10M key-value pairs, and ran a GR workload of 20M requests with

Wl = 0.8. In the execution trace, we looked for cases where a

merge produced an index tree with one less materialized level than

before. As expected, all these cases lowered lookup response times.

One specific case, where a merge on an FD+CC with five material-

ized levels led to an FD+CC with four materialized levels and one

skipped level, lowered average lookup Rp by 14%. This improve-

ment is essentially “free” as the level skipping and tightening steps

do not increase the running time of merges.

5.3 FD+FC vs. an Industry­Strength B+Tree
When developing our FD+FC prototype, we were mainly concerned

with ensuring a fair comparison of FD+FC against FD+DS and

FD+XM. Nonetheless, here we report on a comparison between our

FD+FC prototype and Berkeley DB’s industry-strength and fully

concurrent B+tree implementation. For the B+tree, we changed

Tr : Tw to match Wl : (Wi +Wd), which suited it better than our

settings intended for FD+tree (see the beginning of this section).

One would expect the B+tree to perform better on read-only

workloads, while FD+FC is expected to perform better at the other

end of the spectrum where Wl = 0. That is the behavior we see

in Figure 10(a), which shows workload completion times for our

default experimental settings. More results are in Remark A.13.

The cross-over point between B+tree and our prototype FD+FC

occurs between Wl = 0.8 and Wl = 0.9 in Figure 10(a). This

point can be pushed more to the right (i.e., larger Wl) by further

optimizing the implementation of our FD+FC prototype (e.g., min-

imizing CPU-intensive memcpy() calls). The current prototype
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Figure 10: Performance of FD+FC vs. Berkeley DB.

makes heavy use of the C++ Standard Template Library (STL)

classes (for internal data structures) and the Boost threading library,

which can be avoided to improve overall performance. Even with-

out deep engineering-level optimizations, FD+FC performs better

than Berkeley DB in minimizing the average-case Rp (see Fig-

ure 10(b)).

6 Related Work

A number of indexes have been proposed recently to optimize for

the SSDs’ fast random read and slow random write characteristics.

BFTL [22], FlashDB [17], and LA-tree [2] are based on B-trees and

perform some form of logging in order to postpone in-place updat-

ing of B-tree blocks. SkimpyStash [7] and SILT [14] are exact-

match key-value stores based on hashing. FD-tree [13] is a state-

of-the-art index designed for SSDs, which we have discussed and

compared with in detail in Section 2.4. All of these indexes have

reorganizations as essential part of their operations. Their reorga-

nization costs vary, but are consistently higher than those in their

counterparts designed for magnetic disks. However, none of these

past works address concurrency control. The PIO B-tree [20] tech-

nique includes a basic concurrency scheme that is very similar to

FD+XM (discussed in Section 3). In contrast, the FD+FC scheme

we developed allows lookups concurrent access to the index while

a merge is ongoing.

Index structures optimized for writes to magnetic disks have also

been considered in the database literature. LSM-tree [19] maintains

multiple B-trees with geometrically increasing sizes. All updates

go to the smallest tree. Rolling merges, which run concurrently

between each pair of neighboring levels, percolate these updates

to lower levels. Our work differs from LSM-tree in many ways.

First, LSM-tree’s design is motivated by an always active insertion

workload (e.g., when indexing a growing log file), while we tar-

get traditional workloads including OLTP. Second, CPU efficiency

is not a concern for LSM-tree; however, since SSDs have orders-

of-magnitude faster I/Os than magnetic disks, CPU costs become

significant (see Section 5) and we must design for CPU efficiency.

Together, these differences in design goals translate into very differ-

ent choices: 1) To speed up search across levels, FD+tree uses frac-

tional cascading (Section 2), which requires maintaining pointers

across levels. LSM-tree does not use fractional cascading because

it targets insertion-heavy workloads. 2) LSM-tree uses multiple

rolling merges to increase insertion throughput. However, such an

approach would consume a lot of OS resources (threads, memory,

etc.) and add too much CPU overhead for OLTPworkloads running

on SSDs; it would also significantly complicate concurrency con-

trol in the presence of fractional cascading. In contrast, FD+FC’s

one-pass multi-level merge is more CPU-efficient and works well

with fractional cascading.

The LHAM-tree [16] is conceptually similar to LSM-tree, but

targets temporal databases. The bLSM-tree [21] is similar to LSM-

tree, but uses bloom filters to improve lookup performance and

carefully designed scheduling policies for synchronizing between

rolling merges. The Stepped-Merge technique proposed in [10] is

similar to LSM-tree, but maintains multiple B-trees at each level.

The T1SM [11] partitions data into subindexes, each of which is

an LSM-tree. For the last two techniques, concurrency control

is implemented by allowing the merge to create a new version of

the index or subindex, and dropping the previous version after the

merge completes. Thus, this approach is analogous to FD+DS dis-

cussed in Section 3, which we have evaluated and compared with

FD+FC in Section 5. Like LSM-tree, none of LHAM-tree, bLSM-

tree, Stepped-Merge, and T1SM supports fractional cascading.

