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Compiler Support for Lightweight Context Switching
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We propose a new language-neutral primitive for the LLVM compiler, which provides efficient context
switching and message passing between lightweight threads of control. The primitive, called SWAPSTACK, can
be used by any language implementation based on LLVM to build higher-level language structures such
as continuations, coroutines, and lightweight threads. As part of adding the primitives to LLVM, we have
also added compiler support for passing parameters across context switches. Our modified LLVM compiler
produces highly efficient code through a combination of exposing the context switching code to existing
compiler optimizations, and adding novel compiler optimizations to further reduce the cost of context
switches. To demonstrate the generality and efficiency of our primitives, we add one-shot continuations
to C++, and provide a simple fiber library that allows millions of fibers to run on multiple cores, with a
work-stealing scheduler and fast inter-fiber sychronization. We argue that compiler-supported lightweight
context switching can be significantly faster than using a library to switch between contexts, and provide
experimental evidence to support the position.
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1. MOTIVATION

Many popular programming models provide only a single thread of control in the
program. This thread of control, which we refer to as a context, consists of the current
execution point, as well as the state of local variables, return addresses, and other
information stored on the execution stack. When parallel programs are written using
these languages, a separate such context is created for each parallel thread, which can
run independently.

One very useful feature of some programming systems is the ability to create
multiple contexts in a program, and to switch between them within a single operating
system thread. This feature can be used to implement important language abstractions
such as coroutines [Conway 1963], closures [Sussman and Steele 1975], continuations
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[Abelson et al. 1998], Stackless Python tasklets, and Python generators [Schemenauer
and Hetland 2001].

It can also be used to implement user-level threads, or fibers, which run within
a single OS thread and are normally scheduled cooperatively. User-level threads
normally explicitly yield control, rather than relying on OS calls and interrupts for
scheduling and synchronization. As a result, fibers are significantly more lightweight
than OS threads: they typically require less space, and allow much faster fiber
switching, synchronization, and scheduling, making it feasible to run thousands or
millions of fibers on just a few cores.

Implementing lightweight context switching efficiently and portably is not easy.
Therefore, there are significant advantages to providing a small set of efficient
primitives for creating and switching contexts that are generally useful. In this article
we present such primitives for LLVM, a compiler and intermediate represenation
that can be used to compile many different source languages, and can target several
machine architectures. These primitives can be used by any language implementation
based on LLVM to build higher-level language structures such as continuations and
coroutines. We make the following contributions.

—We extend LLVM with lightweight language-neutral primitives for creating and
switching contexts, and demonstrate their portability by implementing them for the
x86-64 and PowerPC architectures.

—We exploit existing and new compiler optimizations to cheapen context switching,
and to reduce the amount of state stored in suspended contexts.

—We provide a mechanism that allows parameters to be passed in registers to sus-
pended contexts as they are resumed, allowing contexts to efficiently message pass
or yield values as they switch.

—To demonstrate the effectiveness of our primitives we present an extension to C++
that adds one-shot continuations to the language, and use this to implement gener-
ators, lightweight fibers, and an efficient parallelizing fiber library that can execute
applications with millions on fibers across multiple cores.

—We show how to use our stack swapping primitives to create extremely efficient
fiber implementations of communication and synchronization mechanisms such
as mutexes, message passing channels, condition variables, and a work-stealing
scheduler.

In the next section we outline some background and describe contexts and continua-
tions. We present a form of continuation for LLVM in Section 3, which we then use
to implement generators (Section 4) and extremely lightweight independent threads
(Section 5). In Section 6, we see how the ability to easily pause and resume a thread of
control makes it possible to distribute units of work across the processors of a multicore
system. Results of our evaluation are presented in Section 7.

2. BACKGROUND

Language-level coroutines have been found useful at least as far back as Simula 67,
and a form called generators has gained popularity in Python, C#, and other languages.
These constructs ease the programming of cooperating algorithms, like iteration over
and processing of a complex data structure’s contents, or a lexer feeding tokens to a
parser.

Similarly, lightweight threads are found in Erlang [Hedqvist 1998], Haskell [Li
et al. 2007], and Go, where they are used to write more straightforward solutions to
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concurrent problems like network servers or discrete event simulations, and to take
advantage of multicore systems.

These structures require multiple contexts: separate storage for local variables, dif-
ferent program counters, and so on. A single stack is insufficient to represent these
multiple contexts. Instead, we must allocate a separate stack for each new context.
When performing a context switch, the current context is saved and a continuation is
created, which represents the paused context. The continuation may later be invoked,
resuming the paused context.

Context switching to a given continuation involves creating a new continuation
to represent the current context, and restoring the target context from the given
continuation.

Standard continuation interfaces present a problem for efficient implementations,
so we use a restricted form known as the one-shot continuation [Bruggeman et al.
1996], which requires that each paused context is only resumed once. This is a powerful
enough control structure to implement generators, coroutines, and lightweight threads,
but it can be implemented extremely efficiently.

3. EXTENDING LLVM WITH CONTEXT SWITCHING

We extended LLVM with two new primitives and related compiler support. First, we
added a new type of function call named a SWAPSTACK call, which in addition to transfer-
ring control also swaps the current stack for another. SWAPSTACK calls invoke continua-
tions rather than functions, implementing a form of context switch. During a SWAPSTACK

call, a continuation is created to represent the current pausing context, and this new
continuation is passed to the context being resumed.

Secondly, we added an intrinsic function NEWSTACK. It takes a region of memory and
a function pointer, and sets up a continuation for that function using the provided
memory as stack, and can therefore be used to spawn new contexts.

3.1. SWAPSTACK Calling Convention

We implemented SWAPSTACK as a new calling convention. When a SWAPSTACK-type call
is executed, any live registers are spilled and a continuation is created containing
the stack and frame pointers and the resume address: the point in the code where
execution will continue when the context is resumed. The new stack and frame pointers
are restored from the continuation being invoked, and execution proceeds from that
continuation’s resume address.

Implementing SWAPSTACK as a new type of function call with its own calling convention
has several advantages. First, we can use the existing LLVM mechanism for saving
registers at call sites. The calling convention for SWAPSTACK has no callee-save registers,
so all live registers are saved by the LLVM compiler. In comparison to other context
switching mechanisms which save all registers regardless of whether they are live, this
results in a significant saving of both time and space when context switching.

Secondly, we can use the existing call/return mechanisms in LLVM to easily imple-
ment context switching. SWAPSTACK is implemented as a function call which suspends
the current context and transfers control to a different one. When the original context
is next invoked, control returns to the point just after the SWAPSTACK call. Therefore, it
can be implemented in the compiler using essentially the same mechanism as function
return. To the optimizer, SWAPSTACK looks like any other function call (except that all
registers are caller-save) and LLVM’s existing optimizations work without modification.

Thirdly, implementing SWAPSTACK using the function calling mechanism allows an
arbitrary number of arguments to be passed from the invoking context to the invoked
context. These parameters are passed in registers, making communication at the time
of the context switch extremely efficient. To the invoking context, these arguments are
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parameters to the SWAPSTACK call. To the invoked context, the arguments appear to be
return values from the previous call to SWAPSTACK. Recall that a context suspends itself
and switches to another by calling SWAPSTACK, and when control eventually resumes,
the call to SWAPSTACK appears to return.

