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ABSTRACT

Formulating and processing phrases and other term dependencies
to improve query effectiveness is an important problem in informa-
tion retrieval. However, accessing these types of statistics using
standard inverted indexes requires unreasonable processing time
or incurs a substantial space overhead. Establishing a balance be-
tween these competing space and time trade-offs can dramatically
improve system performance.

In this paper, we present and analyze a new index structure de-
signed to improve query efficiency in term dependency retrieval
models, with bounded space requirements. By adapting a class
of (ǫ, δ)-approximation algorithms originally proposed for sketch
summarization in networking applications, we show how to ac-
curately estimate various statistics important in term dependency
models with low, probabilistically bounded error rates. The space
requirements of the sketch index structure is largely independent of
this size and the number of phrase term dependencies.

Empirically, we show that the sketch index can reduce the space
requirements of the vocabulary component of an index of all n-
grams consisting of between 1 and 5 words extracted from the
Clueweb-Part-B collection to less than 0.2% of the requirements of
an equivalent full index. We show that n-gram queries of 5 words
can be processed more efficiently than in current alternatives, such
as next-word indexes. We show retrieval using the sketch index to
be up to 400 times faster than with positional indexes, and 15 times
faster than next-word indexes.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems and soft-
ware—performance evaluation.; H.3.1 [Content Analysis and In-

dexing]: Indexing methods; H.3.3 [Information Search and Re-

trieval]: Information filtering
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1. INTRODUCTION
Term dependency models are a compelling new approach to im-

proving the effectiveness in ranked document retrieval. A term de-
pendency is any relationship between two or more terms. Examples
of term dependencies include noun phrases, verb phrases, ordered
windows, unordered windows, spans of text, or any sequence of n
words. Many recently developed retrieval models depend on statis-
tics extracted for query term dependencies [1, 7, 9, 10, 16]. While
these methods have been shown to significantly improve the effec-

tiveness of the retrieval model, prior work has not addressed how
to efficiently generate the necessary statistics at query time.

We investigate the problem of providing access to document level
statistics for all n-words in the collection in a space and time ef-
ficient manner. We define the term n-word as any sequence of n
sequential words. In order to avoid confusion with character level
n-grams, or linguistic definitions of various types of phrases, we
will use the term n-word throughout this paper. This type of term
dependency is often used as a surrogate for more complex, linguis-
tic term dependencies. Improving the efficiency of the calculation
of this type of retrieval model feature can improve the efficiency of
each of the above retrieval models.

Previous approaches have used a variety of different index struc-
tures. Positional indexes [15] support the calculation of n-word
statistics by processing n term posting lists simultaneously, and
comparing position offset information for each term in each doc-
ument. Next-word indexing [14] was proposed as an attractive
trade-off between index space and retrieval efficiency for process-
ing phrase queries. A next-word index stores position data for
pairs of terms. Similar to the positional index, statistics for longer
phrases are computed at query time by comparing positional data.

Direct indexes of all n-words dramatically reduces the cost of
processing positional information at query time, however these in-
dexes have unacceptably large space requirements. Filtered in-
dexes [8] reduces this problem by discarding a large fraction of
the vocabulary. Alternatively, query-log analysis could be used to
guide the filtering of direct indexes, similar to a cache of intersected
posting lists [12].

In this paper, we present an indexing structure using data stream
sketching techniques to estimate n-word statistics. Our sketch in-
dex is derived from a COUNTMIN sketch [5], and designed to
minimize space usage while still producing accurate statistical es-
timates. This strategy also ensures that the space required by the
index is independent of the number of indexed n-word terms, while
still supporting efficient query processing.

Conceptually, our summary sketch is an (ǫ, δ)-approximation of
a full inverted index structure. The index representation is capable
of estimating statistics for specific n-word with bounded perfor-
mance. We show that the relative error of the term dependency



statistics being estimated is within the theoretic bounds of similar
data streaming applications, and describe how the bounds minimize
the space requirement in practice. We show that the retrieval effi-
ciency of the sketch index is comparable to full indexes, and many
times faster than positional and next-word indexes.

This paper is structured as follows: Section 2 presents the nec-
essary background on data stream sketching techniques; Section 3
presents the algorithmic framework for our term dependency statis-
tics estimator, and outlines the probabilistic error bounds ensured
by the representation; Section 4 evaluates the performance of our
new estimator empirically. We conclude in Section 5.