7 Conclusion
New indexes are being designed for database systems that store

data on SSDs. We argue that efficient concurrency control schemes

are crucial in making these indexes usable for a wide spectrum of

workloads. In this paper, we have described the FD+tree index

for SSDs and the associated FD+FC concurrency control scheme,

which, to our knowledge, is the first of its kind. We demonstrated

the performance benefits of FD+FC through extensive experimental

evaluation. A promising avenue for further work is to consider

crash recovery for FD+FC.
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APPENDIX

Remark A.1 (Avoiding overestimation of merge result sizes; Sec-

tion 2.4) To avoid overestimation of merge result sizes, we sim-

ply need to track cancellations between insert and delete entries

across levels more carefully. Note that N∆ and N∇ are insuffi-

cient because they only tell us the number of cancellations for a

full merge; we need to know this number for a merge involving any

number of levels. To this end, we use O(h2) counters Npq , where

0 ≤ p < q < h; Npq tracks the number of delete entries in Lp that

would cancel out some insert entries in Lq . Let E(i) denote the

number of data entries in Li, which is readily available. With the

help of the counters, the number of data entries in the run obtained

by merging L0, . . . , Li can be accurately calculated as:
∑i

j=0 E(j) −
∑

0≤p<q≤i
Npq .

From the number of data entries, it is straightforward to calculate
the number of blocks.

Upon completion of merge-execute involving L0, . . . , Lm, we

update the counters as follows:

Npq ←

{ ∑
j≤m

Njq for p = m and q > p;

0 for p < m and q > p.
(4)

Finally, when processing a deletion, we must first locate the level

Li with the corresponding insert entry; then, we increment N0i by

1. Therefore, a lookup is required as part of deletion processing.

In the version of the FD+tree presented in Sections 2 and 4 and

evaluated in Section 5, we choose not to use these counters, and

deletions do not involve lookups. Code that uses the FD+tree can

easily ensure that there are no deletions of nonexistent elements.

Furthermore, gross overestimation of merge result sizes is rare and

does not affect correctness; level tightening performed by merge-

finalize further protects against performance degradation. Thus, we

feel that the approach without theNpq counters suffices in practice.

Remark A.2 (Overestimation of merge result size; Section 2.3)

Consider the following worst-case example. Before the merge, Lm

has κm−1 + ǫ blocks (i.e., slightly more than the maximum size

of Lm−1), while L0, . . . , Lm−1, all at full capacity, contain only

fences and delete entries. During a merge, these delete entries “can-

cel out” all but a few insert entries in Lm. Thus, the new Lm is

nearly empty while Û(m) is roughly 2κm−1. It would be ineffi-

cient to have a chain ofm fences pointing to a nearly empty Lm.

Remark A.3 (Tightening of the last level produced by merge;

Section 2.3) To preserve (I4) and limit the tree height, we need

to tighten the bottom level produced by a full merge. However,

when we do not have a full merge, we do not adjust the last new

level’s number for a technical reason having to do with the proof of

Lemma 4 in Appendix. In particular, that proof assumes that after

anLm-merge, we need to fill up all empty (fence-only) levels above

Lm with data entries in order to trigger another Lm-merge. This

observation allows us to lower-bound the number of modification

requests between merges.

Consider the case when an Lm-merge produces a run that is just

small enough to be accommodated by Lm−1. If we perform level

tightening here, this run would become a nearly fullLm−1 (andLm

would be skipped). It would take a much fewer number of modi-

fications requests to trigger another Lm-merge. It remains open

whether this possibility actually breaks our asymptotic bounds; we

have simply taken a safe approach in this paper by not tightening

the last new level for a merge that is not full.

Remark A.4 (Examples where level tightening and underflow-

triggered merges are needed; Section 2.4) Consider Remark A.2;

suppose the merge there is a full merge. Without level tightening,

the resulting tree, despite being nearly empty, can have an arbitrary

number of levels.

We show another example highlighting the need for underflow-

triggered merges. Suppose a full merge has just completed, leaving

the bottom level Lh−1 holding slightly more data than what Lh−2

can accommodate. We then issue a series of deletions that would

cancel out all but a few insert entries in Lh−1. All correspond-

ing delete entries are eventually pushed down to Lh−2, right above

Lh−1. Without underflow-triggered merges, however, there is no

merging with Lh−1. At this point, the true number of elements is

close to zero, but the tree can be arbitrarily tall.

For both examples above, the lookup cost is arbitrarily high com-

pared with the true number of elements indexed. Furthermore, this

situation can last for as long as needed, over any number of opera-

tions (future modifications can simply populate and empty the top

levels indefinitely without affecting the bottom levels).

Remark A.5 (When to reclaim a block; Section 4.4.2) Consider

a block b1 and its following block b2 on the same old upper level.

Let k1 denote the key of the last entry in b1 and let k2 denote the key
of the first entry in b2. Entries in (k1, k2) in the next level reside in
some block c that precedes the block pointed to by the first fence of
b2. Suppose m-insert has just processed entries with key k where

k1 ≤ k < k2, so all entries in b1 have been processed. However, if

we reclaim b1 at this point, a lookup in the key range (k, k2), which
still should be directed to the old upper levels, would not be able to

reach c.
On the other hand, if m-insert has just finished processing k2, we

can safely reclaim b1 because the wavefront key has moved to k2,
and lookups for keys no greater than k2 will be directed to the new

upper levels instead.

Remark A.6 (Addressing recovery for FD+FC)

We describe at a high level how recovery for FD+FC can be ad-

dressed. Note that we did not include recovery in our experimental

analysis. Recovery schemes proposed for LSM-tree and LHAM-

tree, found in [19] and [16], are in many ways similar to what we

describe below.