3.2. Implementing SWAPSTACK

The data structure to store a suspended context is identified by its stack pointer. On
top of this stack, a resume address is stored. Thus, in order to perform a SWAPSTACK call
the following sequence of operations must happen.

push address ( ResumePoint )
R2 <− SP
SP <− Target Stack
pop R1
jmp R1

ResumePoint :

The thread performing the context switch pushes a return address and moves the
stack pointer to a particular register (R2). It then updates the stack pointer to point at
the target context’s stack, pops a return address, and continues from there. The target
will see a “return” from its SWAPSTACK call, and a pointer to the stack of the suspended
context will be stored in R2.

The context switch operation does not need registers other than one to store the
suspended context (R2), and one scratch register (R1). Since the others are not
modified, they may be used to pass values across the context switch. So, the calling
convention states that arguments to the SWAPSTACK call are passed in registers, and
return values are returned in those same registers, so that no additional work need be
done to pass values.

There is usually zero additional cost to pass arguments across a SWAPSTACK call: since
SWAPSTACK is implemented in the compiler before register allocation it can ensure that
the result of a computation which is to be passed can simply be computed in the correct
register for it to be passed as a parameter, and often no instruction need be added to
copy the value to the right location.

The stack frame layout for a SWAPSTACK call is somewhat different to a standard call.
For a normal call on most architectures, the arguments are passed on the stack or in
registers, and the return value is returned in a register. If the return value is too large
to fit in the available register space, then it is the caller’s responsibility to allocate
sufficient extra stack space to hold the value. A pointer to this buffer (marked retarea
in Figure 1) is passed in as a hidden extra argument, which the callee uses to store the
return values before passing control back.

The registers used to pass call and return values are often different. However, for
SWAPSTACK calls the conventions for calls and returns must be symmetrical, since a
SWAPSTACK call passes control directly to a SWAPSTACK return. Hence, we design the
calling convention to specify exactly the same sequence of registers for arguments
passed and values returned.

The situation is more complex when the argument does not fit in registers. In this
situation, we allocate space for the extra returns on the stack (similar to most platform’s
C ABI). We then store a pointer to this space just below the return address when
switching off the stack. When this thread is resumed, the resuming thread locates this
pointer and initializes the return value space before passing control.

Allocating this space before the context pauses requires that its size is known, which
precludes SWAPSTACK calls with a variable number of arguments. We do not consider
this a significant limitation.
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Fig. 1. Stack layout for normal and SWAPSTACK calls, just after the call instruction has passed control to the
callee or the context switch has happened.

Some architectures require that the called function save a “frame pointer” (FP in
Figure 1) to the stack, which must be restored when the function returns. For instance,
on x86 this is the EBP register (RBP on 64-bit). When we do a context switch using
SWAPSTACK, we cannot rely on the invoked context to correctly restore this pointer,
because the invoked context will be using a completely different stack. So, we must
explicitly save this register on the current stack. We save it below the program counter
and retarea pointer, so that code compiled with and without the frame pointer is
binary compatible.

Note that, unlike other forms of context switching, we add no code to explicitly save
any data registers (i.e., other than stack pointer and program counter). Instead, we
specify as part of the calling convention that no registers are preserved across a SWAP-
STACK call, and ensure that the register allocator spills and restores any live registers.
Again, we benefit from doing this as a compiler extension rather than a library, since
the compiler is then able to make smarter register allocation decisions (see Section 3.4).

For instance, if a thread does a lot of synchronization or communication with other
threads inside a tight loop, the compiler will generally be able to hoist the saves and
restores of the callee-saved registers out of this loop. Also, if a piece of complex code
precedes a SWAPSTACK, the compiler will realize that the callee-saved registers are
about to be clobbered by the SWAPSTACK call and are fair game for allocation in the
complex code, without needing restoration afterwards.

Another advantage of being internal to the compiler is that we can expose the return-
address mechanism to the resume-address logic to LLVM’s branch folding optimizer.
Suppose we have a piece of code like the following.

i f ( condit ion ){
code ;
context switch to ctx1 ;

}
e lse {

code ;
context switch to ctx2 ; }
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Normally, if the ctx1 path is taken, the first instruction executed after this thread is
resumed is a branch over the “else” part. However, after the optimizer runs, the resume
address actually points to the first instruction following the if statement, eliminating
the branch.

3.3. Creating New Contexts

To create a new context, we provide a new LLVM intrinsic NEWSTACK. This intrinsic is
passed a region of memory and a function pointer, and it creates a partial stackframe
at the top of the region. This partial stackframe is formatted as a paused context, with
its resume address pointing at the start of the function’s code. A SWAPSTACK operation
may then be performed using this new stack as a target. Control will be passed to
the new context’s function. The called function receives arguments passed across the
context switch (including the parent’s continuation) as formal parameters.

Spawning a new context and immediately switching into it is quite common, and
as such it would be nice to further reduce the cost of the switch. In particular, if a
context has just been created by passing NEWSTACK a constant function pointer, then
the address to which control will be passed is known and the usual indirect branch
performed by a SWAPSTACK is suboptimal.

Rather than adding new logic to detect such cases, we again use existing optimiza-
tions in LLVM. We lower the SWAPSTACK operation to a load of the return address
followed by the actual context switch and defer later processing after various optimiza-
tion passes such as alias analysis and store-load forwarding have run. Then, when
emitting code for the context switch, we check whether the address being jumped to
is, by this stage, a compile-time constant. If so, we use a direct rather than indirect
branch.

This catches more cases than a simple pattern match would, including some which
are not even obvious from the source-code. Suppose the program contains a function
which takes a function pointer as an argument, creates a context to run this function,
and switches into it. The target address of this context switch is not, in general, known
at compile time. However, if this function is inlined into a callsite where it was passed
a constant parameter, then the target address becomes known for the inlined copy and
a direct jump may be emitted.

This optimization will not work with dynamically linked function calls. If a function
does a context switch in a callback from a different shared object, we would have to
save and restore all of the callee-saves registers, the reason being, we will not be able
to prove whether the function in the other shared object was using these registers or
not.

3.4. Optimizing Context Size

Heavyweight approaches to context switching, such as those found in operating sys-
tems, and some implementations of C’s setjmp and longjmp save and restore all regis-
ters when switching context. This can be quite a lot of data (for instance, 1024 bytes on
64-bit PowerPC with AltiVec), which has both a time cost and a space cost. The space
cost can make it difficult to spawn very large numbers of contexts, because each sus-
pended context must store a full copy of all registers. For example, in certain types of
server applications, we may want to support many connections with a separate context
for each connection. In this situation, a minimum stack size of even a few kilobytes
may be a barrier to maintaining very large numbers of threads.

Because our context switches are known to the compiler before register allocation
happens, we can reduce the space requirement dramatically. The compiler knows which
values are live across a context switch, so not all of the registers need be saved. In fact,
our context switch operation only preserves the stack pointer and program counter,
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and leaves it up to the register allocator to ensure that no other registers are live at
the time of the switch.