2. FREQUENCY-BASED SKETCHING
Algorithms for approximating frequency moments have advanced

dramatically in the last twenty years [3, 4]. This line of research is
based on the streaming model of computation, and has widespread
applications in networking, databases, and data mining [11]. Much
of the work in the networking community using these tools has
focused on identifying “heavy-hitters”, or top-k items (see [2] or
[3]). If only the k most frequent items must be accurately esti-
mated, counter-based approaches work well in practice. However,
counter-based methods are generally not sufficient if estimates for
all the items in a stream are desirable, since the number of counters
must be significantly fewer than the number of unique items in the
stream. For frequency estimation of any item in a stream, various
“sketching” methods are an appropriate alternative.

We focus our discussion on the COUNTMIN sketch, recently
proposed by Cormode and Muthukrishnan [5]. The key idea of a
COUNTMIN sketch is to create an array of r × w counters, with
independent hash functions for each row r. The hash functions
map each update to set of counters, one in each row r. In streams
that do not support deletions, this ensures that the frequency of any
item f(i) in the sketch is an overestimate. The collisions for i on
any row is

∑
1≤i′≤σ,i′ �=i

f(i′)/w. COUNTMIN can be used to

estimate f̂i with error at most ǫn with probability at least 1 − δ
using O( 1

ǫ
log 1

δ
). The time per update is O(r) where r = log 1

δ

and w = O( 1
ǫ
).
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Figure 1: Example COUNTMIN sketch containing frequency data
for 3 items: f(i1) = 1, f(i2) = 5 and f(i3) = 2. Where i2 is
hashed to each of the highlighted cells. The frequency of i2 can be
estimated as the minimum value of the highlighted cells f(i2) = 5.

An example COUNTMIN sketch is shown in Figure 1. Updates
are performed as follows: when an item, i, is added to the sketch,
one counter is incremented in each row of the COUNTMIN sketch.
The correct cell is determined by the corresponding hash function.
Formally:

∀j<r : count[j, hj(i)] = count[j, hj(i)] + 1

If the stream contains only positive frequencies, the frequency i can
be estimated by returning the minimum count in the set.

âi = min
j

count[j, hj(xi)]

For streams allowing positive or negative frequencies, the frequency

of i is estimated by returning the median of the r counts.

âi = median
j

count[j, hj(xi)

3. SKETCHING STATISTICS FOR

N-WORDS
Let C be a text collection partitioned into d documents {D1,

D2, . . . ,Dd} containing at most σn terms. Here, a term t can be
n-words, a sequence of n adjacent “words”. So, σ1 represents the
total number of 1-words in a collection. An inverted index, I counts
the number of times each term t appears in each document Dj , for
1 ≤ t ≤ σn and 1 ≤ j ≤ d. Conceptually, this can be represented
as a σn × d matrix, M, as every term t appears in all d documents
in the worst case.

The following statistical notation will apply for our discussion:

• fd,t, the frequency of term t in document d;

• fq,t, the frequency of term t in the query;

• ft, the number of documents containing at least one occur-
rence of term t;

• Ft, the number of occurrences of term t in the collection;

• d, the number of documents in the collection;

• σn, the number of indexed terms in the collection; and

• |C| =
∑σ1

i=0
Fti .

In practice, M is sparse, and I is often represented as a com-
pressed adjacency list. An inverted index is a mapping of keys to
a list of document counters. For each document identifier d, fd,t
is maintained. Traditionally, each term in the vocabulary is stored
explicitly in a lookup table.

Now, consider the case of constructing an inverted index of n-
words. The collection C can contain at most (|C| − n distinct n-
words. This number is often less than the σn

1 possibilities, but still
much larger than σ1, thus increasing the number of rows in M.

