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Improved Loop Tiling Based on the Removal of Spurious
False Dependences
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To preserve the validity of loop nest transformations and parallelization, data dependences need to be
analyzed. Memory dependences come in two varieties: true dependences or false dependences. While true
dependences must be satisfied in order to preserve the correct order of computations, false dependences
are induced by the reuse of a single memory location to store multiple values. False dependences reduce the
degrees of freedom for loop transformations. In particular, loop tiling is severely limited in the presence of
these dependences. While array expansion removes all false dependences, the overhead on memory and the
detrimental impact on register-level reuse can be catastrophic.

We propose and evaluate a compilation technique to safely ignore a large number of false dependences
in order to enable loop nest tiling in the polyhedral model. It is based on the precise characterization
of interferences between live range intervals, and it does not incur any scalar or array expansion. Our
algorithms have been implemented in the Pluto polyhedral compiler, and evaluated on the PolyBench suite.
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1. INTRODUCTION AND RELATED WORK

To harness the computing resources of multiple cores with complex memory hi-
erarchies, the need for powerful compiler optimizations and especially loop nest
transformations is high. Loop transformations operate on the fine-grain schedule of
the statement instances (iterations) executed in a loop nest. To guarantee that loop
nest transformations are correct, the compiler needs to preserve data dependences
among different statement instances. Two statements are in dependence if they access
the same memory location and at least one of them is a write. Two types of data
dependences exist, true (a.k.a. data-flow) and false (a.k.a. memory-based, output-, and
anti-) dependences [Kennedy and Allen 2002]. False dependences are induced by the
reuse of temporary variables across statement instances. These false dependences
eliminate degrees of freedom that may be essential to the expression of effective loop
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nest transformations. They prevent the compiler from performing loop nest tiling in
particular.

Scalar and array expansion removes false dependences at the expense of memory
footprint [Feautrier 1988; Kennedy and Allen 2002]. Expansion creates a private copy
of scalars for each loop iteration by transforming scalars into arrays and transform-
ing arrays into higher-dimensional arrays. Although this technique eliminates false
dependences and enables loop tiling, it incurs high footprint on memory. Besides mem-
ory footprint, scalar and array expansion also degrades temporal locality [Thies et al.
2001]. Scalar expansion is particularly harmful as it converts register arguments into
memory operations [Callahan et al. 1990].

Note that the terms privatization and expansion are sometimes used by the commu-
nity interchangeably to refer to expansion. In this article we make a clear distinction
between the two terms. In privatization, a private copy of the variables is created for
each thread. In expansion, a private copy is created for each statement instance (syn-
tactic occurrence and iteration), which induces the declaration of new data structures,
the generation of more complex array indexing schemes, and data-flow restoration code
[Feautrier 1988]. This usage is consistent with the use of privatization and expansion
in Midkiff [2012] and Maydan et al. [1993].

In particular, privatization creates, for each thread cooperating on the execution
of the loop, private copies of scalars (or arrays) [Gupta 1997; Tu and Padua 1994;
Li 1992]. The number of private copies is equal to the number of parallel threads.
Although privatization is required to enable parallelism, it is not sufficient to enable
tiling, because privatization only creates private copies of scalars and arrays for
each thread, eliminating false dependences crossing the boundary of data-parallel
blocks of iterations. Classical tiling techniques require the elimination of all (false)
negative-distance dependences [Irigoin and Triolet 1988; Griebl 2004; Kennedy and
Allen 2002; Bondhugula et al. 2008], which is the domain of scalar or array expansion.
We are looking for a characterization of false dependences that are compatible with
loop tiling. We will achieve this through a dedicated criterion, adapted from both the
traditional tiling correctness and privatization correctness criterion; false dependences
satisfying this criterion will not need to be eliminated through expansion to enable
tiling.

A family of array contraction techniques attempts to reduce the memory footprint
without constraining loop nest transformations [Lefebvre and Feautrier 1998; Quilleré
and Rajopadhye 2000; Darte and Huard 2005]: the compiler performs a maximal ex-
pansion, looks for transformations, and then attempts to contract the arrays. By per-
forming a maximal expansion, false dependences are eliminated. Yet contraction is not
always possible when unrestricted loop transformations have been applied, as the set
of simultaneously live values may effectively require high-dimensional arrays to store
them. Loop distribution is an example of a widely applied loop nest transformation
that prevents array contraction and thus disables the effectiveness of this technique
as we show in an example in Section 8.

Several alternative approaches have been proposed to constrain the expansion a pri-
ori. Maximal static expansion (MSE) restricts the elimination of dependences to the
situations where the data flow can be captured accurately at compilation time [Cohen
and Lefebvre 1998]. It is important when generalizing array-dependence analyses and
loop transformations to dynamic control flow, and it can be combined with array con-
traction [Cohen 1999]. A priori constraints on memory footprint can also be enforced,
up to linear volume approximations [Thies et al. 2001], and more generally, trade-offs
between parallelism and storage allocation can be explored. These approaches are par-
ticularly interesting when adapting loop nests for execution on hardware accelerators
and embedded processors with local memories.
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Fig. 1. Gemm kernel.

In this article, we propose and evaluate a technique allowing compilers to tile and
parallelize loop nests aggressively, even in the presence of false dependences that would
violate existing validity criteria for loop tiling. The technique enables the compiler
to decide which false dependences can be safely ignored, in the context of a given
combination of enabling loop transformations and loop tiling. The proposed technique
does not incur any costs of scalar or array expansion.

