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In this discussion, I shall try to identify those general criteria for interactive 
on-line systems which seem most important for the experimental solution of 
mathematical problems. To illustrate some of these, I shall refer to Professor 
Glen Culler's on-line system [1, 3], which has been in operation at the 
University of California at Santa Barbara since 1966. While it is far from an 
ideal system, I believe that it still ranks first in terms of the number of real 
problems (of at least moderate difficulty) which have actually been solved, 
by a variety of users, with the aid of this system or one of its earlier versions. 
Its strengths and weaknesses have, therefore, some general relevance to a 
discussion of on-line systems for experimental applied mathematics. 

A close analogy can be drawn between houses and interactive systems, with 
the architect corresponding to the system designer, the builder corresponding 
to the system programmers who implement the system, and the people who 
live in the house corresponding to the users. In both cases, considerations of 
practical convenience must play an important role in the basic design. In 
addition, a good architect will give strong weight to matters of aesthetics, 
while the designer of an interactive system for mathematical applications must 
be guided by a strong sense of mathematical structure. 

The architect interacts strongly with the prospective "users" in setting 
specifications, and then initiates an essentially creative process involving many 
individual decisions. If these are made correctly, then the finished house has 
an attractive appearance, " lives well," and is aesthetically pleasing. However, 
if enough of the decisions are wrong, then the resulting house will be un-
comfortable to live in, perhaps even ugly, even though it conforms to the 
formal specifications. All of these comments apply, mutatis mutandis, to 
interactive computer systems. As a general rule, houses designed by a talented 
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architect turn out better than those in which a builder selects a design (often 
based more on constructional conveniences than on the detailed desires of the 
client) and then builds a house. 

Among successful houses, there is of course no unique design; the owner's 
needs and tastes must have a determining influence. So, too, with on-line 
systems. I clearly cannot represent, as the title implies, THE user's point of 
view; at best I can try to speak for those users, i.e., theoretical physicists, 
applied mathematicians, engineering analysts, etc., who need to solve difficult, 
albeit mathematically formulable problems. In this paper, I shall set forth some 
general principles which I think must be considered in the design of inter-
active systems for experimental applied mathematics. Like the satisfied 
occupant of a series of well-designed houses, I am necessarily influenced by 
the experience which I, and others, have had in solving problems using 
Professor Culler's systems, but I have attempted to abstract from this expe-
rience those general features which are invariant to the details of system 
implementation. 

I. The UCSB System 

Since Professor Culler's system will be used for illustrative purposes, we 
very briefly list here some of its principal features. For a more complete 
account, the reader is referred to Karplus [1], which contains a reproduction 
of the user's manual for the 1966 UCSB system. We shall occasionally refer 
to an earlier version of this system, which has been in operation at TRW 
Systems since January, 1965, and also the to newest 1968 version of the 
UCSB system [3]. (The latter serves a number of local users and also, via 
phone line, remote consoles at UCLA, the Lawrence Radiation Laboratory 
(Livermore), and the University of Kansas. It is the most powerful system of 
this type, since it is implemented on a 3rd generation computer (IBM 360/65) 
and is part of a mixed on-line/batch system, with the on-line side providing 
an improved version of the earlier systems.) 