It does this by the standard mechanisms of inserting spill code. This means that we
can benefit from all of the standard optimizations that have been applied to LLVM’s
register allocator: for instance, if a constant is loaded and the value is live in the
current function across a SWAPSTACK invocation, the register allocator can repeat the
load instead of spilling and restoring the value.

As well as reducing space usage, this also reduces time usage: the register allocator
will optimize the placement of spill code by, say, hoisting it out of loops.

Saving only the live variables during a context switch is not a new idea. Some
existing approaches [Grunwald and Neves 1996; Zhou and Petrov 2006; Jääskelainen
et al. 2008] analyze the assembly code to identify live registers which must be spilled.
Our approach differs in that we expose the code to save and restore registers to the full
range of compiler optimizations, which allows it to reduce the amount of context to be
saved. For instance, consider the following function.

void foo ( int x ){
while ( somecondition ){

int l o c a l = large const ;
g lobal var = l o c a l ;
y ie ld ; / / performs a context switch
global var = l o c a l ;

}
other funct ion ( x ) ;

}
The compiler normally allocates x and local in registers. Thus, library implementa-

tions of context switching need to save and restore all registers, in case they contain a
live value.

The register allocator in our compiler, using standard rematerialization techniques,
notices that the value of local is always equal to that of large_const, and the cost of
spilling and restoring local is less than the cost of reloading large_const. The variable
x must be spilled, but the spill code placement logic in our compiler hoists the spill and
restore out of the loop. Thus, this function only performs a single spill and a single
restore, no matter how many times the loop iterates.

3.5. Preserving Callee-Save Registers

Using only function-local information, we soon hit a lower bound on the amount of
context to be spilled: those machine registers which are defined by the ABI to be
“callee-save” must be preserved across calls. In the case of a SWAPSTACK, we cannot
guarantee that the target context will preserve the values in the registers, so all callee-
save registers must be saved. Even if some of them are never live (on machines with
large register files, the callee-save registers are used by few functions), we still spend
time and space saving and restoring them.

If a supposedly callee-save register is known to be dead, its value need not be pre-
served during the context switch. Grunwald and Neves [1996] use a whole-program live
register analysis to save and restore only the necessary registers. We use a somewhat
different approach, due in part to limitations of LLVM’s internal architecture which
does not support inter-procedural post-register allocation optimization passes.

We extend the LLVM intermediate representation to allow a function to be marked
nocalleesave, which indicates that it may not preserve the values of the standard
callee-save registers. Our compiler marks all functions containing a context switch
with this annotation. And all functions which call a nocalleesave function on all
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possible execution paths are also marked nocalleesave by the compiler. This requires
an interprocedural data-flow analysis phase, which can run cross-module at link time.

In many cases, this means that the nocalleesave attribute percolates up from the
low-level functions which may context switch up to a high-level function containing a
fiber’s main loop. If this happens, the callee-save registers are never saved, so the cost
of preserving them across a context switch is never paid.

If it is necessary to preserve a value across a call to a function marked nocalleesave,
the register allocator instead resorts to other methods (moving the use across the call
if possible, rematerialising the value, or simply spilling and restoring). Our compiler
automatically applies the nocalleesave attribute to those functions which would oth-
erwise have to spill and restore all the callee-save registers.

4. C++ GENERATORS VIA CONTINUATIONS

As a simple example of the context switching features we have added to LLVM, we
demonstrate the implementation of generators in C++ in terms of our new primitives.
Generators (or iterators, in some languages) are functions which may “yield” results
back to their caller. After yielding, the generator may be resumed by the caller and will
run until it produces another value via “yield”.

Generators are a standard part of several modern OO languages such as C# and
Python, and allow iteration over complex data structures to be implemented without
inversion of control and complex state-machine logic.

We extended the Clang compiler front-end to allow us to apply the SWAPSTACK annota-
tion to C and C++ functions. We can then perform context switching and continuation
invocation by calling a function pointer with this annotation.

Suppose we are to implement a generator which yields 10 successive even numbers
starting with 42. For each number, it yields control to its caller via a SWAPSTACK call.
The object being called is a continuation, passed to the generator by its caller. The
SWAPSTACK call invokes the continuation, passing it the number being yielded and
transferring control back to the caller. When the generator is resumed, the SWAPSTACK

call returns a new continuation which can be used for the next iteration of the loop.
The type of this yield function pointer is as follows.

typedef swapstack void∗ (∗ yie ld fn ) ( int ) ;

It takes an integer to be yielded to the caller, and returns a continuation represented
as a void*, which must be cast to type yieldfn before being invoked.

Thus, our even-number generator function is as following.

swapstack void evens ( y ie ld fn yie ld ){
f o r ( int i = 0 ; i < 10; i ++){

yie ld = ( y ie ld fn ) y ie ld (42 + i ∗2 ) ;
}

}

The evens function is also annotated with the swapstack keyword to indicate that it is
not directly called, but is invoked on a new, separate stack.

The other side of the operation, that is, the function which invokes the generator and
iterates over the yielded values, must allocate and initialize some stack space for the
generator. The initialization is done via a call to NEWSTACK, which is exported to C++
as the new compiler-intrinsic __builtin_newstack. The actual SWAPSTACK call into the
generator results in two values: the continuation of the generator, to be invoked when
the next value is required, and the actual value itself. As a C++ function may not return
multiple values, we pack the values into a structure. The function is as following.
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typedef struct {
void∗ cont ;
int val ;

} ret ;
typedef swapstack ret (∗ genfn ) ( ) ;
void uses generator ( ) {

char stk [4096] ;
genfn generator = ( genfn )

bui l t in newstack ( stk , s i z e o f ( stk ) , evens ) ;
f o r ( int i = 0 ; i < 10; i ++){

ret r = gen ( ) ;
gen = ( genfn ) r . cont ;
cout << r . val << ’\n ’ ;

}
}

We have developed a C++ template library which abstracts away some of these
details, and provides static typechecking of the values being yielded. Using it, the
previous example becomes as following.

void evens ( generator<int >∗ g ){
f o r ( int i = 0 ; i < 10; i ++)

g−>yie ld (42 + i ∗2 ) ;
}
void uses generator ( ) {

generator<int> g ( even generator2 ) ;
f o r ( int i = 0 ; i < 10; i ++)

cout << g . next ( ) << ’\n ’ ;
}

5. A FAST LIBRARY FOR FIBERS

We extended our C++ template library to provide fibers, lightweight threads of control
which can be paused and resumed. A fiber is a context which runs until it blocks, by
terminating, trying to acquire a held lock, reading from an empty channel with no
current writer, explicitly yielded, or another blocking operation.

We wrote a simple scheduler that maintains the set of currently runnable fibers as
a queue of continuations (the run-queue). When a fiber blocks, a new fiber is removed
from this queue and resumed, allowing it to run for some time. When the fiber pauses,
its continuation is placed back on the run-queue so that it will be scheduled again.

Synchronization objects like mutexes and channels are implemented with queues of
continuations to keep track of blocked fibers. For instance, a contented mutex contains
a queue of continuations of fibers which are trying to acquire the mutex. One of these
will be selected for resumption when the mutex is unlocked.