In this paper, we investigate how to apply the ideas presented by
Cormode and Muthukrishnan [5] to fix the number of rows in M
and still provide accurate statistical information. Interestingly, d is
already static for a given collection, and d ≪ |C|. But, the num-
ber of σn rows increases with n, and we would like to minimize
this overhead. Note that the total number of rows required in the
sketch is proportional to r · ft. So, if we reduce M to a linear pro-
jection of ft, we can use COUNTMIN to accurately approximate

f̂t. Recall that the number collisions for t on any row in the sketch
is
∑

1≤t′≤σ,t′ �=t
f ′
t/w. Using a Markov inequality argument, Cor-

mode and Muthukrishnan [5] show that by setting w = 2/ǫ and

r = log 1/δ in the sketch, the estimate f̂t is at most ǫF1 with
probability at least 1 − δ, where F1 is the first frequency moment∑

1≤t′≤σn
f ′
t , the sum of all of the frequencies.

In a sketch representation of an inverted index, each distinct term
is replaced with a hash value where each hash value may represent
more that one term. This reduction means that the vocabulary of
n-words no longer needs to be stored with the index. If a sim-
ple hashing representation were used, then there is no mechanism
available to resolve collisions unless each term string is accessible
to the table. However, using the collision mitigation strategy of
a sketch, such as the method described for COUNTMIN, we are
able to reduce the probability that hashing collisions will result in
incorrect results.

Our new indexing structure is composed of an r × w matrix of
pointers to r×w postings lists. Conceptually, this matrix is equiva-

lent to a COUNTMIN sketch designed to estimate f̂t with one twist:

we do not simply use a single counter to aggregate f̂t, but rather



(0, h0(a b c)) (D1, 1) (D2, 1) (D3, 5) (D5, 8)
(1, h1(a b c)) (D1, 2) (D3, 3) (D5, 2) (D6, 5)

a b c (D1, 1) (D3, 3) (D5, 2) –

Figure 2: Example extraction of the statistics for a single term de-
pendency in our sketch representation. The first two sketch posting
lists are processed to produce the intersected posting list for the
term a b c. Colors are used for each output document posting.

Robust-04 ClueWeb-B

Disk Space 1.9 GB 1460 GB

Collection Length 252 · 106 39.8 · 109

Document Count 0.5 · 106 50 · 106

Term Vocab. 0.775 · 106 0.0984 · 109

2-word Vocab. 24.5 · 106 1.37 · 109

3-word Vocab. 95.1 · 106 5.96 · 109

4-word Vocab. 166 · 106 11.6 · 109

5-word Vocab. 204 · 106 15.8 · 109

Table 1: Global statistics for TREC Collections Robust-04 and
ClueWeb-B.

allow multiple document counters attached in list-wise fashion to
each cell in the COUNTMIN sketch. These document counters are
then used to aggregate f̂d,t.

This approach allows us to fix the size of the lookup table inde-
pendent of the vocabulary of n-words being indexed. We do not at-

tempt to fix the number of f̂d,t counters. As in a standard inverted
index, every term could appear in every document, producing a
maximum of d · |σn| counters in the worst case. But, in practice,
the distribution is skewed, and many terms have very few non-zero

f̂d,t counters. Note that since the width of |σn| is fixed in our ap-
proach, the number of counters is largely independent of the order
of n, but rather some percentage of the counters are redistributed in
the redundant postings lists.

We now discuss how to estimate point queries using our ap-
proach. By using the biased estimation of a COUNTMIN sketch of

only positive counts, our estimates of f̂t, and subsequently f̂d,t, are
guaranteed to be an overestimate of the true term counts. Further-
more, the same formal arguments using the Markov inequality and

Chernoff bounds can be made for bounding f̂t, and subsequently

f̂d,t, we could reasonably expect for each cell. So, to estimate f̂t
using COUNTMIN, we would take minj count[j, hj(xi)]. But,
each counter count[ ] is actually a pointer to a postings list, con-

taining approximately f̂t counters. When the posting list for any t
is requested, the intersection of the r posting lists is performed us-
ing the minimum frequency from the w counters representing each
sketched posting list. Figure 2 shows an example of the intersection
process, which represents the minj for a given t.

4. EXPERIMENTS

4.1 Experimental Setup
We compare the performance of our new term dependency statis-

tical estimator over two TREC collections: Robust-04 and Clueweb-
B. Statistical properties for each collection is shown in Table 1. As
a pre-processing step, all terms in each collection were mapped to
32-bit integers, where an integer corresponds to a unique word in
the collection. This is a standard technique to improve index and

vocabulary compression, and ensures uniform space requirements
across all of the baselines used in this study.