Physically, a console, which is the system, so far as the user is concerned, 
consists of two keyboards and a (storage) oscilloscope for graphical and 
alphanumeric displays. One keyboard is designated the operator keyboard; 
each of its keys initiates a subroutine. The other, the operand keyboard, 
is used to designate addresses for data storage. In each case there is 
essentially a one-to-one correspondence between keys of the operator key-
board and subroutines, and between keys of the operand keyboard and data 
locations. The system is basically oriented toward functions, in the sense of 
classical mathematical analysis, in that subroutines typically work on a real 
or complex vector, having up to 125 components. Each user has, within the 
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computer, a " vector register," i.e., a set of core locations which can hold one 
such vector, together with a binary scale (for display purposes). Most of the 
basic macros of the system are either transformations of this vector accumu-
lator, called the y-register, or display operations. For example, the exponen-
tial operation, initiated by pushing the EXP key on the operator keyboard, 
computes the exponential of the contents of the ^-register, component by 
component, and leaves the result there. Pushing the STORE key of the 
operator keyboard, followed by any key of the operand keyboard, say G, 
(these keys are labeled as on a normal typewriter), transfers the vector con-
tained in the ^-register to location G; LOAD H transfers the vector in loca-
tion H to the j-register; DISPLAY A plots the vector in location A on the 
scope face; DISPLAY 13 followed by carriage return (to indicate the end 
of a numerical sequence) displays the decimal value of the 13th component of 
the ^-register, etc. 

Different levels of mathematical operations, e.g., scalars, real vectors, 
complex vectors, etc., are assigned to different "levels" of the operator 
keyboard in a fashion analogous to shifts on a typewriter, save that some 18 
such levels are available. Level changes are accomplished by a set of operator 
keys labeled with roman numerals. I for real scalars, II for real vectors, 
III for complex vectors, etc. For example, the operations of Level III act on a 
pair of real vector registers, termed the x-register and the j-register, which 
together constitute a complex vector register. Basic macros of the system are 
provided on Levels I through IX. An additional set of "use r " levels, access-
ible by pushing a key labeled USER and then a roman numeral key, are 
initially empty. All of their keys are available for storage of user-generated 
programs, called console programs (see Section II.C). 

II. Some General Requirements 

On the basis of several years of experience in solving mathematical 
problems with on-line systems, there appear to be several characteristics 
which a user should demand of any such system, irrespective of the particular 
details of its implementation. 

A . RAPID RESPONSE 

In a discussion of " interactive " systems, it might be assumed that this 
requirement of rapid response would be satisfied automatically, but it is so im-
portant (and there are enough examples of systems which violate it) that it 
properly heads the list. It must appear to the user that "trivial" requests 
are executed immediately (i.e., in a fraction of a second), including return of 



14 BURTON D. FRIED 

information to the user, if desired. The basic analytic macros of Culler's system 
provide good examples of such " trivial" requests. To perform an elementary 
unary mathematical operation on a vector of the order of 125 components: 
square, square root, running sum, first difference, sine, cosine, exponential, 
etc., or an elementary binary operation on two such vectors: sum, difference, 
product, or quotient, requires only a few milliseconds of computer time at 
most. This is likewise true of the elementary display operations such as 
displaying a curve or a numerical value.1 For more substantial requests, a 
longer response is appropriate, but longer only in proportion to the work 
requested, so long as the user elects to remain in an on-line, interactive or 
foreground mode. He should have the option of sending jobs to the batch side 
of the system, and of accepting then the associated queuing and turn-around 
times. 

A nontrivial contribution to rapid response is, of course, the use of oscil-
loscopes, rather than typewriters or plotters, although the latter do have their 
proper place, as discussed in Section J. Early oscilloscope consoles have been 
expensive and unwieldly, but current technology offers several inexpensive, 
neat solutions such as storage scopes, closed circuit TV systems, and cheap 
refresh techniques. Therefore we shall assume in what follows that the com-
puter output, graphical or alphanumeric, is available to the user at a suitable 
oscilloscope console. 

B. APPROPRIATE, a priori, INTERNAL ORGANIZATION 

The system must provide a convenient representation at the level of class-
ical mathematical analysis, so that the user need not contend with the tedious 
business of organizing single numbers into the functions, vectors, matrices, 
etc., used in higher mathematics. It is this unrewarding activity which con-
stitutes the bulk of scientific " programming," Fortran and other languages 
notwithstanding, and which makes it so difficult for the user to keep his 
attention focused even on the mathematics of his problem, let alone on its 
significance in terms of the original application. 