We need to address recovery for the following parts of the index:

(P1) Lnew
0 ; (P2) Lold

0 ; (P3) levels Lold
1 , . . . , Lold

m ; and (P4) levels

Lnew
0 , . . . , Lnew

m . Levels with level identifiers larger than m are not

touched by the merge.

To facilitate recovery, at the beginning and end of every merge,

start-merge and end-merge log records are appended to the log. The

merge algorithm also writes a log record for every fence it inserts

to Lnew
0 .

Addressing (P3) and (P4) can be achieved by a simple change

in FD+FC’s node deletion scheme. Remember thatM-Delete waits

until the first key in the following node is processed before deleting

a node. This wait ensures lookups don’t encounter deleted nodes

when they search the old levels. To address recovery, we let M-

Deletewait a little longer: until the first key in the following node is

processed and all entries in the node are written to stable storage as

12



part of the new levels. FD+FC’s earlier deletion scheme had a space

cost of an extram blocks; the cost in the worst-case scenario when

each level’s first node was processed but each of its next sibling

was not started processing yet. With recovery included, the space

cost increases utmost by only 1 more block, if merge implements a

block-at-a-time flush to Lnew
m .

Recovery for (P1) and (P2) can be achieved in the following way.

The recovery manager checks for the oldest start-merge record in

the log. If there was no end-merge after it, updates to the index

recorded in the log before the start-merge but after the previous

start-merge are used to construct Lold
0 . Otherwise, Lold

0 is initial-

ized with null set. The recovery manager constructs Lnew
0 from log

records that appear after the oldest start-merge in the log.

Based on the last node of Lnew
m and the old levels as recovered,

the recovery manager calculates how far the merge has moved, and

initializes the wavefront fence in Lold
0 accordingly. Entries smaller

than or equal to the key of the wavefront are deleted from Lold
0 . The

merge is restarted.

Remark A.7 (Workload generator GR; Section 5) Given the

total number N of requests and the proportion Wl : Wi : Wd of

lookup, insertion, and deletion requests for a workload, GR first

determines the number of insertion requests Ni to be generated.

It initializes two variables kl and ku with the smallest and largest

keys that will be inserted as part of this workload: kl = s+ 1 and

ku = s+Ni, where s is the largest key (inserted previously) in the
index before the workload starts (or zero if the index is empty).

GR follows a two-step procedure to generate each request. It first

determines which type of request to generate by choosing randomly

with the ratio Wl : Wi : Wd. To generate a lookup request, GR
picks a key from a list K that maintains all keys currently in the

index. To generate an insertion request, GR picks the smallest key

in [kl, ku]\K and a randomly chosen value; the chosen key is added

to K. To generate a deletion request, GR randomly picks from K
with the constraint that it was inserted at least 100 requests earlier.

Remark A.8 (Workload generator GT ; Section 5) TPC-C bench-

mark simulates a complete order-entry environment. The following

five types of transactions execute against the database: order entry,

order delivery, payment, order status check, and inventory check.

While each order is entered as a single transaction, 10 orders are

delivered together according to the TPC-C specification. Hence,

order delivery transactions are roughly 10 times fewer than order

entry transactions. The frequencies of the five transactions accord-

ing to the TPC-C specification are 45%, 43%, 4%, 4% and 4%.

The NewOrder table in TPC-C has attributes NO W ID (ware-

house id), NO D ID (district id) and NO O ID (order id). The three

attributes together form the primary key. Orders that have not been

processed yet are stored in this table. Our workload generator GT
generates index requests for the primary index built on the New Or-

der table. The key is a 4-byte unsigned integer and is constructed

by placing the warehouse id in the most significant 8 bits, the dis-

trict id in the next 8 bits, and using the rest of the 16 bits to store

the order number. The corresponding value for the key is generated

as a random number.

Remark A.9 (ObtainingRo; Section 5) In a realistic setting, Ro

would be the end-to-end response time observed by the user or ap-

plication generating the workload. In our evaluation, we calculate

Ro in a post-processing step after workload completion. The work-

load generator generates requests with timestamps according to a

pattern where requests arrive at a known uniform rate of v requests

per second (starting from time 0). These requests are written to a

workload file that is read by the workload injection thread during

workload execution.
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Figure 11: FD+FC vs. FD+DS on Ro (end-to-end response

time). X-axis shows the number of request arrivals per second.

The workload injection thread issues requests to the Qr and Qw

queues at the maximum speed possible, ignoring the arrival times-

tamps. A trace of the workload execution is captured. Next, wait

time w is calculated as the time difference between the supposed

arrival time of each request (i.e., the 0-based arrival timestamp

recorded in the file plus the actual start time of the workload) and

its actual arrival time (time of entry into the queue). If w is pos-

itive (which happens when the system processes requests at a rate

slower than v), then Ro is calculated as Rq + w; otherwise Ro is

set to Rq . Note that the Rp and Rq times do not depend on w.

Essentially, such an accounting of Ro means that the underlying

execution model can access requests ahead of their supposed arrival

time if space is available in the queues. An alternate model is to

actually wait until each request’s supposed arrival time to issue it,

but this approach rules out the possibility of simulating a workload

faster than real time, and more importantly, imposes considerable

CPU overhead in setting and waiting for timers. We decided against

such an alternative in order to minimize the system’s extra resource

utilization and its influence on measurement results.