Section 2 presents the possible sources of false dependences. Section 3 shows that
existing tiling algorithms are too restrictive and miss safe tiling opportunities. Section 4
introduces a new tiling test that avoids this problem and allows the tiling of kernels
with false dependences. Section 5 proves that, by ignoring false dependences, tiling
before 3AC transformation is equivalent to tiling after 3AC transformation. Sections 6,
7, and 8 show an overview of an implementation in Pluto, the benchmarks used to
evaluate the proposed technique, and experimental results.

2. SOURCES OF FALSE DEPENDENCES

One common source of false dependences is found in temporary variables introduced
by programmers in the body of a loop. A second source of false dependences is the
compiler itself. Even in source programs that do not initially contain scalar variables,
compiler passes may introduce false dependences when upstream transformations in-
troduce scalar variables. This is a practical compiler construction issue, and a high
priority for the effectiveness of loop optimization frameworks implemented in produc-
tion compilers [Trifunovic et al. 2011]. Among upstream compiler passes generating
false dependences, we will concentrate on the most critical ones, as identified by ongo-
ing development on optimization frameworks such as the GRAPHITE polyhedral loop
nest optimization framework in GCC [Trifunovic et al. 2010; Pop et al. 2006].

—Transformation to Three-Address Code (3AC). GRAPHITE is an example of a loop
optimization framework operating on low-level three-address instructions. It is af-
fected by the false dependences that result from a conversion to three-address code.

—Partial Redundancy Elimination (PRE) [Knoop et al. 1994; Muchnick 1997] applied to
array operations removes invariant loads and stores, promoting array accesses into
scalars. Figures 1 and 2 show an example of this optimization. Variants and exten-
sions such as constant subexpression elimination or value numbering also introduce
false dependences [Muchnick 1997].

—Loop-invariant code motion is a common compiler optimization that moves loop-
invariant code outside the loop body eliminating redundant calculations. It can be
seen as a special case of PRE where code motion degrades the perfect nesting of loop
nests, carrying along dependences that used to be enclosed in inner loops towards
outer loops. An example is shown in Figures 3 and 4, where tiling of the inner two
loops is inhibited by the extra dependences on t. Notice that even the outer two loops
may not be tilable with classical tiling algorithms, due to the false dependences on t.

In the case of GCC or LLVM, providing loop nest optimizations directly on
three-address code provides many benefits. Since the representation is also in Static
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Fig. 2. Gemm kernel after applying PRE.

Fig. 3. Three nested loops with loop-invariant code.

Fig. 4. Three nested loops after loop-invariant code motion.

Single Assignment form (SSA), it supports a rich set of highly efficient optimization
algorithms, scaling to very large and complex programs. Loop transformations on
three-address code enables a tight integration of loop optimization techniques with
downstream compilation passes, including an automatic vectorization, parallelization,
and memory optimizations. The ideal case for an optimization framework is to
operate on a representation that is low enough so that this optimization framework
benefits from all the passes operating on three-address code, and at the same time the
optimization framework should be able to ignore spurious false dependences generated
by these passes. Note that the SSA representation removes some false dependences
due to internal reuse of scalars, but does not remove loop-carried dependences.

Loop tiling, and affine transformations enabling loop tiling (e.g., loop distribution,
shifting, or skewing) are of utmost importance to coarsen the grain of parallelism and
to exploit temporal locality [Irigoin and Triolet 1988; Bondhugula et al. 2008]. Unfortu-
nately, these techniques are also highly sensitive to the presence of false dependences.
Although it is possible to perform PRE and loop-invariant code motion after tiling in
some compiler frameworks such as LLVM (yet this is not possible in GCC), transforma-
tion to 3AC must happen before any loop nest optimization in order to benefit from all
the passes operating on three-address code, and this limits the chances to apply tiling.

Finally, enabling advanced loop transformations and parallelization methods
on 3AC automatically extends their applicability to “native 3AC languages” and
environments, such as Java bytecode or GPU shader and general-purpose accelerator
languages such as PTX (CUDA, from NVIDIA), or FASIL (OpenCL, from AMD).
Such techniques may contribute to offering some level of performance portability to
GPGPU programming; they are commonly seen in source-to-source compilers such
as PGI Accelerator [Portland Group 2010] or CAPS HMPP [HMPP ], but would see a
much wider impact when integrated in the just-in-time compilers of the device drivers
themselves [Cohen and Rohou 2010].
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Fig. 5. Dependences in gemm kernel.

Fig. 6. Tiled version of the gemm kernel.

Our goal is to propose and evaluate a technique allowing compilers to escape this
loophole, providing a more relaxed criterion for loop tiling in the presence of false
dependences.

3. MOTIVATING EXAMPLE

Figure 5 shows data dependences on the scalar t for the gemm kernel presented in
Figure 2. It contains both true (read-after-write) dependences and false (write-after-
write and write-after-read) dependences. The figure shows a simplified version of the
dependences between statements in two iterations j and j+1. Many false dependences
stem from the fact that the same temporary scalar t is overwritten in each iteration of
the loop. These dependences enforce a sequential execution.

The usual criterion to enable tiling is that none of the loops involved should carry
a dependence that has a negative distance. On the example, this forward dependence
condition prohibits the application of tiling, although the transformation is clearly valid
as we show in Figure 6.

Our goal is to enable the compiler to perform tiling on codes that contain false de-
pendences, by ignoring false dependences when this is possible, and not by eliminating
them through array and scalar expansion.
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Fig. 7. One loop from the mvt kernel.

In the next section, we introduce the concept of live range noninterference. We use
this concept later to justify the correctness of the proposed technique and to decide
when is it safe to ignore false dependences.

4. LIVE RANGE NONINTERFERENCE

In this section we present the concept of live range noninterference, which is then used
to establish a relaxed validity criterion for tiling.