A new fiber can be spawned by allocating some memory for a stack and using NEW-
STACK to initialize it as a continuation. This continuation can then be enqueued on the
run-queue, from where it will be scheduled when CPU time becomes available.

5.1. Mutexes and Other Synchronization Objects

A mutex consists of a flag is_locked, and an initially empty queue of continuations
waitq. To lock or unlock a mutex, a fiber attempts to set or clear the is_locked flag. If it
is found to be true when attempting to lock, the mutex is contended. The current fiber
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pauses and places its continuation on waitq. If waitq is nonempty during an unlock
operation, a fiber is removed from that queue and woken.

There are two ways to wake a fiber. The simplest is to add it to the run-queue, so that
it is eligible for CPU time. Alternatively, the running fiber could directly context switch
to the fiber to be woken and add itself to the run-queue. There is a trade-off: the former
avoids the context switch and profits from a hot instruction cache by continuing the
same path through the code. The latter makes starvation is less common, and profits
from a hot data-cache containing the data protected by the mutex.

Having control of synchronization, context switching, and scheduling in userspace
allows the programmer or compiler to decide such policy per application or even per
mutex, unlike when the logic must be embedded into an operating system kernel.

Using a standard thread library, a blocking operation requires two context switches:
one from the application into the kernel, which decides which thread to schedule next,
and one from the kernel into the elected thread. Our library requires only one: the
blocking fiber selects the next fiber to run via a simple subroutine call, and then
context switches directly into it.

Many other standard synchronization objects can be implemented using this scheme
of a queue of paused fibers and a small number of states. For instance, an Occam-style
[Daniel 1995] blocking channel is implemented using three states: there may be no
outstanding requests, readers waiting for writers, or writers waiting for readers. read
and write can then be implemented by checking the state and either waking a paused
fiber to finish its request, or pausing and adding a continuation to the queue. Using a
SWAPSTACK call for this means that a message may be passed from fiber to fiber while
remaining in registers.

Section 6 describes how this scheme may be modified to work in a multicore environ-
ment, with fibers executing in parallel on distinct hardware threads.

5.2. Fairness of Wait-Queues

Wait-queues like the queue of fibers waiting for a mutex can be implemented as a
simple FIFO queue. This provides a strong fairness guarantee: if several fibers try
to lock the same mutex, they will receive the lock in the same sequence that the
lock attempts occurred. While improving the latency of blocking operations, this often
reduces throughput. The last fiber to pause is the one most likely to have its working
set still in cache, so placing it on the end of the queue will increase the cache miss rate.
The cache miss rate decreases if we adopt a less fair policy and instead wake up the
fiber that blocked most recently.

This trade-off is particularly important for the run-queue. Some common patterns
involve two fibers continually context switching between each other, for instance, in
a producer-consumer relation like a lexer feeding tokens to a parser. With a FIFO
run-queue, the lexer will produce a token, switch to the parser which will consume the
token, and then run every runnable fiber in the system once before returning to the
lexer. This leads close to worst-case cache usage.

A strictly LIFO policy is even worse: the lexer and parser would run efficiently, but
starve all other fibers in the system. Instead we use a hybrid approach: the first few
tasks added to the run-queue will be added to its head in a LIFO fashion. After this,
future add operations will add to the tail, until the run-queue has cycled completely
(every fiber initially on the queue has run). Then, the LIFO count will be reset and the
queue will switch back to LIFO mode for a while. This change yielded improvements
of 20% on some benchmarks, while affecting others very little.

Again, being able to decide these policies in userspace makes optimization signifi-
cantly easier. Applications can use a scheduling policy according to their throughput
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versus latency requirements, rather than an OS kernel requiring a single algorithm
which performs adequately under all possible workloads.

6. PARALLEL FIBERS

So far, we have described the fiber library in a single-processor context, with all of the
fibers executing on a single hardware thread of control, switching between fibers using
SWAPSTACK calls.

This system can be extended to support parallel execution of fibers on multicore
systems. Instead of a single hardware thread, we use a set of worker threads (generally
one per core), and load balance the set of fibers across them. Each worker is given its
own run-queue, each containing a set of fibers competing for CPU time on that worker’s
core.

Our synchronization constructs can be extended to support concurrent execution,
and we can perform the operations of the fiber library (spawning, awaiting, and syn-
chronizing with fibers) with little to no actual hardware synchronization required.

Migrating a fiber from one worker to another is quite straightforward. A continuation
created by a SWAPSTACK call may be invoked on any core, not just the one that created
it. All of the information about the paused context is stored in shared memory, so if the
continuation is passed to another hardware thread, it may be invoked there. After the
SWAPSTACK call returns, the fiber may be running in the context of a different hardware
thread.

This allows load balancing of fibers: if a worker’s run-queue is short of work or
entirely empty, it can “steal” more work by dequeueing waiters from other worker’s
run-queues and enqueuing them onto its own. Fibers thus moved will be resumed on
a different hardware thread to the one on which they were paused, but this does not
affect the fiber itself: its thread of control continues past the migration transparently.

6.1. Parallelizing Wait-Queues

In order to support work-stealing, our run-queues must use algorithms which are
safe when accessed concurrently by multiple workers. For the wait-queues used in
mutexes, channels, and the like, we must additionally avoid race conditions between
enqueue/dequeue operations and updating the state variables.

For instance, if a mutex is found to be already locked during an acquire operation,
the current fiber will pause and add itself to the mutex’s wait-queue. Suppose the fiber
owning the mutex concurrently unlocks it on a different worker. We must ensure that
it is impossible for the unlocking fiber to perform its unlock operation after the locking
fiber has noticed the mutex is locked, but before it has added itself to the wait-queue.

We solve these problems using the concurrent compare-and-swap-based algorithm
described in the next section. To prevent races between the state updates and the
queue/dequeue operation, we maintain the state as the low bits of the tail pointer of
the queue. This means that the locking fiber can perform the state transition and the
enqueue operation in a single atomic instruction, without the possibility of a race.

6.2. Queue Algorithm

High-performance concurrent queue data structures come in two flavors: those or-
ganized as linked lists [Michael and Scott 1996; Fober et al. 2002; Ladan-Mozes and
Shavit 2004; Herlihy et al. 2003] and those organized as ring buffers [Tsigas and Zhang
2001].

Most efficient algorithms for managing concurrent queues as buffers use a fixed-
size buffer, and algorithms for resizing the buffer while in use are often complicated.
Furthermore, most of the queues in our code are used for synchronization objects like
mutexes and condition variables, which only rarely contain any waiting fibers. Having
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Fig. 2. Queue data structure examples.

to preallocate an amount of memory sufficient for the worst case would cause a huge
memory burden.

In order to enqueue or dequeue from a buffer-style queue, three cache lines must be
touched in addition to the data itself:

—the data itself;
—the list header, holding the current head and tail pointers;
—some part of the buffer, where a pointer to the data is inserted or removed.

Additionally, the fixed-size linked list nodes can easily be allocated intrusively on the
stack of a fiber about to suspend, keeping the number of distinct cache lines touched to
a minimum.