In Culler's system, for example, the basic macros, each initiated by a 
single key push, perform an operation on an entire vector of 125 components, 
making it possible for the computational steps to be actually at the level of 
functions, i.e., at the same level of abstraction as ordinary analytical work. 

1 Of course, whatever the maximum quantum of time which the system allots for one 
macro, there will always be some elementary operations which cannot be completed in 
that time. Display of a very long curve, and operations like the exponential on a complex 
vector are examples in present systems; matrix operations will join the list in forthcoming 
systems. These operations must be segmented, with at least one segment being executed 
each time the on-line system is serviced. 
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The user can think in terms of functions, push keys which generate operations 
at the functional level, and see a (graphical) display of any function at any 
time. He can, of course, work with single numbers when appropriate, evaluat-
ing a function at a point, or conversely, substituting a particular numerical 
value, etc. Early versions of Culler's system, including the one currently 
operational at TRW Systems, did not include convenient implementations of 
these single number operations, and the user was obliged to circumvent them, 
using the Dirac-Kronecker delta function operator together with right and 
left shifts. The dramatic difference in user convenience which resulted from 
the incorporation of these single number operations as basic macros of 
the system indicates the critical importance of a correct choice of basic 
macros in an interactive system. Extension in the other direction, allowing the 
user to work with two-dimensional arrays or matrices as basic objects is, of 
course, highly desirable for applications to partial differential equations, etc. 
This is one of the items promised in the 1968 UCSB system. 

C . SIMPLE ON-LINE PROGRAMMING PROCEDURE 

Each user must be able to create and modify his own programs, on-line, 
in a convenient way, without the necessity for learning a formal programming 
language. Since the users considered here have, by definition, facility with 
advanced mathematics, this can and should be exploited in the system design. 
One solution to the on-line programming problem, exemplified by Culler's 
system, takes advantage of the fact that every user must at least be able to 
operate in manual mode, i.e., to use the system as a fancy hand computer by 
pushing keys. Therefore, the programming need consist only of collecting or 
listing key pushes and of assigning this list to a previously blank key. The 
resulting programming structure is almost trivially simple (from the user's 
point of view!), is easily learned, and makes modification or elaboration of 
programs very simple. 

For example, to differentiate one vector (say the one presently stored in 
the ^-register) with respect to another vector which is considered as the 
"independent variable" (and stored, say, in location T), using a simple 
difference quotient approximation, we would, in Culler's system, push the 
following keys: 

DIFF (this computes the first forward difference of the j-register), 
STORE W (here W is just a working space, or temporary storage 
location), LOAD T (which brings the vector T into the >>-register), 
DIFF INV (which leaves 1 Idt in the j-register) • W. 

At this point, the difference quotient, Ay/At, is in the j-register and we might 
choose to store it for later use, say in location D, and also to display it by 
pushing STORE D DISPLAY D. 
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Pushing these keys will cause the computer to compute dy/dT in real time, 
i.e.,each operation is executed as soon as the key is pushed, and the display of 
dy/dT appears on the scope immediately after the last key push. To run in this 
" manual mode" requires, of course, a certain familiarity with the system, 
that is, the location of the keys, the general vectorial structure, the nature of 
the basic macros, etc. We need just this kind of knowledge to operate any 
on-line device, be it slide rule, desk calculator, or automobile. 

Once the user has learned to operate the system in " manual mode," he 
knows in principle all he needs to know about programming the system. 
The essential point is that this knowledge should suffice in fact, as well as in 
principle. In Culler's system, for example, a user wishing to create a program 
which would carry out differentiation as described above simply pushes 
a special key labeled LIST; then pushes exactly the sequence of keys given 
above; pushes LIST to signify the end of the sequence; and finally stores the 
list of key pushes thus created, that is to say, the new program, under any 
unused operator key on any user level. For instance, to create this program 
and then store it under the DIFF key on User Level II, he pushes 

LIST DIFF STORE W LOAD T DIFF INV • W STORE 
D DISPLAY D LIST STORE USER II DIFF. 