4.1. Live Ranges

We borrow some terminology from the register allocation literature where live ranges
are widely studied [Chaitin et al. 1981; Hack et al. 2006; Bouchez et al. 2006], but we
extend the definition of live ranges to capture dynamic statement instances instead of
the static statements in the program. In a given sequential program, a value is said to be
live in the range of statement instances between its definition instance and its last use
instance. Since tiling may change the order of statement instances, we conservatively
consider live ranges between a definition and any use, which includes the last use under
any reordering. The definition instance is called the source of the live range, marking
its beginning, and the use is called the sink, marking the end of the live range.

(Sk(I), Sk′(I′)) defines an individual live range beginning with an instance of the
write statement Sk and ending with an instance of the read statement Sk′ . I and I′ are
iteration vectors identifying the specific instances of the two statements. For example,
the scalar t of the mvt kernel shown in Figure 7 induces several live ranges, including

(S1(0, 0), S2(0, 0)).

This live range begins in the iteration i = 0, j = 0 and terminates in the same iteration.
Since the execution of a given program generally gives rise to a statically nondeter-

minable number of live range instances, we do not want to store them individually,
but rather in “classes” of live ranges that share some properties. For example, the live
range above is an instance of the live range class

(S1(i, j), S2(i, j)) s.t. 0 ≤ i < n, 0 ≤ j < n.

That is, for each iteration of i and j, there is a live range that begins with the write
statement S1 and terminates with the read statement S2. To be able to describe such
classes using affine constraints, we are interested in loop nests with affine bounds and
conditional expressions (static control program parts). As live ranges are special cases
of dependences, we will use the same notation for dependences in general.

4.2. Construction of Live Ranges

Live ranges form a subset of the read-after-write dependences. We construct these
using the array data-flow analysis described in Feautrier [1991] and implemented in
the isl library [Verdoolaege 2010] using parametric integer linear programming. Array
data-flow analysis answers the following question: given a value v that is read from a
memory cell mat a statement instance r, compute the statement instance w that is the
source for the value v. The result is a (possibly nonconvex) affine relation mapping read
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Fig. 8. Examples where the two live ranges (S1, S2) and (S3, S4) do not interfere (correct schedules).

Fig. 9. Examples where the two live ranges (S1, S2) and (S3, S4) interfere (incorrect schedules).

accesses to their source. The live ranges are then computed by reversing this relation,
mapping sources to all their reads.

This systematic construction needs to be completed with the special treatment of
live-in and live-out array elements. Array data-flow analysis provides the necessary
information for live-in ranges, but inter-procedural analysis of array regions accessed
outside the scope of the static control part is needed for live-out properties. This is an
orthogonal problem, and for the moment we conservatively assume that the program
is manually annotated with live-out arrays (the live-in and live-out scalars are explicit
from the SSA form of the loop nest).

4.3. Live Range Noninterference

Any loop transformation is correct if it respects data-flow dependences and does not
lead to live range interference (no two live ranges overlap) [Vasilache 2007; Trifunovic
et al. 2010, 2011]. If we want to guarantee the noninterference of two live ranges, we
have to make sure that the first live range is scheduled either before or after the second
live range. Figure 8 shows two examples where pairs of live ranges do not interfere.
Figure 9 shows two examples where these pairs of live ranges do interfere. We will now
take a closer look at the conditions for preserving noninterference across affine loop
transformations.

4.4. Live Range Noninterference and Tiling

Tiling is possible when a band of consecutively nested loops is fully permutable.
Using state-of-the-art tiling algorithms, the compiler looks for a band with forward
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Fig. 10. An example of false dependences (dashed lines) adjacent to (S0, S1), (S2, S3) and (S4, S5).

dependences only, i.e., dependences with nonnegative distance for every nesting level
within the band [Wolf and Lam 1991; Bondhugula et al. 2008]. This can be done by
calculating dependence directions for all dependences and for each loop level. A tilable
loop band is composed of consecutive loop levels with no negative loop dependence.
When a loop band is identified, dependences that are strongly satisfied by this band
are dropped before starting the construction of a new inner loop band (a dependence
is strongly satisfied if the sink of the dependence is scheduled strictly after the source
of the dependence in one of the loop levels that are a part of that band). Loop levels
that belong to the identified loop bands are permutable: they can be freely permuted
among themselves (a.k.a. loop interchange), which enables tiling.

The main contribution of our article is a relaxation of this permutability criterion,
based on a careful examination of which false dependences can be ignored. In particular,
our criterion ignores antidependences (write-after-read dependences) that are adjacent
to iteration private live ranges. We say that a live range is iteration private at level k if it
begins and ends in the same iteration of a loop at nesting level k. We say that an antide-
pendence and a live range are adjacent if the source of one of them is equal to the sink of
the other and if the antidependence and live range derive from the same memory access
in the shared statement iteration. For example, in Figure 10, the dependence (S1, S2)
is adjacent to the live ranges (S0, S1) and (S2, S3) but is not adjacent to (S4, S5). The
dependence (S3, S4) is adjacent to (S2, S3) and to (S4, S5) but is not adjacent to (S0, S1).

Relaxed permutability criterion. A band of consecutively nested loops is fully per-
mutable if and only if for every dependence one (or several) of the following conditions
hold(s):

(1) the dependence is forward for each level within the band;
(2) it is an output dependence between statement instances that only define values

that are local to the region of code being analyzed, in the sense that the values
defined are used inside the region and are not used after the region;

(3) it is an antidependence, and it is adjacent only to live ranges that are iteration
private within the band.

The first condition is inherited from the classical tiling criterion. The writes involved
in the output dependences eliminated by the second condition are also involved in
live ranges and are therefore guaranteed not to interfere with each other because of
the third condition, as explained shortly. Moreover, the output dependences that are
needed to ensure that values assigned by the last write to a given location (live-out
values) will not be overwritten are not eliminated by the second condition. The third
condition stems from the following observations.
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(1) Any affine transformation—including tiling—is valid if it preserves data-flow de-
pendences and if it does not introduce live range interferences.