Remark A.10 (Additional details on FD+FC vs. FD+DS; Sec-

tion 5.1) Figure 11 shows how, for a range of request arrival rates

(shown on the X-axis), FD+FC outperforms FD+DS on the Ro

metric. For Wl = 0.8, performance difference between FD+FC

and FD+DS is larger. For a lookup-only workload (ie.,Wl = 1.0),
performance of both schemes converge. This is expected because

lookups are processed similarly in both schemes. Recall that Fig-

ure 6 shows FD+FC and FD+DS performing equally for a lookup

only workload.

Remark A.11 (Results for Intel 320S SSD; Section 5)

Figure 13 shows results for GR workload on the Intel 320S SSD

(referred as 320S). The trends observed are generally similar to the

ones that we saw for the X25-E SSD (see Figure 6). Figure 12(a)

shows throughput comparision between FD+XM, FD+DS, and FD+FC.

FD+FC’s throughput is atleast as high as FD+DS for all workloads,

and when 0.2 ≤ Wl ≤ 0.7 it is atleast 33% higher than FD+XM.

For update intensive workloads, throughput of all schemes are higher

relative to their observed throughputs on X25-E because 320S is a

newer SSD, and has better write performance. As lookup ratio in

the workload increases, performance impact because of writes de-

creases.

Figure 13(b) shows that the average Rp for update requests ex-

hibits similar trends as in X25-E. But all concurrency schemes run

faster than on X25-E because 320S processes writes faster; there is

a speed up of around 60% whenWl = 0. WhenWl = 0.2, the av-
erage lookup Rp of FD+FC experiences a jump. We believe this is

because of intense cache pollution caused by fast running merges.

Rest of the Figures 13(d), 13(e) and 13(f) show similar trends as

observed in X25-E experiment.

Figure 14 compares the three schemes for GT workloads. We

observe same trends as seen in Figure 8 for the X25-E experiment.

However, absolute numbers for all the schemes have improved.

Remark A.12 (Results with write-back disk caching enabled;

Section 5)
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Figure 12: Comparison of FD+XM, FD+DS, and FD+FC on Intel’s X25-E SSD with write-back disk caching mode for GR workloads.

Performance metrics are: total completion time (a), average insertion Rp (b), average lookup Rp (c), worst-case Rp (d), average

Rq (e), and worst-case Rq’s (f).
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Figure 13: Comparison of FD+XM, FD+DS, and FD+FC on Intel’s 320S SSD for GR workloads. Performance metrics are: total

completion time (a), average insertion Rp (b), average lookup Rp (c), worst-case Rp (d), average Rq (e), and worst-case Rq’s (f).
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Figure 14: Comparison of FD+XM, FD+DS, and FD+FC for GT workloads on 320S by varying number of warehouses, in terms of:

total completion time (a), average insertion and lookup Rp (b), worst-case insertion and lookup Rp (c), average insertion and lookup

Rq (d), worst-case insertion and lookup Rq (e), and standard deviation in Rp (f).

Figure 12 shows results for GR workload on X25-E with write-

back disk caching enabled. Disk caching allows effective usage of

the SSD’s on disk cache, however, data loss could occur when it

experiences an unscheduled power off. Most trends observed for
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Figure 15: Performance of FD+FC vs. Berkeley DB.

the write-through experiment (see Figure 6) show in these results

too. However, because writes are faster as they are not actually

stored to the hardware in the SSD, we see more similarities with

the 320S experiment (see Figure 13).

Remark A.13 (Extra results for FD+FC vs. B+tree; Section 5.3)

Figure 15 completes the results for the FD+FC vs. B+tree com-

parision shown in Figure 10. Worst-case Rp of FD+FC is similar

to, or in most cases lesser than, B+tree’s worst-case Rp. B+tree

requires modifying atleast one block for every update to the in-

dex. Such frequent random page updates trigger many block erases

inside the SSD ultimately affecting the worst-case response time.

Figures 15(b) and 15(c) show average and worst-case Rq compar-

ision for the two indexes. Note that for update intensive work-

loads, FD+FC is by far better, while B+tree outperforms FD+FC

for lookup intensive workloads, which is expected. As mentioned

in Section 5.3, Berkeley DB’s B+tree implementation is very so-

phisticated while our FD+FC is a prototype we developed to cap-

ture a fair comparision with FD+DS and FD+XM.We believe FD+FC

code can benefit a lot from further code optimizations.

Remark A.14 (Pseudocode for FD+Tree Operations; Section 2)

See Algorithms 1 and 2.

Remark A.15 (Proof of Theorem 1; Section 2.4) We begin by

introducing several lemmas.

Lemma 1. An FD+-tree with n elements in its lowest level has

O(logγ
n

κ0β
) levels.

Proof. Without loss of generality, suppose h > 2. By (I3),B(Lh−1) >
κh−2 = κ0γ

h−2, so

h < logγ(B(Lh−1)/κ0) + 2 ≤ logγ(⌈n/β⌉/κ0) + 2

= O(logγ

n

κ0β
).

Lemma 2. The total number of blocks inL0, . . . , Lm isO(κ0γ
m).

Proof. By (I3), Li has at most κi blocks, so the total is at most∑m

i=0 κi = κ0
γm+1−1

γ−1
= O(κ0γ

m).

In the following, an Lm-merge refers to a merge that replaces

levels L0, . . . , Lm, where m is calculated by merge-prepare.