The first push of LIST puts the computer in a list-making mode, so far as 
that console is concerned. Thereafter, it no longer executes the subroutines 
corresponding to the keys pushed, but instead constructs a list of these key 
pushes (both internally and as a display on the scope), thus helping the user 
keep track of his key pushes. The second push of LIST restores the computer 
to its normal state, ready to store the program just constructed (and, at that 
point, fully displayed on the scope) wherever the user wishes. 

This program, created at the console and hence referred to as a console 
program, is now " stored " under the DIFF key on User Level II in the follow-
ing sense: at any future time, the user need only go to User Level II (by pushing 
the keys USER II) and then push the key DIFF. The computer will fetch this 
list of key pushes and execute them in sequence, terminating with the display 
of dy/dT. Given that the console programs so created can themselves be 
part of other console programs (that is, among the key pushes constituting 
some other console program, one may include . . . USER II DIFF . . . ) , so 
that console programs can freely call one another, as well as the basic macros 
of the system, it is clear that the pyramiding feature which constitutes the 
power of computer programming is preserved, without the linguistic elabora-
tions commonly encountered. 

Several factors account for this simplicity. We have assumed the users to 
be mathematically sophisticated, so that the system can, should, and does, take 
advantage of the complicated structure of mathematics which each user brings 
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with him in his head. Similarly, it seems to be true that successful on-line 
systems oriented to programming applications exploit the specialized knowl-
edge which their users can be presumed to have. In addition (and partly in 
consequence of this) the basic macros are appropriately structured (see 
Section B), thus freeing the user from most of the kind of programming 
details for which elaborate languages are in fact necessary. 

It can be argued that a system like Culler's involves a new " language " for 
users, but this misses the basic point. Any on-line device, automobile, desk 
calculator, typewriter, or console, requires that the user master a certain 
kinesthetic or manual skill. We may call this a language, if we wish; what is 
desirable is just that, having mastered the operation of a console, the user 
should not need to know more in order to construct programs at the console. 
This is a rather elementary point; that it needs mention at all is simply a 
consequence of the fact that there is still so little experience with sophisticated, 
powerful on-line systems. As these become more common, this point of view 
will probably be generally accepted. 

It should, of course, be easy for the user to inspect, edit, modify, and 
document his console programs. All of these features are realized in Culler's 
system, the last only in primitive from. The key pushes USER II 
DISPLAY DIFF will cause the computer to display, on the scope, the con-
stituent key pushes of that program, i.e., the same display as that which 
existed when the user finished making the console program originally. At this 
point, he has available (in the 1968 UCSB system) a very sophisticated and 
convenient on-line editing capability for modifying that program. He can then 
store the new version, either in the location from which it came (USER II 
DIFF) or in some other location. A descriptive, English language, comment 
concerning the program can be constructed, stored with the program (the 
second LIST key push is followed by STORE USER II CTX DIFF), and 
redisplayed at will (USER II DISPLAY CTX DIFF). Finally, a new name, 
djdT for our example, can be associated with any key of any user level, with 
the consequence that when that key is used in some other console program, 
the scope display will show, not its native name ( . . . USER II DIFF.. . ) , 
but rather the name assigned to it by the user ( . . . USER II d/dT...). 

D . AVAILABILITY OF DATA. 

An important principle, neglected in some current systems, is that data 
resulting from a sequence of on-line calculations should be available there-
after to the user for further computations after examination, or modification, 
by the user. These data should reside at a level of mass memory appropriate 
to the size of the data block, unless or until the user replaces them with other 
data, or in some fashion indicates that they are no longer to be considered 
current. 
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E . DIRECT USER CONTROL 

The user should have full control of his part of the computer, i.e., of the 
section of memory (both fast core and mass memory) assigned to him by the 
system, as well as control of the actions of the central processing unit during 
the times when it services his requests. This includes his initiation of sub-
routines, either those provided by the system or those constructed by him at 
the console, and requests for computer output, graphical or alphanumeric. 