(2) Tiling is composed of two basic transformations: loop strip-mining and loop inter-
change.
—Strip-mining is always valid because it does not change the execution order of

statement instances and thus it can be applied unconditionally.
—Loop interchange changes the order of iterations, hence may introduce live range

interferences. But a closer look shows that it never changes the order of statement
instances within one iteration of the loop body.

(3) If live ranges are private to one iteration of a given loop (i.e., live ranges begin and
terminate in the same iteration of that loop), changing the order of iterations of the
present loop or any outer loop preserves the noninterference of live ranges.

(4) We can ignore an anti-dependence only when it is adjacent to iteration-private live
ranges (i.e., not adjacent to any noniteration-private live range). This is correct
for the following reason: an antidependence δ between two live ranges (S1, S2) and
(S3, S4) is used to guarantee the noninterference of the two live ranges during loop
nest transformations. If the two live ranges (S1, S2) and (S3, S4) are iteration pri-
vate, then they will not interfere when tiling is applied, regardless of the presence
of the antidependence δ. In other words, δ is useless in this case. And thus ignoring
this antidependence during tiling is safe as long as all statements in this live range
are subject to the same affine transformation. If one of the live ranges is noniter-
ation private, then there is no guarantee that they will not interfere during tiling,
and thus, conservatively, we do not ignore the antidependence between the two live
ranges in this case.

Comparison with the criterion for privatization. Reformulated in our terminology, a
loop can be privatized if all live ranges are iteration private within that loop [Maydan
et al. 1993]. This condition is the same as the third condition of our relaxed permutabil-
ity criterion, except that we only impose this condition on live ranges that are adjacent
to backward antidependences. Our relaxed permutability criterion can therefore be
considered as a hybrid of the classical permutability criterion and the privatization cri-
terion. In particular, our criterion will allow tiling if either of these two criteria would
allow tiling or privatization, but also if some dependences are covered by one criterion
and the other dependences are covered by the other criterion.

4.5. Illustrative Examples

Let us illustrate the preceding observations on a few additional examples.

4.5.1. The mvt and gemm Kernels. We consider again the mvt kernel of Figure 7. The
false dependences created by the t scalar on the J loop inhibit the compiler from
applying tiling, although tiling for mvt is valid.

Figure 11 represents the live ranges of t and x[i] for a subset of the iterations. The
figure shows the statements that are executed in each iteration (S1 and S2) and the live
ranges generated by these statements. The original execution order is as follows: live
range A© of t is executed first (this is the live range between S1 and S2 in the iteration
i = 0, j = 0), then live range B© is executed (this is the live range for iteration i = 0,
j = 1), then C©, D©, E©, F©, G©, etc.

We notice that each live range of t is private to one iteration. Each of these live
ranges starts and terminates in the same iteration (no live range spans more than one
iteration). The order of execution after applying a 2 × 2 tiling is as follows: ( A©, B©, E©
F©), ( C©, D©, G©, H©). Tiling changes the order of execution of live ranges, but it does not
break any live range of t.
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Fig. 11. Live ranges for t and x1[i] in mvt.

The false dependences generated by the array access x1[i] do not inhibit loop tiling
as all of these false dependences are forward on both levels. The live ranges of x1[i]
satisfy the first condition of the relaxed permutability criterion (they are all forward)
and therefore also do not inhibit tiling.

Although tiling is valid in the case of mvt, the compiler fails to apply tiling because
the classical tiling algorithm is too restrictive on t. Note that privatization of the inner
loop is also not allowed. The problem for privatization is that the live ranges of x1[i]
are not iteration private. A similar reasoning applies to tiling of the gemm kernel shown
on Figure 2: tiling is valid because the scalar t is private to the J iteration.

4.5.2. An Example where Tiling Is Not Valid. Consider the example in Figure 12. Similarly
to the previous examples, the false dependences created by the scalar t on the j loop
prevent the compiler from applying loop tiling. But is it correct to ignore this false
dependence?

Figure 13 shows the live ranges of t. The original execution order is: A©, B©, C©, D©,
E©, F©, G©, H©. After a 2 × 2 tiling, the new execution order is: A©, B©, E©, F©, etc. This
means that the value written in B© will be overwritten by the write statement in E©
which introduces interference. This tiling breaks the live range (S2(I), S2(I′)).

Tiling in this case is not valid because the live ranges are not private to the J
iteration; we should not ignore false dependences on t.

4.5.3. The Importance of Adjacency. Note that it is not safe to ignore an antidepen-
dence that is adjacent to an iteration-private live range but that is also adjacent to a
noniteration-private live range. Tiling is not valid in this case.

4.6. Parallelism

Besides tiling, we are also interested in the extraction of data parallelism. In order to
be data parallelized, a loop carrying false dependences needs the variables inducing
these dependences to be privatized.
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Fig. 12. Example where tiling is not possible.

Fig. 13. Live ranges for the example in Figure 12.

For example, scalar variables that carry interfering ranges that live and die within
a single iteration of a parallel loop may be safely ignored when detecting parallelism,
but they must be marked as thread private in OpenMP. In principle, this reasoning
also applies to array variables, but the OpenMP private clause does not support the
declaration of thread private array elements, therefore we currently only ignore false
dependences involving scalar variables when expressing parallelism.

The privatization of variables for parallelism is much less intrusive than actual scalar
or array expansion. The former only makes variables thread private, not impacting
address computation and code generation inside the loop body, while the latter involves
generating new array data declarations, rewriting array subscripts, and recovering the
data flow across renamed privatized structures [Feautrier 1991]. In addition, making
scalar variable thread private does not result in the conversion of register operands
into memory accesses, unlike the expansion of a scalar variable along an enclosing loop.