Lemma 3. The number of blocks written by an Lm-merge that

produces b blocks in Lm is less thanm+ β

β+1
b = O(κ0γ

m).

Proof. The levels above Lm contain densely packed fences, so the

total number of blocks written is at most

b+ ⌈b/β⌉ + ⌈⌈b/β⌉/β⌉ + · · ·

< b+m+ b/β + b/β2 + · · · = m+
β

β − 1
b = O(κ0γ

m).

The last step follows from (I3): Lm has at most κm blocks.

Lemma 4. Suppose an overflow-triggered Lm-merge has just com-

pleted. There must have beenΩ((β−γ)κ0γ
m−1) insertion/deletion

requests since the most recent Lm′ -merge withm′ ≥ m.

Proof. LetM denote theLm-merge andM′ denote theLm′ -merge.

Right before M, we must have Û(m − 1) > κm−1 (otherwise

merge-prepare would not have called for anLm-merge). Therefore,

⌈
m−1∑

j=0

B(Lj)−
1

β

m−1∑

j=1

B(Lj)

⌉
> κm−1,

by Eq. (1) (it is easy to see that the above still holds in the case of

m = h where Û(h − 1) has a precise formulation based on N∆

and N∇). Since B(L0) = κ0 is necessary to triggerM, we have:

κ0 +
β − 1

β

m−1∑

j=1

B(Lj) > κ0γ
m−1,

m−1∑

j=1

B(Lj) >
β

β − 1
κ0(γ

m−1 − 1). (5)

The total number of data entries in L0, . . . , Lm−1 right before M

is given by E −F , where E is the total number of entries and F is

the total number of fences among them. We have:

E ≥ βκ0 +

m−1∑

i=1

(β(B(Li)− 1) + 1)

= βκ0 − (β − 1)(m− 1) + β

m−1∑

i=1

B(Li);

F ≤

(

B(Lsucc(m−1)) +

m−1∑

i=1

B(Li)

)

+

m−1∑

i=0

B(Li) (6)

= B(Lsucc(m−1)) + κ0 + 2

m−1∑

i=1

B(Li).

The first term on the right of Ineq. (6) is the number of blocks that

need to be pointed to by fences, and the last term of Ineq. (6) upper-

bounds the number of fences inserted for (I2) at the beginning of

each block. Combining the two quantities above, we get:

E − F ≥ (β − 1)(κ0 −m+ 1)−B(Lsucc(m−1))

+ (β − 2)

m−1∑

i=1

B(Li)

> (β − 1)(κ0 −m+ 1)− κ0γ
m

by (I5)

+
(β − 2)β

β − 1
κ0(γ

m−1 − 1) by Ineq. (5)

= Ω(βκ0γ
m−1 − κ0γ

m)

= Ω((β − γ)κ0γ
m−1).
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Algorithm 1: Insert and delete algorithms for FD+tree.

Insert(I, k, v) begin1

// I: index; k: key to insert; v: payload for k;
L0.addInsertEntry(k, v); N∆ ← N∆ + 1; // add (k, v) pair to the2

top-level of index

if L0.size() > βκ0 then3

if Û(h− 1) > κh−1 then4

m← h;5

else6

m← argmini(Û(i) ≤ κi);7

merge(I,m); // overflow-triggered merge8

end9

Delete(I, k, v) begin10

// I: index; k: key to delete; v: payload for k;

if L0.getInsertEntry(k, v) 6= φ then11

L0.deleteInsertEntry(k, v);12

N∆ ← N∆ − 1 ;13

else14

L0.addDeleteEntry(k, v);15

N∇ ← N∇ + 1 ;16

if L0.size() > βκ0 then17

if Û(h− 1) > κh−1 then18

m← h;19

else20

m← argmini(Û(i) ≤ κi);21

merge(I,m); // overflow-triggered merge22

if
N∇
N∆

> 1
3 then23

merge(I, h− 1); // underflow-triggered merge24

end25

Merge(I,m) begin26

// I: index to reorganize;m: no. of participating levels

foreach k ∈ (I.min,I.max) do27

∀i ∈ [0,m], Si ← Li.getMatchingDataEntries(k); // pull data28

entries with key k from all levels of index

S ← coalesce(∪i∈[0,m]Si); // remove canceling insertions and29

deletions

C =

(
∪i∈[0,m]|Si|

)
−|S|

2 ;30

N∆ ← N∆ − C;N∇ ← N∇ − C; // updateN∆ andN∇31

R ← S ; // store inR, entries to append to Lnew
m32

if Lm.getMatchingFence(k) 6= φ then // if a fence with key k exists33

plast ← Lm.getMatchingFence(k); R ← R ∪ (k, plast) ; // update34

plast and R

foreach i ∈ [m, 0] do35

if Lnew
i .canAccommodate(R) then36

Lnew
i .append(R); break; // appendR to Li and stop37

else38

F = Lnew
i .newNode(); Lnew

i .append(k, plast); // attach a new39

node to Lnew
i ; set its first entry to the fence (k, plast)