F . DEVELOPMENT OF INDIVIDUAL USER SYSTEMS 

It is absolutely essential that each user have convenient ability to accu-
mulate his own subroutines, as well as data, and to build a user system 
specialized to his particular problem area. When he leaves the console, he 
must be able to store his system (in mass memory) so that when he returns 
and reloads his system, the computer is, from his point of view, restored to 
the same condition as when he left it. It is simply not possible to attack 
mathematical problems of much significance if this ability to store user 
systems is not provided. 

Experience to date has shown that even for rather modest problems, the 
user may need space of the order of a few thousand words for storing his 
own subroutines. The additional space for data can vary widely, depending 
on the problem, but a total of 10 to 15 thousand words for data plus sub-
routines is probably a minimum for nontrivial problems. The requirements for 
live mass memory, available when the console is being used, may be 2 or 3 
times greater than this. 

G . GRAPHIC INPUT 

Although the usefulness of graphic output for problem solving in applied 
mathematics is well established, there is, so far, little experience concerning 
the role of graphic input. At present, it appears that the only interactive 
system which has a power comparable to that of Culler's UCSB system, and 
which also allows for graphic input, is the three year old TRW Systems 
On-line Computer, where a stylus device (the BBN Graphacon or Rand Tablet) 
has recently been interfaced to one console of the system. The stylus can be 
used to sketch a curve, which the computer then puts into normal digital 
representation for curve fitting or other analytic processing. In addition, 
Robert Schreiner has prepared simple console programs which allow a user to 
employ portions of the tablet as a pseudokeyboard, particularly in connection 
with elementary graphic input operations pertinent to computer aided design. 
Although this appears to be a significant addition to the system's capabilities, 
a careful assessment must await further experience. One point which should 
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be noted is that a stylus device of this sort can accomplish all of the tasks 
for which a light pen is normally used, and in addition, do things which are at 
best awkward with a light pen because of the parallax, e.g., accurately trace 
a curve from a sheet of paper into the computer. 

H . AVAILABILITY OF HARD COPY 

Considering the stacks of computer printout which clutter the offices of 
most heavy users, this requirement may seem quite superfluous. However, 
in a proper on-line system, wherein any data is instantly available at a console 
in graphical or alphanumeric form, we may almost forget that hard copy 
has its proper and very important place. This is, to be sure, far different than 
in a batch system; the on-line user can be quite selective, examining a large 
volume of data at the console and sending to the hard copy device only that 
portion which he really wants to have on paper. The proper time to arrange 
scales, ranges and increments of variables, graphical format, and the like to 
suit the user's needs or tastes is while the information is still in the computer. 
Only then, after appropriate checking with the scope, should hard copy be 
called for, thus saving the nuisance of further transformation of data by hand 
computing and graphing which so often follows the computer solution of a 
problem. 

For many purposes, a polaroid camera snapshot of the scope face is the 
most convenient form of output, but this needs to be supplemented with a 
printer or typewriter of some kind, to handle extensive alphanumeric output. 
Some type of plotter for graphical output is also desirable, since it is often a 
great convenience to be able to annotate curves in a way which cannot 
easily be done on a photograph, and then give the whole page to a draftsman 
for copying in india ink on vellum, as when preparing manuscripts for 
publication. 

In consequence of the ready availability of results at the console, a user 
can scarcely make a strong case for having hard copy quickly. Information 
which he is very anxious to have can be obtained at the console; pictures of 
the scope can be snapped if he wants something to take away. For the hard 
copy, particularly in large volume, an overnight turn-around time should 
generally suffice. Correspondingly, it is not really necessary for the hard copy 
to be available at the remote console; it could simply be produced at the 
computing center. 