In practice, support for privatization is implemented as a slight extension to the state-
of-the-art violated dependence analysis [Vasilache et al. 2006; Trifunovic et al. 2011].

Figure 14 compares the number of private copies that have to be created for a given
scalar (or array) in order to enable parallelization, to enable tiling, or to enable both. N
is the number of loop iterations and T is the number of parallel threads that execute
the loop. In general T is significantly smaller than N.
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number of private scalar and arrays
when expansion when false
is applied dependences are ignored

parallelization only TT
tiling only N 0
tiling + parallelization N T

Fig. 14. Comparing the number of private copies of scalars and arrays created to enable parallelization,
tiling, or both.

Note that the proposed technique, unlike expansion, enables tiling without any over-
head on memory. Expansion has the advantage of enabling tiling in more cases, but
has the drawback of a high memory overhead. We compare between the performance
of the two methods in the Section 8.

Interestingly, the transformation of source code to three-address code does not impact
parallelism detection as it only induces intra-block live ranges. Section 5 proves a
similar result about the impact of our technique on the applicability of loop tiling.

5. ON THE TILING POTENTIAL OF 3AC

This section shows that, by ignoring selected false dependences, the transformation
of source code to 3AC form does not harm loop tiling. It was obviously a strong in-
tuition when starting the design and implementation of the first low-level polyhedral
optimization framework, GRAPHITE, in 2006 [Pop et al. 2006].

In other words, we show that by ignoring false dependences, whether tiling is applied
before or after three-address lowering, we always get the same result, which is not the
case with classical tiling algorithms.

Consider a 3AC statement S1.

for (i1=...; i1<n1; i1++) {
for (i2=...; i2<n2; i2++) {

...
for (im=...; im<nm; im++) {

...
S1: x = expr 1 + expr 2 + expr 3;

...
}

}
}
Let � be the set of all dependences induced by S1. After transforming this statement

to 3AC, we get two new statements: S2 and S3.

for (i1=...; i1<n1; i1++) {
for (i2=...; i2<n2; i2++) {

...
for (im=...; im<nm; im++) {

...
S2: x1 = expr 2 + expr 3;
S3: x = expr 1 + x1;

...
}

}
}
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Variable x1 introduced by the three-address transformation is a new variable and
thus it does not have any dependence with the other variables of the program (the
variables that were already in the program before three-address transformation), but
it induces three new dependences between the two newly introduced statements. These
dependences are as follows:

—a set of flow dependences: δS2→S3 ;
—a set of write-after-write dependences: δS2→S2 ;
—a set of write-after-read dependences: δS3→S2 .

Before three-address transformation the set of dependences was �. After three-
address transformation the set of dependences is � ∪ δS2→S3 ∪ δS2→S2 ∪ δS3→S2 .

The set of flow dependences δS2→S3 constitutes live ranges that are iteration private
(they begin and terminate in the same iteration) and thus, by applying the technique
proposed in this article, we can ignore the dependences δS2→S2 and δS3→S2 during tiling.
The dependences that remain are �∪δS2→S3 . Since the dependences δS2→S3 are iteration
private (because their dependence distance is zero), they will have no effect on tiling,1
and thus applying tiling on the transformed code is exactly equivalent to applying
tiling on the original source-level code (since in both cases the tiling will be applied on
the set of dependences �).

If the right side of a statement has more than 3 expressions (i.e., after transformation
to 3AC, the statement is split into two statements or more) we can provide the proof
by induction on the other new statements.

6. DESIGN AND IMPLEMENTATION

Our technique has been implemented in the Pluto polyhedral source-to-source com-
piler [Bondhugula et al. 2008]. The polyhedral model is an algebraic representation
and abstraction of programs for reasoning about loop transformations [Feautrier 1991,
1992]. It allows to model and apply complex loop nest transformations addressing most
of the parallelism and locality-enhancing challenges.

Figure 15 details the implementation of the proposed technique (steps 3 and 4 are the
new steps introduced to the compiler). After calculating dependences, Pluto applies the
forward-communication-only (FCO) algorithm [Griebl 2004; Bondhugula et al. 2008]
to build a schedule that maximizes data locality and outermost loop parallelism (step 2
in the figure). This algorithm finds and applies the most appropriate combination
of loop nest transformations, combining loop distribution, fusion, skewing, shifting,
interchange, etc. FCO also identifies tilable bands, but does not perform tiling itself.
Tiling (strip-mining and interchange) is performed in a follow-up pass.

We did not modify the FCO algorithm. It still takes into account all false dependences,
attempting to convert them into forward dependences through an affine transforma-
tion. Since some antidependences may fail to be converted into forward dependences,
we use our technique as a postpass to recognize outermost permutable bands larger
than those recognized by the standard FCO algorithm. It works as follows.

—Step 3 marks false (output- and anti-) dependences that may be ignored.
—Step 4 calculates dependence directions for all loop levels in order to identify tilable

bands. If a false dependence is ignored for a given loop level, its direction for that
loop level is set to be zero. A tilable loop band is composed of consecutive loop levels
with no negative loop dependence.

1Because tiling is possible in two cases: either if the dependence distance is zero (weakly satisfied) or if it
is positive (strongly satisfied). The dependence distance in this case is zero so the tiling possibility does not
depend on δS2→S3 but on other dependences in the kernel.
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Fig. 15. Implementation of the proposed technique in Pluto.

—Step 5 applies tiling on permutable loop bands identified by step 4.