For a linked list where new nodes are allocated for each insertion, the number would
be the same (the data, the list header, and the newly allocated node). However, for an
“intrusive” linked list where the nodes are allocated as part of the data, we can reduce
this number to only two cache lines: the list header and the data.

The data in question is the stack of a paused fiber. We can intrusively allocate a list
node as part of this stack very simply: we declare it as a local variable in the function
that suspends. So, the list node is located on the same cache line as the top of the
suspended stack. As the fiber is suspending, this line is already in cache. When a fiber
resumes, bringing this line into cache is necessary anyway, as the fiber is about to use
it to access locals.

Thus, the number of distinct cache lines that must be accessed in order to suspend or
resume a fiber is kept to the absolute minimum. One consequence of this is that a list
node is deallocated as soon as it is removed from the list (as the fiber uses that stack
memory for other purposes). This precludes using standard lock-free queues like M&S
[Michael and Scott 1996] where deallocation lags the data by one node.

Instead, we implement our own low-lock queue algorithms, which provide weaker
progress guarantees than M&S queues, but tend to be faster in practice as long as
the number of concurrent accesses does not exceed the number of hardware threads
(that is, they perform well in the face of hardware concurrency but badly in the face of
multiprogramming).

The queue, shown in Figure 2, is a singly linked list of nodes. The head of the queue
H is a sentinel node, and the queue’s tail pointer T points to the most recently inserted
node. When the queue is empty, T points to H. The enqueue and dequeue algorithms
are shown in Figure 3. Both functions return 0 on failure, and it is assumed they are
rerun until success.

When a node is to be inserted, the tail pointer is first swung to point to the new node
and then the previous node’s next pointer is updated. If a producer pauses during the
short window between these operations (i.e. on line 5), a consumer trying to dequeue
that node may block (in the loop on lines 10–11, 16, or 22) until the write to the next
pointer has completed (see Figure 2, part ii). This mechanism sacrifices strict lock-
freedom, but in practice increases performance (see experiments to follow), and avoids
the risk of writes to nodes removed from the queue.
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Fig. 3. Enqueue and dequeue algorithms.

Despite this blocking case, there is still a high degree of concurrency in this algorithm:
producers may run concurrently, consumers may run concurrently, and producers and
consumers may run concurrently if the queue is long enough.

When nodes are deallocated as soon as they are removed from the queue, hazards
arise: how do we prevent access to deallocated memory? We prevent writes to deallo-
cated memory by sacrificing strict progress guarantees and introducing blocking, as
described above.

We do not need to prevent reads, as they have no side-effects. In fact, the only ill
effect of a read to possibly deallocated memory is that the memory may no longer be
mapped and cause a fault. To handle this case, we register a signal handler to detect
and recover from such faults, which may potentially occur from the reads on lines 16
and 22. The performance overhead is zero if the fault does not happen, and up to 20,000
cycles if it does.1 The penalty is unlikely: memory allocators prefer to reuse recently
deallocated memory rather than return it immediately to the OS. In fact, we did not
observe the penalty even once during all of the testing and benchmarking except when
explicitly testing it.

The potential fault is an artifact of our optimized low-lock queue algorithm. We found
our algorithm outperformed others, but runs the theoretical risk of reading from (but
never writing to) memory that’s already been freed by a different thread. Reading from
deallocated memory would cause a spurious fault if the memory has been returned to
the OS and unmapped. It is completely possible to use our system with a different queue
algorithm, such as Michael and Scott’s (against which we compared ours in Figure 4)
or any other concurrent queue algorithm. In fact, when we did a proof-of-concept port

1Measured on Linux 2.6.32 on a Core 2 Quad, with cold caches.
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Fig. 4. Performance results from simple benchmarks of various queue algorithms.

of our system to the PowerPC architecture, we replaced our optimized queue with a
simple spin-lock protected queue.

In some circumstances, the risk of a spurious fault may be eliminated entirely. For
example, many high-performance memory allocators (e.g., TCMalloc [Google 2012])
never return memory to the OS, and so the case of deallocated memory becoming
unmapped does not arise. If the system designer can guarantee that such a memory
allocator is used, then the signal handler becomes unnecessary.

Finally, there are a number of instances in which production software have suc-
cessfully relied upon signal handlers for optimizations. For example, the HotSpot im-
plementation of the Java Virtual machine uses signal handlers to detect null pointer
exceptions. It does unconditional loads of the address and relies on careful handling of
the fault to determine if the address is actually pointing to a valid memory location.
This is because in most scenarios the chance of the address being null is quite rare
and by manipulating the signal handler it is possible to avoid any need for redundant
check in cases where the address is in fact valid.

The system runs on small number of OS-level threads, known as workers. The work-
ers are launched when the system starts and their number is a startup parameter and
never changes. Typically, there would be the same number of workers as physical CPU
cores.

A larger number of fibers are run on these worker threads. The number of fibers can
grow and shrink dynamically as user-level threads are created and destroyed. Up to
millions of fibers can be created, with the primary limiting factor being the amount of
available RAM to hold their stack frames.

Figure 4 gives performance results from a simple benchmark of various queueing
algorithms, on a machine with eight hardware threads. A number of threads concur-
rently attempt to enqueue and dequeue nodes from a shared queue. We measure the
total time taken to pass a million nodes through the queue. In addition to having

2The “M&S lock-free” result in Figure 4 refers to the concurrent, nonblocking version of Michael and Scott’s
queue algorithm [1996]. The “M&S two lock” is the version of Michael and Scott’s queue algorithm that uses
two locks to control concurrent access to the queue.
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Fig. 5. Biasing algorithm.

simpler memory management, our new algorithm outperforms M&S queues when the
number of threads is not more than the number of hardware threads.

6.3. Migration and Biased Locking

As we have seen in the description of work-stealing, migrating a fiber from one worker
to another is relatively inexpensive and easy. It turns out there is another use of this
feature: the implementation of biased locks.

A mutex or other synchronization primitive may be “biased” towards one particular
thread. This thread can then acquire, release, or otherwise manipulate the object
without atomic synchronization instructions or memory fences. In cases where most of
the traffic on a lock originates in one thread (which is quite common [Kawachiya et al.
2002]), this can result in a large speedup.

Biased locks must correctly handle the case where some other thread attempts to
acquire the lock, even though the thread towards which the lock is biased may acquire
it at any moment without synchronization.

Two solutions proposed for this are to have the non-owner thread interrupt and
pause the owner thread [Kawachiya et al. 2002], or to have the owner thread poll for
lock requests [Vasudevan et al. 2010]. The former requires an expensive kernel call
and fixup mechanism to pause the owner and take the lock, while the latter can exhibit
starvation if the owner does not poll regularly.

In our library, a biased lock is associated with a hardware worker thread rather
than a single fiber. This provides the same synchronization guarantees, as each worker
may only execute a single fiber at a time. More complex patterns of locality may be
accelerated by biased locks: for instance, if there are two fibers in a producer-consumer
relationship which happen to run on the same hardware worker, then a lock taken only
by those threads can be biased towards that worker and accessed without atomics.