In each of our experiments, we measure index properties and
retrieval performance on n-word data. An n-word is defined as
any sequence of n sequential words. In the literature, each distinct
sequence is sometimes referred to as a phrase, a shingle, or an n-
gram.

We compare the performance of our statistical n-word estima-
tor with five other index structures capable of generating the true
statistics of n-word term dependencies. We compare our approach
with positional indexes [15], full indexes of n-words, filtered in-
dexes [8], query-log-based indexes [12] and next-word indexes [14].
The query-log-based indexes are created by ordering the query log
by timestamps, then indexing all n-words extracted from the first
90% of queries. The remaining 10% are used to test the retrieval
efficiency.

To ensure a fair comparison, all index structures are implemented
as disk based b-tree indexes that implement a variety of modern
index compression techniques, including d-gap and vbyte integer
compression for posting list data, and prefix-based vocabulary com-
pression for b-tree blocks. We use 32 kB b-tree blocks. Witten
et al. [15] provides a good description of standard compression
techniques amenable to text indexing and retrieval. Hash functions
used in the sketch indexes are pair-wise universal hash functions.

Our experiments focus on three key aspects of our new statistical
term dependency estimator: relative statistical error, space usage,
and retrieval efficiency. The sketch index can only estimate var-
ious statistical values, and so we assess the relationship between
ǫ and δ parameter selection and the resulting relative error. We
measure statistical error in the collection for a random sample of
term dependencies. Space requirements of our approach are com-
pared with each comparable index structure. We compare retrieval
efficiency of our estimator with the same set of comparable index
structures using n-words extracted from the last 10% of the AOL
query log.

Due to space constraits, we omit the details of experiments test-
ing the effect of using a sketch index on information retrieval ef-
fectiveness. These experiments show that using sketch index with
conservative parameters resulted in no change in the retrieval effec-
tiveness.

Each index structure we investigate in this section is implemented
as an extension to the Galago package, provided by the Lemur
Toolkit [6]. All timing experiments were run on a machine with 8-
core Intel Xeon processors, with 16 GB of RAM, running the Cen-
tos distribution of Linux, Using a distributed, network-attached, 4-
node Luster file system to store index data.

4.2 Estimation of Collection Frequency
As discussed previously, sketch indexes provide an attractive

trade-off between space usage and accuracy. In this section, we
investigate the relationship between the (ǫ, δ) parameters and the
quality of approximation by comparing the relative error of our
approach to the true collection statistics. We show results com-
puted on indexes created over n-words, extracted from the TREC
Robust-04 collection. Average Relative Error (ARE) is defined as
the average of the absolute difference between the true value and

the estimated value. In our case: ARE = 1

|C|

∑
t∈C

|ft−f̂t|
ft

.

Figure 3 shows ARE values grouped by ft for 3-words using our
approach with a variety of parameters. Other sized n-words were
tested, and produce similar results. Data shown in this graph is ag-
gregated from 10 instances of sketch indexes with each parameter
setting.

The graph shows that conservative settings for (ǫ, δ) can ensure
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Figure 3: Average relative error of 3-word frequency statistics ex-
tracted from 10 instances of sketch indexes over Robust-04 data,
using each set of parameters. Sketch index parameters shown are
δ ∈ {0.15, 0.05, 0.02}, and ǫ ∈ {4 · 10−5, 2 · 10−5, 4 · 10−6} ≈
{1,000/|C|, 5,000/|C|, 10,000/|C|}.
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Figure 4: Space requirements for sketch and full indexes across a
range of n-word sizes over Robust-04 data. The full index shown
on this graph is an inverted index storing frequency data for all n-
words. The filtered index stores frequency data for n-words that
occur at least 32 times. The parameters used for the sketch indexes
are ǫ = 4 · 10−5 ≈ 10,000/|C| and δ ∈ {0.05, 0.15}.

a very low error rate in the estimation of collection statistics. Ad-
ditionally, we can see that using overly restrictive values of ǫ and
δ can degrade our estimates, particularly for infrequent items. This
insight is not surprising, since summary sketching is primarily used
in networking scenarios that require only the top-k items in a set to
be accurately estimated.

Our experiments suggest that ǫ ≤ 4·10−6 and δ ≤ 0.05 produce
a very low relative error for all n-words tested in the Robust-04
collection. All other experiments are based on these parameters.