Although we implemented our technique in Pluto, the method relies on relaxing the
correctness conditions for tiling and any compiler that implements some form of array
data-flow analysis [Feautrier 1991] can benefit from it.

7. BENCHMARKS

The original PolyBench suite2 was not initially designed to expose the problem of false
dependences. Among all of the benchmarks of the suite, scalar variables are used in
only 5 benchmarks, the remaining benchmarks do not use scalars.

To stress the proposed method on realistic false dependences, we chose to introduce
scalar variables in each one of the kernels of PolyBench instead of designing a new
benchmark suite. These scalar variables were introduced either by transforming the
source program into Three-Address Code (3AC) or by applying Partial Redundancy
Elimination (PRE). Both transformations (3AC and PRE) have been manually applied
to PolyBench. Note that Pluto is a source-to-source compiler and that it does not convert
the code to three-address form internally, it does not apply PRE, nor does it privatize
or rename variables to eliminate false dependences.

In order to transform the benchmarks into 3AC, each instruction that has more than
three operands is transformed into a sequence of instructions, where each one of these
new instructions has at most three operands. Temporary scalar variables are used to
hold the values calculated by new instructions, and each temporary scalar is assigned

2http://www.cse.ohio-state.edu/∼pouchet/software/polybench.
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Fig. 16. Original gesummv kernel.

Fig. 17. gesummv in 3AC form.

only once and used only once. Figures 16 and 17 show an example of transforming the
gesummv kernel into 3AC.

The second transformation is PRE. We apply PRE to eliminate expressions that are
redundant. We apply it whenever it is possible, ignoring any cost/benefit analysis to
decide whether applying PRE is profitable for performance or not. Note that we do not
apply 3AC when we apply PRE. Figures 18 and 19 show an example of applying PRE
on the gemm kernel.

Throughout the following sections, PolyBench-3AC is used to refer to PolyBench in
three-address form, PolyBench-PRE to refer to PolyBench after applying PRE, and
PolyBench-original to refer to the original PolyBench.

To compare the proposed technique with expansion, we apply expansion on
PolyBench-3AC manually. This manual expansion is performed as follows: each scalar
in the benchmarks of PolyBench-3AC is transformed into an array. The dimension of
the resulting array is the minimal dimension that makes tiling possible. Figures 20
and 21 show an example of applying expansion on the three-address form of the mat-
mul kernel. We call the resulting benchmark PolyBench-expanded. Expansion is not
applied on PolyBench-PRE, because in the case of PRE, the expanded benchmark is
equivalent to PolyBench-original.

The manually transformed benchmarks (PolyBench-3AC, PolyBench-PRE, and
PolyBench-expanded) are publicly available for reference.3

3http://www.di.ens.fr/∼baghdadi/benchmarks.html
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Fig. 18. Original gemm kernel.

Fig. 19. gemm after applying PRE.

Fig. 20. 2mm-3AC (2mm in 3AC form).

8. EXPERIMENTAL RESULTS

The experiments were performed on a dual-socket AMD Opteron (Magny-Cours) blade
with 2 × 12 cores at 1.7 GHz, 2 × 12MB L3 cache and 16GB of RAM running with
Linux kernel 2.6.32. The baseline is compiled with GCC 4.4, with optimization flags
-O3 -ffast-math. This version of GCC performs no further loop nest optimization on
these benchmarks, and does not perform any tiling, but it succeeds in automatically
vectorizing the generated code in many cases. We use OpenMP as the target of
automatic transformations. We compare the original Pluto implementation with our
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Fig. 21. Expanded version of 2mm-3AC.

modified version, reporting the median of the speedups obtained after 30 runs of each
benchmark. The pass that implements the proposed technique is activated in the
modified Pluto through the option -ignore-false-dependences. The options -tile
and -parallel are used to enable tiling and parallelization in Pluto (OpenMP code
generation). All the tests are performed using the big datasets in Polybench.

8.1. Evaluating the Effect of Ignoring False Dependences on Tiling

To evaluate the proposed technique, we perform a set of experiments. The results
of these experiments are summarized in Figure 22. We report for each experiment
whether Pluto succeeded to perform tiling or not. The first column lists the different
benchmarks, classified into 4 classes. The second column shows the result of optimizing
Polybench-original with Pluto (pluto -tile -parallel). It shows that all the kernels
are tiled, except 4 kernels (symm, cholesky, ludcmp and durbin). symm, cholesky, and
ludcmp are not tiled because the original version of the benchmarks already contains
scalar variables that induce false dependences and prevent tiling. These benchmarks
are examples where the original code written by the programmer contains scalar vari-
ables even before any 3AC or PRE code transformations. In the third column, we show
the results of optimizing Polybench-3AC with Pluto (pluto -tile -parallel). In this
experiment, Pluto systematically reports the presence of negative dependences, due
to the extra scalar variables introduced by 3AC transformation, and fails to tile the
Polybench-3AC benchmarks. None of these benchmarks is tiled.