Lnew
i .append(R);R ← (k, F ); // append R; assign F to R40

L0 ← L0 − S0; // delete retrieved record entries from L041

foreach i from 1, . . . ,m do42

if Si 6= φ ∧ keys in Li.headNode are smaller than k then43

H ← Li.headNode; Li.headNode← H.next; delete H;44

// move to next node; and delete current headNode

foreach i ∈ [0,m] do45

delete Li.headNode; // delete last remaining node in Li46

foreach i ∈ [0,m] do47

oi = argminj

(
B(Lnew

i ) ≤ κj ∧B(Lnew
succ(i)) ≤ κj+1

)
;48

z ← arg maxi(oi = 0);49

if z > 0 then50

L0.deleteAllFenceEntries(); F ← Lz.getAllFenceEntries();51

L0.addFenceEntries(F ) ; // replace fences in L0 with those in Lz

∀i ∈ [1, z], Lnew
i .dropLevel() ; // delete levels L1, . . . , Lz52

Lnew
0 .assignLabel(L0);53

foreach i ∈ (z,m) do54

Lnew
i .assignLabel(Loi

); // relabel level Lnew
i as Loi

55

end56

Right after M′, none of L0, . . . , Lm−1 contains any data entries.

Therefore, all of the E − F data entries above must have been the

Algorithm 2: Lookup algorithm for FD+tree

Lookup(I, k) begin1

f ← φ;2

foreach i = 0, . . . ,m do3

RI ← Li.getMatchingInsertEntry(f, k);4

if RI 6= φ then5

return RI ;6

RD ← Li.getMatchingDeleteEntry(f, k);7

if RD 6= φ then8

break;9

f ← Li.getNextFenceEntry(f, k); // from Li’s node pointed by f , get10

fence f̄ s.t. minf̄.key{f̄ .key ≤ k}

return φ;11

end12

results of insertion/deletion requests since M′.

Lemma 5. Consider a phase that begins right after a full merge

and ends right after the next full merge. LetN denote the true num-

ber of elements indexed at the beginning of the phase. During this

phase, the worst-case I/O cost of a lookup is O(logγ
N

κ0β
), and the

amortized I/O cost of an insertion or deletion isO( γ

β−γ
logγ

N
κ0β

).

Proof. Let h denote the height of the tree at the beginning of the

phase. At this point (right after a full merge), allN elements are in

the lowest level, so h = logγ
N

κ0β
by Lemma 1. Note that the tree

remains at this height until the full merge that ends the phase.

A lookup visits one block per materialized level, so the bound on

its cost immediately follows. We now turn to insertions and dele-

tions. Let R denote the total number of insertion/deletion requests

in the phase. All I/O’s of insertions and deletions are incurred by

merges. These merges include Li-merges where 1 ≤ i ≤ h − 2
(all of which are overflow-triggered), and one Lh−1- or Lh-merge,

which ends the phase.

For each i ∈ [1, h − 2], consider the sequence Mi of all Li-

merges during the phase. Let Ci denote the total I/O cost incurred

by merges inMi. For each mergem ∈ Sm, letC(m) denote its I/O
cost and Ri(m) denote the number of insertion/deletion requests

since the last Li′ -merge since m with i′ ≥ i. We have:

Ci

R
=

1

R

∑

m∈Mi

C(m) <

∑
m∈Mi

C(m)
∑

m∈Mi
Ri(m)

.

By Lemmas 2, 3, and 4, for all m ∈Mi,

C(m)

Ri(m)
= O

(
κ0γ

i

(β − γ)κ0γi−1

)
= O

(
γ

β − γ

)
.

Therefore, Ci/R = O( γ

β−γ
).

Let M denote the full merge that ends the phase, and let Ch−1

denote its cost. There are several cases and we show that for each

case, Ch−1/R = O( γ

β−γ
):

• M is an overflow-triggered Lh−1-merge. In this case, we have

Ch−1 = O(κ0γ
h−1) by Lemmas 2 and 3 and R = Ω((β −

γ)κ0γ
h−2) by Lemma 4, so Ch−1/R = O( γ

β−γ
).

• M is an overflow-triggered Lh-merge, which grows the tree by

one level. In this case, M reads the existing L0, . . . , Lh−1 and

adds a new Lh. By Lemma 2, M reads O(κ0γ
h−1) blocks.

Furthermore,M writes no more blocks in Lh than it reads from

L0, . . . , Lh−1, so the total number of blocks written by M, by

Lemma 3, is O(h + β

β+1
κ0γ

h−1) = O(κ0γ
h−1). Therefore,

Ch−1 = O(κ0γ
h−1).

To arrive at Ch−1/R = O( γ

β−γ
), we can show that R =

Ω((β − γ)κ0γ
h−2) using the same argument as in the proof

of Lemma 4, by noting that Û(h − 2) > κh−2 before M
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and therefore the number of data entries at or above Lh−1 is

Ω((β − γ)κ0γ
h−2).

• M is underflow-triggered. In this case, we know N∇/N∆ >
1/3 right before M. Note that all N elements indexed at the

beginning of the phase are insert entries in the lowest level, and

have remained undisturbed until M. Therefore, R ≥ N∇ >
1
3
N∆ ≥

1
3
N .

The cost of reading L0, . . . , Lh−2 is O(κ0γ
h−2) by Lemma 2,

and the cost of reading Lh−1 is ⌈N/β⌉ > κ0γ
h−2 by (I4).

Therefore, Ch−1 = O(N/β). Since we have shown R ≥ 1
3
N

earlier, Ch−1/R = O(1/β), and 1/β < γ

β−γ
.

Overall, the amortized I/O cost of an insertion or deletion over

the phase is:

1

R

h−1∑

i=1

Ci = O

(
hγ

β − γ

)
= O

(
γ

β − γ
logγ

N

κ0β

)
.