I . CONVENIENT CONSTRUCTION OF PROBLEM ELEMENTS AND THEIR SUBSEQUENT 
COMPOSITION 

The activities involved in the on-line solution of mathematical problems 
divide into two not wholly disjoint parts. In the first, the user simply constructs 
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the analytic elements in terms of which the problem is stated, or those elements 
needed to implement a particular method of solution. The second, and more 
challenging task, experimental and inductive in nature, involves the combina-
tion of these elements to provide a successful technique for generating the 
desired solution or solutions. This second aspect is hard to illustrate; prob-
lems whose solutions are not yet understood can scarcely provide an instruc-
tive demonstration, whereas solving one whose structure is known a priori 
really comes under the first category, i.e., involves only direct construction. 
Some attempts to illustrate both of these aspects of on-line problem solving 
may be found in Karplus [2] together with a discussion of the complex inter-
relation between them. A user begins with the constructive elements, moves 
on to the problem solving itself, drops back to the constructive mode as he 
discovers the need for new tools, etc. This entire activity is fruitful only if the 
system as a whole has been properly designed, particularly as regards the 
subject matter of Sections A, B, and C. 

J . FLEXIBILITY REGARDING USER NEEDS 

As noted earlier, an appropriate choice of basic macros is of vital impor-
tance. Although we can be guided by the general principle of avoiding either 
a starkly irreducible set or an overly redundant one, nothing can substitute 
for experience. The adequacy and convenience of Culler's set of macros, for 
example, is partly a consequence of experience (by many users) with the five 
earlier versions of the present system. On-line system designers could take 
advantage of this experience by using this set as a starting point, adding new 
elements as needed. Regardless of the intial complement chosen, however, it 
is imperative that systems programmers pay close attention to user needs. 
Of course, it can happen that the correct and appropriate response to a user's 
complaint, that he cannot conveniently carry out a certain operation or 
process, is simply to show him that indeed the system already contains the 
desired capability. If in fact it does not, it may still be possible to construct 
a console program which does what is required, even if awkwardly or in-
efficiently. The user can then experiment with this, modifying it and finally 
arriving at an accurate specification for a new basic macro which the systems 
programmers should then be able (and willing!) to implement quickly (which 
of course implies a certain sophistication and modularity for the underlying 
system). 

These, then, are the criteria of at least one user; their practical realizability 
is proven by the example of Culler's system. As noted earlier, that system 
provides a reasonable starting point for further developments, which ought to 
include: 

1. implementation on a larger computer (IBM 360/91, CDC 7600, or 
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equivalent) so that on-line techniques could be used also for problems 
requiring heavy computing (e.g., particle simulation problems in kinetic 
theory, three dimensional fluid dynamics problems, etc.), 

2. provision for use of vectors with more than 125 components (with 
appropriate penalties regarding speed and user storage allotments), 

3. addition of basic macros for two dimensional arrays and for matrices 
(e.g., algebraic operations plus diagonalization for Hermitian matrices), 

4. extension to algebraic (symbol manipulation) types of problems, 
5. easy communication between the batch and on-line sides of a mixed 

batch/on-line system, allowing on-line users to send appropriate jobs to the 
batch side (e.g., production versions of problems constructed and checked 
out on-line) and subsequently to examine the results on-line and further 
modify the console programs, etc. 

All of these items, and others besides, are promised for the new UCSB 
system; most, if not all, have in fact been suggested by Professor Culler him-
self. The crucial point here, and one of general applicability, is that given a 
well-structured system such as Culler's, having generality (in the console 
programming sense) and power exceeding a certain threshold, each addition 
to the repertoire of capabilities leads to a very impressive increase in the over-
all power of the system. An on-line interactive system for applied mathematics 
should aim at incorporating, as much as possible, the structure and open-
ended character of mathematics itself. Such a system will then be comfortable 
and convenient for people with mathematical training to use, and growth, 
both of the on-line system itself, and of individual users' systems, will be 
easily and naturally achieved. 
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