When a fiber on a non-owning worker tries to acquire the lock we simply migrate
the offending fiber onto the owning worker. Rather than migrate the biased lock to the
acquiring fiber, we migrate the fiber to the lock.

Fiber migration, while relatively inexpensive, is still more expensive than taking a
shared lock. So, we unbias a lock if there is a conflict while trying to acquire it, as in
Kawachiya et al. [2002].

Biased locks are implemented with a single extra word per lock, which indicates the
state of the lock: it has never been taken (and will be biased towards the first worker
that tries to acquire it), it is already biased towards a worker, or it is unbiased and
requires normal synchronization. When a lock is to be taken or released, the biasing
algorithm (Figure 5) runs to determine whether it is safe to use the synchronization-
free fastpath.

Unfortunately, biasing interacts badly with our current simple algorithm for bal-
ancing the load between workers. The load balancing operates by stealing work from
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Fig. 6. Message passing performance of our fiber library compared to others.

a different worker (selected at random) whenever the current one runs low, making
it too aggressive and causing lot more motion of work than desirable. It essentially
works against biasing: the work-stealing algorithm aims to profit from load balancing
by spreading work around, while the biasing algorithm aims to profit from a form of
locality by keeping fibers that operate on the same data in the same hardware thread.

So, due to the relatively primitive nature of our load balancing and the interplay
between these two algorithms, we do not see significant speedups in normal operation
with biasing turned on.

In order to study the effect of biasing in isolation, we modified one of the benchmark
programs (condvar) by adding explicit affinity hints rather than relying on our load
balancing algorithm. With these affinity hints, biasing gave a significant performance
improvement, bringing the benchmark’s runtime down from 2.74 seconds to 1.96 (an
improvement of nearly 30%).

7. EXPERIMENTAL EVALUATION

To evaluate our contributions, we benchmarked our extensions to LLVM and our fiber
library by comparing them to existing systems.

7.1. Test Environment

The benchmarks were run on 64-bit x86 architecture. The x86 test machine was an Intel
Sandy Bridge processor at 2.10 Ghz with 6MB of cache, 2GB of RAM, and 8 hardware
threads.

Due to its RAM requirements, the message passing benchmark in Figure 6 was run
on a different machine, with an Intel Xeon E5520 with 8MB of cache and 24GB of RAM.
We were not able to secure exclusive access to this machine, and hence the results in
Figure 6 are a little noisier than we would like.

7.2. Other Libraries

We compared our fiber library with these alternatives:

pthread. Standard POSIX Threads implementation on Linux (NPTL, part of glibc).
Entirely kernel space: creation, sleeping, and context switching require kernel calls.
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Table I. Context Switch Performance on x86-64

Cycles Speedup over Pthreads
Raw SWAPSTACK 5 345.0

Fiber library 35 33.8
ST 105 11.5

LWP 191 6.3
Pthreads 1207 1.0

Pth 6111 0.2

Pth. GNU Portable Threads [Engelschall 2000], version 2.0.7. Designed for portability
over performance, Pth calls into the kernel on every context switch even though
threads are managed in userspace.

LWP. CMU Lightweight Processes, distributed as part of the Coda File System, version
2.4. Uses C’s setjmp and longjmp to perform userspace context switches (a technically
invalid usage, but works reliably on most platforms).

ST. State Threads (a derivative of the Netscape Portable Runtime library), version 1.9.
Contains custom per-platform assembly code to perform context switching entirely
in userspace. We were not able to successfully run benchmarks with this library on
the PowerEN processor, so it is omitted from the results for that platform.

Of these, only Pthreads supports any hardware parallelism: Pth, LWP, and State
Threads all perform their context switching within a single OS thread.

We benchmarked two versions of our fiber library, the single-threadeded fiberS and
the parallel fiberP. fiberS is compiled without support for multiple workers and is
therefore comparable to Pth, LWP, and ST. fiberP can load balance fibers over a number
of worker threads, and so is more comparable to pthreads. In some synchronization-
heavy benchmarks, fiberS outperforms fiberP as it can avoid the overhead of various
atomic instructions necessary to ensure correctness in the presence of multiple workers.

7.3. Evaluation of Primitives

To measure context switch performance, we wrote a simple benchmark that passes con-
trol back and forth between a pair of threads, with results summarized in Table I. Those
libraries which didn’t require kernel crossings were naturally significantly faster. The
“raw SWAPSTACK” line measures a direct SWAPSTACK, as would occur when using gener-
ators or directly message passing. The “fiber library” line measures the fiber library’s
implementation, which involves overhead such as manipulating the run-queue.

We investigated the performance of our SWAPSTACK primitive on x86 and found that
our context switch is extremely fast for a number of reasons. First, the number of
spilled registers is typically very low, particularly where the spill code can be hoisted
out of loops. Secondly, the compiler inlines the code to implement the lightweight
context switch. Thirdly, when a context suspends itself, it stores the continuation on
the top of its own stack; this is extremely unlikely to cause a cache miss. In fact, in our
testing we found that the main cost of SWAPSTACK is the result of branch mispredictions.
First, the context switch is implemented with an indirect branch, which may be poorly
predictable. Second, the processor’s hardware return address stack (RAS) no longer
correctly predicts the targets of return instructions, although our compiler’s inlining of
the context switch code means we have one fewer such return address misprediction
than other mechanisms.

By way of comparison, we also benchmarked the time to communicate between
different hardware threads on our x86-64 test machine. The communication was via
simple loads and stores to shared cached memory, no atomic operations were used.
It took either 20–35 cycles or 120–150 cycles to communicate between the threads,
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Fig. 7. Benchmark results comparing our fiber library with others.

depending on whether the two threads shared caches or not. Thus, SWAPSTACK between
fibers is usually faster than passing a message between two hardware threads running
in parallel.

The threadring benchmark is a simple microbenchmark used to measure context
switch and message passing performance, in which the time to pass a single token N
steps around a ring of M processes is measured. This benchmark has been implemented
as part of the Computer Language Benchmarks Game [CLBG 2011]. We wrote a simple
library for actor-model message passing concurrency on top of our fiber library, and
compared its performance at this benchmark with the top three languages for this
benchmark on CLBG, which were Haskell, Google Go, and Erlang (Haskell was around
21 times faster than C on this benchmark due to its lightweight threading support).

We compared the number of tokens passed per second using each of these three lan-
guages and our library. The results, shown in Figure 6, show our system outperforming
the others by a significant margin. There is a fall-off in performance in the second half
of the graph, which we believe is due to an increasing cache miss rate. The benchmark
was run on a machine with 8MB of L2 cache, which is enough for around 104 fibers.

We limited the benchmark to 4GB of RAM. The lines on Figure 6 extend to the point
where the respective systems reached this limit.

7.4. Evaluation of Fiber Library

To benchmark general thread and mutex performance, we used the threads and mutex
benchmarks of the open-source sysbench suite of benchmarks. We also wrote a sim-
ple benchmark to test performance of thread suspension and resumption: a bounded
producer-consumer queue using condition variables to handle underflow and overflow
(condvar), and a parallel recursive quicksort to test thread creation performance (sort).

We compared the performance of these benchmarks when compiled against our fiber
library in single-threaded and parallel modes, and against the various threading li-
braries mentioned in the previous section.