Proof of Theorem 1. To show the space bound, consider the bot-

tom level Lh−1. By (I4), B(Lh−1) > κ0γ
h−2; by Lemma 2, the

total number of blocks in all levels except Lh−1 is O(κ0γ
h−2).

Therefore, the total number of blocks in the tree is O(B(Lh−1)).
Note that Lh−1 contains only insert entries; suppose there are n of

them. Clearly, O(B(Lh−1)) = O(n/β). By (I6), N∇ ≤
1
3
N∆,

so N = N∆ − N∇ ≥
2
3
N∆. Hence, n ≤ N∆ ≤

3
2
N , and

O(n/β) = O(N/β).
To prove the time bounds, divide the workload into phases sep-

arated by full merges, and consider each phase. Let N0 denote the

true number of elements indexed at the beginning of this phase. By

Lemma 5, the worst-case I/O cost of a lookup is O(logγ
N0
κ0β

), and

the amortized I/O cost of an insertion or deletion isO( γ

β−γ
logγ

N0
κ0β

)
during this phase. To complete the proof, it suffices to show that

N0 = O(N) throughout the phase. By (I6),N∇/N∆ ≤ 1/3, so

N = N∆ −N∇ ≥ 2N∆/3 ≥ 2N0/3.

The last step above follows from the observation that all N0 ele-

ments are insert entries in the lowest level, and they remain undis-

turbed until the end of the phase.

Remark A.16 (Correctness of FD+FC; Section 4.5) A complete

and rigorous proof for the correctness of FD+FC requires enumer-

ating many cases and building blocks. Instead of being exhaustive,

we present and prove in the following a series of lemmas leading to

one of the most important building blocks, to give a flavor for the

complete proof.

In the following, letH(·) denote the head block of a level.

Lemma 6. During a merge, all head blocks in the old upper levels

are connected by a path.

Proof. We prove by contradiction. Suppose H(Lold
i ) does not have

a fence toH(Lold
i+1). Then there are two cases:

• H(Lold
i )’s first fence must be pointing to the right sibling of

H(Lold
i+1). Also, H(Lold

i )’s first fence has already been pro-

cessed by merge; in fact, that happened when H(Lold
i )’s left

sibling was deleted. But if its first fence has already been pro-

cessed, so should H(Lold
i+1)’s because they share the same key.

Hence, this case cannot happen.

• H(Lold
i )’s first fence points to an already deleted block of Lold

i+1.

Hence,H(Lold
i+1)’s fence must be in the right sibling ofH(Lold

i ),
or further down the list. If that is the case, H(Lold

i ) should

have already been deleted becauseH(Lold
i+1)’s first fence has al-

ready been processed by the merge; in fact, that happened when

H(Lold
i+1)’s left sibling was deleted. Hence, this case cannot

happen either.

Lemma 7. If m-delete is about to be invoked to delete a head block

H(Lold
i ), the head block’s content has only one path from Lold

0 .

Proof. Let the head block’s contents span the range [a, b), where a
isH(Lold

i )’s first fence’s key, and b is its right sibling’s first fence’s
key. We prove by contradiction. Suppose there are multiple paths.

Multiple paths are possible only if some level Lold
j above Lold

i has

a set of consecutive blocks including its head block, whose ranges

are subsets of [a, b). Essentially, lookups aimed at each of these

blocks would also have to reach H(Lold
i ), and the paths they take

are the multiple paths we are referring to. But if there is such a

case, then H(Lold
i )’s right sibling’s first fence will be larger than

every one of these blocks. Therefore, all of these blocks should

have been long deleted. This is a contradiction.

Lemma 8. If a lookup entered the old tree to searchH(Lold
i ), while

immediately afterward an m-delete step entered to delete the same

head block, then our locking scheme ensures the head block is not

deleted at least until the lookup has completed processing on it.

Proof. From Lemma 7, the head block has only one path fromLold
0 .

From Lemma 6, this path must be the path connecting all head

blocks. Therefore, both lookup and m-delete have to follow this

path to reach H(Lold
i ). Lookup does not unlock a parent block,

unless it receives a lock on the child. Thus, m-delete cannot jump

through the lookup and reachH(Lold
i ) earlier. Therefore, our lock-

ing scheme ensures that H(Lold
i ) will not be deleted at least until

the lookup completes processing on it.

Remark A.17 (Addressing FD+DS’s worst-case modification re-

sponse time; Section 3) In Section 3, we have discussed why

FD+DS suffers from poor worst-case modification response times,

which is confirmed by our experiments in Section 5. Recall that

FD+DS does not free the memory occupied byLold
0 during a merge;

thus, as soon as memory for the top level is full, new modifications

will have to wait for the entire merge to complete, resulting in high

response times. Naturally, the question arises whether we can patch

FD+DS in some way to avoid this issue. Here, we discuss a few

possibilities (assume the reader has already read Section 4).

Removing data entries from Lold
0 We can allow the merge to

remove data entries from Lold
0 , just as in FD+FC. However, the

conceptual simplicity of FD+DS would be lost. Lookups access-

ing keys smaller than the key of the wavefront will have to search

the new levels, because a matching entry in Lold
0 may have been

removed and placed in Lnew
m . Since the new levels are also being

modified by the ongoing merge, a concurrency control protocol is

needed for coordinating such lookups with the merge. Hence, this

approach will be as complex as FD+FC.

