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I. Introduction 

AMTRAN is a time-sharing remote-terminal computer system ultimately 
intended to permit scientists and engineers to "converse" directly with a 
computer in a " natural" mathematical language. Its current objectives entail 
attainment of the following goals: 

a. " automatic " mathematical problem-solving, 
b. high-speed, on-line, scientific programming, 
c. a macro-compiler and operating system, and 
d. the development of low-cost, $5,000-15,000, graphic display terminals. 

In keeping with these objectives, AMTRAN is designed for three types of 
users: the scientist or engineer with little or no programming experience, the 
applications programmer, and the systems programmer. 

Before describing the objectives of the AMTRAN system more fully 
and discussing our progress in attaining them, it seems appropriate to 
mention the current and projected embodiments of the system. A modest 
version of AMTRAN, including a prototype, low-cost graphics terminal, is 
operational on an IBM 1620 computer. The 1620 version utilizes a real-time 
interpreter and will be the principle topic of discussion in this paper. A more 
advanced but less complete version of AMTRAN is running on a Burroughs 
5500 computer. It consists of an interactive " compiler " and a reentrant time-
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sharing monitor with automatic disk-core overlay capability which runs 
within the framework of the B-5500 multiprogramming monitor. The 
B-5500 system is written in ALGOL 60 to facilitate conversion to other 
machines, and stores both source and " pseudo-object" code. The " object" 
code is executed interpretively but in a manner which under many conditions 
is almost as fast as, say, a compiled FORTRAN program. The B-5500 version 
is currently accessible over voice-grade telephone lines from teletypes or from 
a remote keyboard/Selectric printer terminal. Another implementation of 
AMTRAN is under development for the IBM 1130 computer with an opera-
tional $10,000 graphics terminal. This system was recently tied to the B-5500 
via a voice-grade telephone line. Future plans call for the conversion of the 
B-5500 system to the UNIVAC 1108 computer. 

It should be emphasized that AMTRAN is completely compatible with 
card, printer, and other batch-processing input and output devices and, on the 
B-5500 and IBM 1130 computers, should provide efficient batch-processing of 
production programs. However, its raison d'etre is conversational use by the 
programmer and the nonprogrammer; and, for this application, interactive 
terminals are required. All three versions of AMTRAN were initially imple-
mented using typewriter or teletype terminals to " get on the air." However, as 
soon as possible, we are shifting to low-cost, vector-display graphics terminals. 

Such a low-cost terminal is exhibited in Fig. 1. It consists of a keyboard, a 

Fio . 1. A M T R A N terminal. 
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typewriter, and an 11-inch Tektronix storage scope for graphical output.1 The 
keyboard consists of a standard typewriter keyboard, supplemented by a 
number of user-assignable buttons and a set of special function and operator 
buttons with labels such as SIN, + , d/dx, etc. In operation, the labels associ-
ated with each button are displayed on the left-hand storage scope in an 
automatically formatted form as the user depresses the buttons. As the user 
builds up his statement or mathematical expression on the left-hand scope he 
may modify or delete it. After he is satisfied with his statement, he releases it 
to the computer for processing, at which time, an identically formatted type-
out of his expression is made on the typewriter. Computed results may be 
printed out on the typewriter or the scopes. Error and status messages are 
recorded in abbreviated form on the typewriter and are printed out in a more 
elaborate form on the scope. One of these terminals has been in operation for 
about 10 months and has exhibited distinct advantages over teletypes. 

Future plans call for the replacement of the Selectric by a low-cost photo-
static printer. The rapid (150-300 character per second) writing rate, the 
graphical input and output, the semiautomatic type-out of the on-line 
graphics terminals, and the favorable responses of the users have led us to 
conclude that such terminals are worth some additional expense. It should be 
noted that the 11-inch Tektronix display scopes provide extraordinary 
resolution, linearity, and freedom from edge effects compared to real-time 
scopes. 

A typical problem for which AMTRAN might be used is the fitting of a 
polynomial to a set of data values by the method of least squares. The applica-
tion illustrated here is a problem in thermal conductivity which arose in the 
analysis of the data from a micrometeoroid satellite experiment. The investi-
gator was attempting to determine whether there were any correlation between 
pressure (X) and thermal conductivity (7) . He entered his raw data on cards 
and then used the DISPLAY. DATA subroutine (which was already available 
in the subroutine library) to examine the effect of fitting a quadratic curve 
to the data. Figure 2 shows his commands to the computer as they appeared 
on the left-hand scope. Figure 3 shows the data points and the least-squares 
quadratic curve, as it appeared a moment later on the right-hand scope. We 
can see (Fig. 3) that Y is not directly (or inversely) proportional to X, since 
this would be evinced by a straight line at a 45° angle to the axes. Also, there is 
a "wild" point just to the left of the K-axis that deserves special attention. 