The results are displayed in Figure 7. The two hatched bars at the left of each bench-
mark are the parallel systems (pthreads and fiberP, our fiber library in parallel mode),
while the rest are single-threaded. On most of the benchmarks, fiberP outperformed
pthreads and fiberS outperformed the single-threaded libraries (pth, lwp and st).
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In the case sort benchmark the performance of pthreads is actually better than our
library. This is because in the sort benchmark almost all the time is spent actually
doing the sorting computation and there is only a very tiny amount of context swithing.
The advantage of our fiber library is the very fast context switching and very small
amount of memory to store contexts. Other aspects of our system, such as effective load
balancing apportioning work to cores to maintain locality, are less well developed. The
much more mature Linux and pthreads systems do a better job of balancing the work
across cores, and keeping memory accesses local to particular cores, and so do better
on the sort benchmark where there is little context switching.

On the synchronization-heavy benchmarks, the single-threaded libraries outper-
formed the parallel ones as the overhead of hardware synchronization outweighed
the advantages of parallelism.

In addition we have added results from benchmark programs Fibonacci calculator
and threadrings. Fibonacci is a simple recursive Fibonacci calculator which spawns
a new thread for each recursive call, and thus heavily stresses thread creation and
joining. Threadring is a copy of the C version of the benchmark used in the Computer
Language Benchmarks Game [CLBG 2011] (with minor changes for compatibility), and
tests message passing performance between threads. We had used threadring earlier
to evaluate the number of tokens passed per second using various languages and our
library in the back-end.

Since the system used to run the earlier benchmarks was not available anymore, the
additional benchmarks and the previous ones were executed in a system consisting of
quad core Intel Xeon E5620 in a dual socket configuration with 24GB DDR3 RAM as
memory.

The results for the additional benchmarks are shown in Figure 8. We find that our
fiber library is 85 times faster than pthreads in the case of Fibonacci calculator and
over 400 times faster in the case of threadring when compared to pthreads. The rest of
the benchmarks show similar speedups seen in the earlier results.

7.5. Amount of Data to Save/Restore across Context Switches

One of the main benefits of our technique is the reduced amount of data saved and
restored around context switches. When we look at the generated assembly code we
usually see that only a small number of registers need to be saved. However, it is
surprisingly difficult to measure the number of registers that must be saved/restored
at each point where SWAPSTACK is used. The reason is that rather than simply spilling
all the live registers at the point in the program where the SWAPSTACK is invoked,
we instead implement SWAPSTACK as a calling convention that does not preserve the
values in any registers. The compiler must therefore preserve the live values, and in
many cases it simply saves the registers at the site of the context switch. However, the
compiler may equally save the value at an earlier place in the code, perhaps where it is
last used, perhaps outside a loop, and perhaps in a function that is further up the call
chain. This makes it difficult to identify how much state must be saved for a particular
context switch.

Nonetheless, it is possible to say something concrete about the range of data sizes
that must be saved and restored on a context switch. The following discussion is with
reference to the x86-64 architecture using the System V application binary interface
(ABI) [Michael Matz and Mitchell 2012], which is the one commonly used in Linux
systems. Specific numbers for other architectures and ABI standards will differ, but
the general ideas are the same.

When a preemptive threading system like pthreads decides to perform a context
switch, it knows nothing about what state the program may be in. Without any in-
formation indicating which registers are live or dead, it must save and restore the
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Fig. 8. Additional benchmark results comparing our fiber library with other thread libraries.

entire processor register file. On x86-64, there are 16 general-purpose integer registers
of 8 bytes each, giving 128 bytes of general-purpose registers. The x86-64 architec-
ture provides specific instructions (FXSAVE and FXRSTOR) to save and restore the
floating-point and SSE vector registers, and the total stored state is guaranteed to fit
inside 512 bytes. The exact amount of state to be stored is complex, but we can expect
somewhat less than 512 bytes to be actually stored. The instruction pointer and flag
pointer must also be saved, each of which requires eight bytes. So the total number of
bytes required to save the full register of set of an x86-64 processor can be as much as
656 bytes.

Cooperative threading systems which use the POSIX functions getcontext, setcon-
text, and swapcontext store essentially the same data: a ucontext t on x86-64 Linux is
936 bytes long (which is larger than our estimate above because of some padding and
reserved fields in ucontext t, and since it must also store the signal mask).

Most of this state is ABI-defined as caller-save, and not guaranteed to be preserved
across function calls. Some cooperative threading libraries exploit this fact by placing
the context switch code in a function which the compiler is prevented from inlining. This
means that the compiler is forced to ensure that all the other registers are dead before
the context switch code is called, and so it needs to only save and restore the callee-
saved registers. So these kinds of cooperative threading libraries must allocate space
for six integer callee-saved registers, the stack pointer, the program counter, and stack
frame overhead because these libraries are called as an out-of-line function. Therefore
these libraries require an absolute minimum of 80 bytes. In addition these libraries
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also need to have spill space allocated in the caller’s stack frame by the compiler in
order to preserve values stored in caller-saved registers. This space can be as small as
zero for a simple function but can grow large for a function with many variables that
are live across the context switch.

With our SWAPSTACK mechanism we also normally need to save a minimum of the six
callee-save x86-64 registers, just like libraries that do cooperative context switching
using a library function that cannot be inlined. However, we have had SWAPSTACK a
compiler intrinsic, not a function. Therefore, we need not suffer the overhead of a new
stack frame, and our optimization described in Section 3.5 will try to mark functions
that perform a context switch as not preserving callee-save registers. This attribute will
bubble up the call chain of functions until it reaches either the top-level thread function,
or an optimization barrier like a call through a function pointer. If the optimization
makes its way to the top-level function, then the callee-save registers will never be
saved, unless they actually contain live value. The top-level function need not preserve
them as it does not return normally.

In such a case, where the optimization has been successful, the only state that
we need store is the program counter and stack pointer (and possibly frame pointer,
depending on optimization flags), as well as the previously mentioned spill space for
live values. We do not use explicit separate buffers or structures to store this state.
Instead all saved registers and other values are stored on the stack of the paused
thread, and refer to the paused thread by its stack pointer. Thus, the stack pointer
becomes the “handle” of the thread, and we do not allocate space to store it. So, with
all optimizations turned on, the space overhead of a SWAPSTACK operation can be as low
as eight bytes: a single machine word to hold the saved program counter.

In order to better understand this mechanism we manually examined the generated
assembly code for the threadring benchmark using SWAPSTACK, and did our best to
identify the amount of saved state at each point. There are 10 instances of SWAPSTACK

in the generated code for this benchmark. Three of the SWAPSTACKs are used during
initialization, and are called from entry points (main and C++ static intitializers). All
three must save the callee-save registers, and therefore have context sizes of around
70 bytes. Three more SWAPSTACKS are found in the special fiber that runs the scheduler
in the threadring benchmark. The scheduler maintains quite a lot of state on its stack,
and a total of around 160 bytes of state are maintained. The remaining four SWAPSTACKs
happen in the actual code of the benchmark. One of these saves 36 bytes, and the other
three 48 bytes each. It is worth noting that in all cases in this small benchmark the
amount of space that must be saved at a context switch using SWAPSTACK is much less
than the maximum 656 bytes saved by mechanisms that save all registers. In addition,
in some cases our optimizations allow SWAPSTACK to save less space than the minimum
of 80 bytes that must be stored by cooperative threading libraries which must always
save the callee-saved registers.