More specifically, the above approach and FD+FC use five main

components of concurrency control: (P1) for Lnew
0 ; (P2) for Lold

0 ;

(P3) for the new disk-resident levels; (P4) for the old disk-resident

levels; and (P5) to track lookups in old levels (so such lookups

can finish before the old levels are reclaimed). Note that the ap-

proach we discussed in the previous paragraph needs (P1), (P2),

(P3) and (P5), and is significantly more complex than the basic

FD+DS, which needs (P1) and (P5). FD+FC needs (P1)–(P4); it

does not need (P5) since the reclamation of old levels is already

done by the merge. (P4)’s implementation is similar to (P3).

Cost of (P4) as implemented in FD+FC is not significant because

the merge accesses the old levels at the time of a node deletion (not

for every entry deletion), and only the first node of each level is
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accessed. Those nodes lying in the path to the about-to-be-deleted

nodes are only locked and unlocked without incurring any I/O or

processing cost. An ongoing merge will not interfere with most

lookups because a lookup may be at any node of a level, while the

merge examines only the first node. In sum, letting FD+DS re-

move data entries from Lold
0 will not be significantly different from

FD+FC complexity- or performance-wise, but still has the disad-

vantage of doubling disk space.

Triggering merge proactively We can trigger a merge proac-

tively, once a predetermined fraction of the memory allocated for

the top level fills up. While Lold
0 still cannot be reclaimed until the

merge completes, the fraction of memory that remains can accom-

modate additional incoming modifications before stalling.

There are two main problems with this approach. First, the ap-

proach only delays the inevitable—the problem remains that mem-

ory associated with Lold
0 is stuck until the merge completes. In ad-

ditional experiments we ran on X25E, we triggered merges when

there were still 25% memory remaining, and observed the worst-

case insertionRp for this approach to be between 20 to 30 seconds.
When we triggered merges when memory was only 50% full, the

worst-case insertion Rp was still between 15 to 30 seconds. From

Section 5.1, we know that without proactive merging, FD+DS’s

worst insertion Rp is around 33 to 38 seconds. Thus, proactive

merging certainly helps. However, it remains much worse than

FD+FC, whose worst-case insertion Rp is under a second.

Second, trigger merges more proactively means more merges

overall, and hence more writes to the SSD. For an 80%-update

workload, FD+DS with merges triggered when memory was 75%

full generated 12% more page writes to the disk (after counting

cache effects). Extra writes to the SSD jumped to 33%when merges

are triggered when memory was 50% full.

Writing Lold
0 temporarily to disk Yet another approach is to

write Lold
0 to disk at the beginning of a merge, so the entire mem-

ory can be used as Lnew
0 to accommodate incoming modifications.

Lookups in the old levels will now need to start with a disk-resident

Lold
0 ; otherwise, no other changes to FD+DS are needed.

The disk-resident Lold
0 would need to be written in a way to al-

low efficient search. We can use a tightly packed B+tree, where

the smallest entry of every leaf node needs to be a fence (otherwise

a lookup may need to read multiple B+tree leaves to find a fence

pointing to Lold
1 ). This B+tree results in at least one extra I/O per

lookup (and more if there are more levels). This overhead is signifi-

cant considering that FD+trees typically do not have many levels (4
in our experiments with reasonably large datasets). One could ame-

liorate this problem by caching the B+tree pages of Lold
0 , but this

fix would amount to using more memory than originally allotted,

which would equally benefit other approaches such as FD+FC.

This approach also incurs more writes. Writing Lold
0 to disk at

the beginning of every merge means that every data record will be

written one extra time (when it exits the top level).

Range-partitioning the index into smaller ones This approach

partitions the key domain into continuous ranges, and uses one

subindex for each partition. The top levels of these subindexes to-

gether share the entire memory allotted. Each subindex carries out

its merge exactly as in FD+DS, independently of others. While this

approach does not change the fact that each ongoing merge pins

down its old top level in memory, the upside is that it only takes the

portion of the main memory occupied by the subindex being reor-

ganized. Similarly, this approach in the worst case still doubles the

space requirement like FD+DS, but if few subindexes have ongoing

merges simultaneously the space overhead will be lower.

For this approach to work effectively, range partitioning and mem-

ory allocation across subindexes must be done intelligently and

adaptively, which adds considerable complexity. Otherwise, one

large subindex can end up containing most records and taking most

of the memory, and its merge will have a similar issue as the basic

FD+DS. Dynamic adaption is tricky to implement because we need

to avoid oscillating back and forth between states and constantly

incurring the adaption overhead, and because adaption complicates

concurrency control.

Finally, for workloads such as insertions with uniformly ran-

dom keys, it is possible that merges will be triggered for many

subindexes at roughly the same time. In that case, we need to ei-

ther pin down many top levels simultaneously, which would lead

to the same problem as basic FD+DS, or cap the number of con-

current merges, which would halt modifications in subindexes with

pending merges.

Discussion In summary, the various approaches discussed above

either introduce other performance issues or complicate FD+DS to

the point where it becomes no simpler than FD+FC. Some ideas—

such as proactive merge, allowing more memory sharing (among

top levels and even page cache), and adaptive partitioning—can be

applied orthogonally to FD+FC as well, and it would be interesting

to investigate their effectiveness further. However, the fundamen-

tal difference between FD+DS and FD+FC and its implication on

performance still remain.
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