Next, the investigator calculated the correlation coefficient by entering 
TYPE CORRELATION X, Y, causing the computer to type out: 

CORRELATION X, Y=-.19023804 

1 Storage scope terminals of a similar type were pioneered by G. J. Culler and B. D. 
Fried [1]. 
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ENTER PROGRAO 
L . DISPLAY" DATA X . Y . 
2 . TYPE C O R R E L A T I O N X , Y 1 
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Although in this case, the raw data was entered from cards, it could also 
be entered through the keyboard or, in principle, from tape or on-line data 
input sources. 

(It is possible that a full-scale, on-line statistical analysis system could 
have important implications for the social scientist. It might permit him to 
analyze and manipulate data as easily as the physical scientist manipulates 
analytical expressions.) 

II. Mathematical Problem-Solving Systems 

Several institutions in the United States are attempting to develop 
"automatic" mathematical problem-solving systems which will either solve 
the user's problems or will warn him if they cannot. Such systems would 
examine and classify the user's input expressions, would interrogate him if 
additional information were necessary, would select the appropriate algorithm 
for solution of the problem, and would monitor error during the course of 
the computation. This is an ambitious endeavor. Before describing any 
AMTRAN efforts in this domain, we wish to examine certain general ques-
tions regarding " automatic " mathematical problem-solving systems. 

First of all, how far can such systems go ? Where will the line be drawn 
between the user and the computer? 

The answer to these questions will have to be determined through ex-
perience. However, many problems in applied mathematics, although they 
call for a wide range of mathematical knowledge, do not require the develop-
ment of new problem-solving techniques. This suggests that many of the 
common problems in science and engineering, such as the solution of well-
behaved linear and nonlinear ordinary and partial differential equations, the 
evaluation of integrals, the solution of simultaneous algebraic equations, and 
the least-squares or mini-max fitting of curves to data, should be potentially 
solvable by such a system. 

Second, how useful would such systems be to the scientist or engineer? 
Many of the problems brought to the computer require " custom " treatment. 
Could a " prefabricated " mathematical problem-solving system solve enough 
real-world problems to make its development worthwhile ? We think that the 
answer to this question is an emphatic "yes." 

The ability to key into a computer, say, a system of nonlinear differential 
equations and to receive an automatically scaled and formatted plot of the 
solution curves almost immediately, might revolutionize science and tech-
nology. In principle, this can be done today, but in practice it is a tedious and 
cumbersome task. To the computer scientist who is skilled in numerical and 
programming techniques, an automatic mathematical problem-solving system 
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may generate little interest, but to the user who doesn't want to spend the 
several years necessary to become a programming and numerical expert, an 
on-line problem-solving system becomes a passport to a new world of non-
linear mathematics. 

Third, if some computer scientists are unenthusiastic about automatic 
mathematical problem-solving, it should be mentioned that some mathema-
ticians also feel the same way. Two reasons given for this reaction are that 
such a system would reduce the user's need or desire to study mathematics, and 
that such a system would lead the user down a primrose path by masking the 
inherent difficulty and variety of numerical analysis. We feel that the first of 
these reasons is not a cause for concern. The introduction of the slide rule and 
the desk calculator didn't eliminate the need for teaching arithmetic. The 
second concern, that of the user developing misplaced confidence in his 
automatic problem-solving system, would seem to be more serious. Yet this 
problem arises in other areas. It would seem that we should not refrain from 
developing the best system we can because it may be misused. We would hope 
that the philosophical problems would work themselves out later. 

A fourth matter relating to automatic mathematical problem-solving 
systems is that they would seem to be logical points of departure for problem-
oriented languages (at least in science and engineering). A wide variety of 
problem-oriented languages is possible but they all have one thing in common: 
applied mathematics. They are only as good as the mathematical subroutines 
which underlie them. Since these problem-oriented languages are all built upon 
a foundation of applied mathematics, it would seem that, in the interest of 
efficiency, it is here that a major effort should be placed. Even problems which 
require the trial and error application of various mathematical techniques are 
potential candidates for solution, although this may get into a gray area of the 
man-machine interface in which it is more economical for the qualified 
numerical analyst to make the decision rather than the computer. In some 
situations, the computer might make the trial and error selection itself. 