8. RELATED WORK

Other authors have proposed and demonstrated benefits of extending a compiler with
knowledge of context switching, in order to reduce the time spent in a context switch
and/or the space requirements of a paused thread.

Grunwald and Neves [1996] propose a whole-program live register analysis pass on
an executable’s compiled code. They then use this information to patch those points
in the executable which contain context switches, avoid saving and restoring dead
registers.

Other work also seeks to reduce the number of registers saved and restored during
a context switch, and does so via architectural support for partitioning the register
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file into smaller contexts so that more threads can remain resident on the CPU. Wald-
spurger and Weihl [1993] and Nuth and Dally [1995] are examples of this.

Zhou and Petrov [2006] tackle the somewhat different problem of optimizing context
size for preemptive context switching, where the exact location of the context switch is
not known a priori. Their technique involves live register analysis on the generated code
in order to identify those points at which a context switch is least expensived. Context
switching is then deferred until the execution reaches such a “cheap context switch”
point. Jääskeläinen et al. [2008] apply roughly the same technique to cooperative
threading, where the scheduler is polled and a context switch possibly performed at
each of the inexpensive context switch sites.

All of these techniques integrate into the compiler after the register allocation phase,
and take the set of live registers as a given. Our work, by contrast, integrates before
register allocation and makes context saving and restoration into a special case of spill
code insertion. This enables a host of standard optimizations to reduce rather than just
determine the number of live registers, as described in Section 3.4.

A different approach to optimizing threads via compiler support, particularly for
embedded systems, is a serializing compiler which lowers a threaded program into an
equivalent serial program. Nácul and Givargis describe such a compiler, Phantom, in
Nacul and Givargis [2005]. Another embedded-systems focused approach is described
by Barthelmann [2002], where global register allocation is performed across the appli-
cation and the embedded OS with a view to reducing context size.

The relationship between continuations and threads is well-known. In Bruggeman
et al. [1996] it is observed that threads can be implemented using a restricted form
of continuation which is only invoked once (the “one-shot continuation”). One-shot
continuations are the form of continuation used by SWAPSTACK calls, and are significantly
less expensive to implement than full continuations (which in many implementations
involve saving and restoring not just the register file, but part of the stack). The
relationship between continuations and threads exists in the opposite direction as
well, as shown by Kumar et al. [1998], where threads are used to implement a form of
continuation.

Designing a concurrent data structure which avoids the overhead of full locking, even
one as trivial as a queue, has proven to be a surprisingly difficult problem and a fertile
research ground. An array-based algorithm was described by Tsigas and Zhang [2001],
while linked-list-based algorithms are given by Michael and Scott [1996], Fober et al.
[2002], and Ladan-Mozes and Shavit [2004]. The idea of relaxing guarantees of forward
progress, and treating progress as an engineering problem to be optimized rather than
a condition to be proved, is due to Herlihy et al. [2003].

Biased locking algorithms were proposed by Vasudevan et al. [2010]. Applications
for the Java programming language, where syntax-level support for locks makes them
a frequent construct even when not strictly necessary, were described by Russel and
Detlefs [2006], Kawachiya et al. [2002], and Onodera et al. [2004].

The usual biased locks concept biases a lock towards a thread, which has
synchronization-free access. However, as this work biases a lock towards a worker
rather than an individual fiber, our biased locks may have more applications. For
instance, a lock only acquired by two threads in a producer-consumer relationship
wouldn’t be accelerated by a standard biased lock, but may be in our system when the
producer and consumer reside on the same worker.

There have been many implementations of threading as a userspace library,
not integrated with the compiler. Notable ones include State Threads [Gustafsson
2005] and GNU Pth [Engelschall 2000] (emphasizing portability over performance).
Capriccio [Von Behren et al. 2003b] can schedule threads to dynamically optimize
resource usage, and uses a compiler analysis to support efficient allocation of stacks.
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None of these supports distributing tasks over multiple cores. Some operating systems
(notably earlier versions of Solaris [Garcia and Fernandez 2000]) used partially
userspace threading implementations: the process was divided into several kernel-
level workers which each switched, in userspace, between several threads. However,
such implementations had load-balancing issues (threads could not move between
kernel workers) and performance issues (system calls by one thread could block an
entire worker) and have been superseded.

The high-level language Erlang supports large numbers of lightweight threads run-
ning in parallel on a smaller number of worker threads [Hedqvist 1998], as does Haskell
[Li et al. 2007]. Pall’s LuaJIT [Pall 2011], a JIT-compiled implementation of Lua, in-
cludes an interface between C and Lua coroutines containing a primitive similar to
SWAPSTACK, implemented as inline assembly for GCC on the x86 architecture.

Whether to use threads at all instead of writing single-threaded event/callback-based
systems is a perennial debate among those writing high-concurrency server software.
The pro-threads side is argued by Ven Behren et al. [2003a], the pro-events side by
Ousterhout [1996], and a duality between the two sides was shown by Lauer and
Needham [1979].

With this article, we hope to support the threads side of this argument by showing
that the performance and scalability limitations of threads can be overcome.

Work-stealing with per-worker run-queues is a standard means of distributing tasks
over many processors. Analyses and enhancements were presented by Dinan et al.
[2009] and Acar et al. [2000]. A specific work-stealing algorithm was proven optimal
for a class of multithreaded program by Blumofe and Leiserson [1999]. This algorithm
was employed in the Cilk-5 multithreaded language [Frigo et al. 1998].

9. CONCLUSION

We have shown that by tightly integrating context creation and switching into the com-
piler, it is possible to exceed the performance of library-based techniques. This is due
to the superior optimization opportunities (in particular register allocation) afforded
to the compiler. Our results show that this is a promising technique for accelerating
highly concurrent, frequently synchronizing programs, and that context switching need
not be a bottleneck.

The ability to create very lightweight contexts and switch between them inexpen-
sively is valuable for implementing a variety of features in programming languages
and computer systems, such as coroutines and user-level threads. In this article we
argue that tightly integrating context creation and switching into the compiler allows
extremely efficient context management code to be created.

We test this hypothesis by adding primitives to the LLVM compiler system for cre-
ating and switching contexts. By expressing context switching as a special-purpose
calling convention, the compiler is able to take context switching during other stages of
compiler optimization and code generation, and in particular during register allocation.

Our results show that our techniques greatly reduce the amount of context that
must be stored during a task switch. This allows contexts to be stored with much less
memory that would be needed if all the registers had to be spilled at each context
switch. The result of this is that contexts can be created that require only a very
small amount of memory, allowing very large numbers of contexts to be created. In
addition, spilling significantly registers at context switches also greatly reduces the
cost of context switching. Our experiments show that this is a promising technique for
accelerating highly concurrent, frequently synchronizing programs, and that context
switching need not be a bottleneck.
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