4.3 Space Requirements
We now compare space requirements for our estimator with the

space requirements of the baseline index structures. Each index
structure presented is capable of producing statistics for n-words
present in the collection. Figure 4 shows space requirements for
the sketch index, as compared to the baselines using the Robust04
Collection. As expected, the sketch estimator requires only a frac-
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Figure 5: Query processing times for indexes over the Clueweb-
B collection. Each data point is the average of 5 runs of 10,000
phrase queries.
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Figure 6: Query processing time versus space usage. Query pro-
cessing time as a function of index space requirements. Each data
point is the average of 5 runs of 10,000 of n-word queries. The size
of the query for each data point is indicated on the graph. Colored
lines are used to link data points for each index structure.

tion of the space of a full index. For n = 5, a sketch index requires
less than 20% of the space required by a full five-word index. We
can also see from the graph that sketching representations for any
n require only slightly more space than other baseline indexes: po-
sitional, next-word, and filtered index structures. Query log cache
structures are omitted from this graph as we do not have an appro-
priate query log.

An important prediction for the sketch index is supported by this
data; the space requirement for sketch indexes do not increase sig-
nificantly as n increases. This is because the number of rows in
our estimator is not bound by n or by the size of the vocabulary,
but rather by ǫ. This means that a sketch representation of much
larger term dependencies are feasible on commodity computing
hardware.

4.4 Retrieval Efficiency
We now evaluate the retrieval efficiency of our statistical estima-

tor relative to the other index structures for n-word queries. We



use the ClueWeb-B collection and queries sampled from the AOL
query log. By using a web collection to target the queries, no query
translation [13] methods are required.

Recall that we use the first 90% of the time-ordered query log to
create the query log cache index structure. Test queries are sampled
from the remaining 10% of the log. From this subset of the query
log, we uniformly at random sample 10, 000 n-word queries for
each size 1 ≤ n ≤ 5.

The query processing speed for each index structure over a fixed
query length is measured as the average of 5 timed runs of the cor-
responding sample of queries. In each run the query order is ran-
domized. The retrieval system is initialized for each experiment by
running a randomly selected sub-sample of 2,000 queries. Initial-
ization ensures that a portion of the index data is held in memory-
based file buffers, as it would be in a live retrieval system. Figure 5
shows query processing time as the length of the query increases
for each index structure. Note that times shown in this graph are
displayed in log scale. All data points in the graph are significantly
different from each of the other index structures, (p < 0.05 using
the unpaired t-test).

We observe that query processing time of the sketch index data
structure is significantly faster that each of the positional, filtered,
query-log and next-word indexes. Unlike position based indexes,
we can see that the sketch index is scalable as n increases, the
time to process n-word queries does not increase with n. This data
shows that sketch indexes are over 300 times faster than a positional
index, and 15 times faster than next-word indexes, for processing
5-word indexes.

Figure 6 shows the trade-off between query processing speed and
space usage. Data shown represents the total space requirements to
process 1-to-5-word queries for each index structure, and the av-
erage time to process all of the sampled queries used in the timed
experiments above. Query processing times are shown in log scale.
Data structures that provide the best trade-off between space re-
quirement and retrieval efficiency will approach the origin. This
graph clearly demonstrates that the our n-word statistical estimator
offers an attractive trade-off between space usage and query effi-
ciency when compared with all other baselines.

5. CONCLUSION
In this paper, we have investigated the problem of accurately es-

timating n-word statistics in large data collections. Existing so-
lutions for this problem require large space, or are inefficient for
query processing in practice. We have presented a novel approach
to estimating n-word statistics for information retrieval tasks. By
using frequency sketching techniques developed for data stream-
ing applications, we can accurately estimate collection statistics,
and provide an attractive trade-off between space and relative er-
ror. Furthermore, we show how to bound the space usage of the
data structure. Importantly, the number of distinct n-words does
not directly influence the space bounds, allowing us to accurately
estimate a wide variety statistics efficiently.

We have demonstrated in this paper that the sketch index data
structure provides a new and useful trade-off between query pro-
cessing time and space requirements for n-word queries. Impor-
tantly, we also have shown that this index structure is both scalable
in both query processing time and space requirements for the size
of the query, n.
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