When we repeat the previous experiment but with the exception of adding the
option -ignore-false-dependences together with the options -tile -parallel,
Pluto ignores the false dependences introduced by the transformation to 3AC,
recovering the ability to tile Polybench-3AC (the results are presented in the fourth
column). Most of the benchmarks are tiled except lu, jacobi-2d-imper, jacobi-1d-imper,
seidel, ludcmp, and durbin (the explanation comes later). In the last experiment
(fifth column), Polybench-expanded is compiled with pluto -tile -parallel. The
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pluto –tile –parallel
Polybench-original Polybench-3AC Polybench-3AC Polybench-

expanded
- - –ignore-false-deps -

2mm yes no yes yes

3mm yes no yes yes
gemm yes no yes yes
gemver yes no yes yes
gesummv yes no yes yes
mvt yes no yes yes

gramschmidt yes no yes yes

dynprog yes no yes yes

fdtd-2d yes no yes yes

trisolv yes no yes yes

trmm yes no yes yes

syr2k yes no yes yes

syrk yes no yes yes

covariance yes no yes yes

correlation yes no yes yes

atax yes no yes yes

fdtd-apml yes no yes yes

bicg yes no yes yes

lu yes no no yes

jacobi-2d-imper yes no no yes

jacobi-1d-imper yes no no yes

seidel yes no no yes

symm no no yes yes

cholesky no no yes yes

ludcmp no no no yes

durbin no no no no

Fig. 22. A table showing which kernels were tiled (classified for ease of reference). Different columns show
different benchmarks, all of them compiled with pluto -tile -parallel. The -ignore-false-dependences
option is used additionally in the fourth column.

expansion succeeded in enabling the tiling of all the kernels, except the durbin kernel.
Tiling for durbin is not possible, because it would lead to an incorrect schedule.

We repeat later another set of experiments where we focus on performance and show
that although expansion enables tiling, it leads in many cases to worse performance due
to its high memory footprint compared to the technique of ignoring false dependences.

Similar results are found when the same experiments are applied on Polybench-PRE
(Figure 23). Since PRE is only effective for some loop nests, this figure does not show all
Polybench kernels. The figure shows that 5 kernels out of 9 are tiled. In the kernels that
were tiled (2mm, 3mm, gemm, syr2k, and syrk), the original loop depth is greater than
2, and thus after applying PRE on statements in the innermost loop, the outermost two
loops remain free of false dependences, and this enables Pluto to apply tiling on these
two outermost loops. Gemm, a representative example of these kernels, is presented in
Figure 19.
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pluto –tile –parallel
Polybench-original Polybench-PRE Polybench-PRE

sped-eslaf-erongi–--

2mm yes no yes

3mm yes no yes
gemm yes no yes
gemver yes no no
gesummv yes no no
mvt yes no no

syr2k yes no yes

syrk yes no yes

correlation yes no no

Fig. 23. A table showing which kernels were tiled. Different columns show different benchmarks, all of
them compiled with pluto -tile -parallel. The -ignore-false-dependences option is used additionally
in the fourth column.

Fig. 24. gesummv kernel after applying PRE.

In the other kernels that were not tiled (gemver, gesummv, mvt, and correlation)
the original loop depth is exactly 2 and applying the PRE optimization introduces a
temporary scalar variable (to hold invariant data across the iterations of the inner
loop); this variable induces false dependences preventing Pluto from applying tiling.
Gesummv, a representative example of kernels with a loop depth equal to 2, is presented
in Figure 24. Note that PRE also makes the loops imperfectly nested in the latter case,
but this does not in itself impact the ability of Pluto to tile the loops.

8.2. Performance Evaluation for Polybench-3AC

The following experiments focus on performance. In all of the experiments, the bench-
mark is first compiled with the Pluto source-to-source compiler, and then the resulting
optimized code is compiled with GCC. The figures show different speedups compared to
the baseline. Each speedup is the execution time of the kernel being tested normalized
to the execution time of the baseline. The baseline is compiled with GCC 4.4, with opti-
mization flags -O3 -ffast-math. Values greater than 1 indicate good speedups, values
smaller than 1 indicate slowdowns (the speedup of the baseline is 1).

Figure 25 shows the difference in performance between the optimiza-
tion of Polybench-original with pluto -parallel -tile and the optimization of
Polybench-3AC with the same options. As presented in Figure 22, Pluto fails to tile
Polybench after three-address code transformation.

Figure 26 shows the difference in performance between optimizing Polybench-3AC
with and without the -ignore-false-dependences option. The figures compare also
between ignoring false dependences and applying array and scalar expansion.
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Fig. 25. The effect of 3AC transformation on tiling.

 

 

 

 

 

Fig. 26. Speedup against nontiled sequential code for PolyBench-3AC (first part).
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Fig. 27. 2mm-3AC optimized ignoring false dependences.

The results shown in Figure 22 are important to understand these figures. Four
classes of kernels can be identified by analyzing the figures. While some of the kernels
show slowdowns, many kernels show a speedup. This speedup is obtained only when
false dependences are ignored or when expansion is applied. The explanation for the
slowdowns is presented in Section 8.3.

(1) The first and largest class is represented by 2mm, 3mm, gemm, gemver, gesummv,
mvt, covariance, correlation, syrk, and syr2k. The -ignore-false-dependences op-
tion, applied to 3AC, restores the full tiling potential of Pluto. While expansion
was effective in enabling tiling, the performance obtained with expansion is lower
compared to the performance obtained when false dependences are ignored. The
performance when expansion is applied is lower, because, with expansion, Pluto
gets more freedom in applying loop nest transformations, and thus it applies trans-
formations that on one hand enable better vectorization and parallelism but on the
other hand prevent array contraction.4 We explain this in the example presented
in Figures 20, 21, 27, and 28. Figure 20 shows 2mm in 3AC form, Figure 21 shows
2mm after expansion (expansion is applied on the 3AC by transforming the scalars
tmp0, tmp1, tmp2, and tmp3 into arrays). Figures 27 and 28 show 2mm after ap-
plying loop nest transformations with Pluto. To optimize the expanded 2mm, Pluto
chose to apply loop distribution and to reschedule statements moving the statement
tmp0 into a separate loop. Although loop distribution enables better vectorization
and parallelism in general, in this example, it prevents the compiler to contract the
tmp0 array and thus the memory overhead created by expansion is not eliminated.

4Contraction is used to transform the expanded arrays back into scalars. This transformation eliminates the
memory overhead created by expansion but is not always possible.
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Fig. 28. Optimizing the expanded version of 2mm-3AC.

 

 

Fig. 29. Speedup against nontiled sequential code for PolyBench-PRE.
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Loop distribution was also applied on the last loop of 2mm leading to a scheduling
of the statements manipulating tmp3 into two separate loops which prevents the
contraction of tmp3.

(2) The second class contains 7 kernels (see Figure 22): atax, fdtd-apml, bicg, lu,
jacobi-2d-imper, jacobi-1d-imper, and seidel. The kernels in this class are either
kernels where we have better performance for expansion over ignoring false
dependences (atax, fdtd-apml, and bicg) or where ignoring false dependences does
not enable tiling (lu, jacobi-2d-imper, jacobi-1d-imper, seidel). These kernels are
a part of the same class because in all of these kernels, the FCO algorithm does
not select the right loop transformation due to false dependences. As explained
in Section 6, the FCO algorithm performs many loop nest transformations that
are needed to enable tiling and to enable outermost parallelism. Skewing is one
example of these code transformations. Since loop skewing happens during FCO
and since we do not ignore false dependences during FCO, skewing is not per-
formed and thus tiling is not possible. The expanded code has no false dependences
which gives much freedom for the FCO algorithm to perform the adequate affine
transformations including skewing. jacobi-2d-imper is a good representative of
the kernels where false dependences limit the ability of the FCO algorithm to
perform loop transformations. To be able to tile the code and to extract outermost
parallelism in jacobi-2d-imper, the FCO algorithm has to perform loop skewing.
Due to false dependences in three-address code, FCO could not apply skewing and
thus tiling was not applied and only innermost loops could be parallelized which led
to a loss in performance. This class of benchmarks motivates future work towards
the integration of noninterference constraints into the FCO algorithm itself.

(3) In the third class, represented by cholesky and symm, the original code contains
scalar variables, and thus Pluto fails to find tilable loop bands (Figure 22). Ignoring
false dependences enables Pluto to find tilable bands, resulting in performance
improvements. Although the proposed technique enables loop tiling in symm, the
performance obtained with expansion is better than the performance obtained with
ignoring false dependences, because expansion enables the compiler to perform
loop distribution which helps Pluto to find more profitable, outermost parallelism
on the newly created loops instead of a less profitable, innermost parallelism on the
original loop. Finding an outermost parallelism in the case of symm is not possible
without expansion. This is an interesting example that shows that expansion can,
in fact, enable aggressive loop nest transformations and that the gain from these
transformations can bypass the loss of performance induced by memory footprint
after expansion. This benchmark motivates future work towards studying the
synergy between using expansion and ignoring false dependences to reach higher
orders of performance gains.

(4) In the fourth class, represented by ludcmp, and durbin, tiling is not possible as
tiling is not a valid transformation for these kernels (tiling will break live ranges).
The original code contains negative dependences that cannot be ignored even
by using our technique, because the relaxed permutability criterion defined in
Section 4.4 does not hold (in Polybench-original and in Polybench-3AC). In durbin,
even after expansion, the application of tiling remains invalid.

8.3. Reasons for Slowdowns

In kernels such as atax, fdtd-2d, trisolv, bicg, lu, jacobi-2d-imper, jacobi-1d-imper,
seidel, and cholesky, the overhead of parallelization is higher than the benefit of
parallelization. In trmm, for example (presented in Figure 30), the overhead of
synchronization at the end of each iteration of the loop t2 (the loop with induction
variable t2) is higher than the benefit of the parallel execution especially in the case
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Fig. 30. Innermost parallelism in the expanded version of trmm.

of a small number of iterations in the inner loop nest. Although the parallelization
is not profitable, Pluto parallelized the inner loop nest because it lacks an adequate
profitability model. In some other kernels, the FCO algorithm performs partial loop
distribution creating many parallel inner loops nested in an outer sequential loop.
Parallelizing many inner loops impacts performance negatively, and leads to more
slowdowns. Having a model that helps Pluto to decide when the parallelization is
profitable and when it is not would enable Pluto to avoid such slowdowns, but this is
orthogonal to the contribution of this article.

8.4. Performance Evaluation for Polybench-PRE

Figure 29 shows the effect of optimizing the Polybench-PRE with and without the
-ignore-false-dependences option. This figure, when analyzed together with Figure
23, shows the performance enhancement obtained when tiling is enabled.

Tiling for the kernels gemver, gesummv, and fdtd-apml is not valid, consequently
these kernels do not show any speedup. For the other kernels, the tests show that the
use of the option -ignore-false-dependences restores Pluto’s ability to identify tilable
bands despite the application of PRE.

9. CONCLUSION AND FUTURE WORK

Loop tiling is one of the most profitable loop nest transformations. Due to its wide
applicability, any relaxation on the safety criterion for tiling will impact a wide range
of programs. The proposed technique allows the compiler to ignore false dependences
between iteration-private live ranges, allowing the compiler to discover larger bands of
tilable loops. Using our technique, loop tiling can be applied without any expansion or
privatization, apart from the necessary marking of thread-private data for paralleliza-
tion. The impact on the memory footprint is minimized, and the overheads of array
expansion are avoided.

We have shown that ignoring false dependences for iteration-private live ranges is
particularly effective to enable tiling on three-address code, or after applying scalar
optimizations such as partial redundancy elimination and loop-invariant code motion.

We are investigating how to integrate noninterference constraints into the FCO
algorithm itself in order to ignore false dependences on a more general class of affine
transformations and avoid the performance degradation observed when converting a
few benchmarks (such as lu and jacobi-2d) to three-address code. We are also interested
in combining this technique with on-demand array expansion, to enable the maximal
extraction of tilable parallel loops with a minimal memory footprint.
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