This suggests three guidelines which we think could be observed advan-
tageously by the designers of automatic mathematical systems. 

a. We should begin with rote-mechanical types of solution procedures, 
and should work up gradually to more flexible pattern recognition or trial and 
error techniques. The "cookbook" approach, in which the human pro-
grammer tries to anticipate and to provide for the problems that may arise, 
should yield big dividends soon. This, in turn, should generate the support 
necessary for the large-scale task of developing economical, higher-level 
adaptive systems. 

b. The user ought to be able to override the automatic problem-solving 
system at any time. He ought to be able to use only selected portions of the 
system, or to block it out altogether, if this is his desire. 
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c. Certain major advantages may accrue to an integrated automatic 
problem-solving system that are not available to libraries of isolated sub-
routines. In the integrated system, a division of labor occurs. The functions 
or the data points may be examined by the system when they are generated or 
entered, and may be monitored thereafter for error (e.g., differencing error) 
by the system as the calculation proceeds. This means that, after the initial 
examination, subsequent operations may be carried out by fast, simple, 
general-purpose subroutines which depend upon the checks and standard 
format established when the function was originally generated. This is in 
contrast to the situation with isolated subroutines. Here, the user must either 
pick out an efficient special-purpose subroutine or must draw upon a general-
purpose subroutine which must make elaborate tests and must be self-
sufficient. 

Within the AMTRAN system the principal effort to develop such a mathe-
matical system has been invested in a basic package for numerically represent-
ing formulae, locating real zeros and extrema of functions, integrating and 
differentiating functions, numerically solving ordinary and partial differential 
equations, etc. Primary emphasis in the future will probably be upon those 
problem areas which are not currently included in Purdue's NAPSS 
system [2], Some automatic mathematical routines which are currently 
available in AMTRAN are listed in Table I. 

TABLE I 

ADAPTIVE NUMERICAL ANALYTICAL PROBLEM-SOLVING ROUTINES 

REPRESENT Numerically represents mathematical formulae, selecting near 
optimum step sizes, assuming a cubic polynomial fit. Automatically 
detects singularities, cusps, discontinuties, and "hairpin" extrema. 

f Numerically integrates mathematical formulae using variable-step-
size error-controlled algorithms. Accommodates the general integral 

including special cases such as 

DERIV Calculates the numerical derivative using a cubic fit (variable interval 
spacing.) 

SYMDIF Symbolically derives the analytical derivative, given the analytical 
formula. The resulting analytical derivative is in the form of an ex-
ecutable code string, which may be evaluated to give numerical 
values for the derivative. 



TABLE I continued 

SOLVE 

INVERT 

ZEROES 

MINIMAX 

LET 

STEP.FCT 

INTERPOLATE 

CUBIC 

SCOPE 

This operator solves sets of simultaneous algebraic or ordinary 
differential equations. The differential equation solver currently uses 
a variable-step-size, Runge-Kutta integration package developed at 
Aerospace Corporation which will handle any number of simultane-
ous first- or second-order differential equations. Error control is 
provided by a Simpson's rule check on the fourth-order Runge-Kutta 
integration formula. The algebraic equation solver currently uses the 
Crout reduction technique. 
It can also solve partial differential equations by the method of 
characteristics. 

The INVERT routine, when applied to a scalar, gives the reciprocal; 
when applied to a numerical representation of a monotonic function 
Y(X), gives the functional inverse X{ Y); and when applied to a 
matrix A, gives the inverse matrix A ' 1 . 

Locates all real zeroes within the range of definition of functions 
which have been generated by the REPRESENT operator. Gives 
warning if multiple roots are possible. 

Locates all relative extrema within the range of definition of functions 
which have been generated by the REPRESENT operator. 

The LET operator causes a numerical change of variables (for func-
tions known only in tabular form). 

STEP . FCT (T) is the unit step function defined by 

«(/) = 0, t < 0 
u(t) = 1, t> 0. 

Given two monotonic sets of numbers X and Y in one-to-one cor-
respondence with each other, and a new set of x's (XI), the INTER-
POLATE operator provides a new set of .y's ( Yl) corresponding to 
the ATs. A Newton third-order interpolation formula is used. The 
X\ array need not be the same size as the X and Y arrays and, for 
example, may consist of only a single number. The form is Yl = 
INTERPOLATE XI, X, Y. 

CUBIC accepts A"and 7 a s inputs and generates four arrays A, B, C, 
and D of coefficients for the overlapping cubic 

AX3 + BX2 + CX + D 

fits for Y(X). 

This nonmathematical automatic-formatting display operator may 
be followed by various modifiers and combinations of modifiers such 
as: POLAR, LOG. X, LOG. Y, VECTOR, GRID, HACHURE, 
MAGNIFY, etc. One or more curves may be plotted simultaneously 
with the scale factor automatically determined so that it is common to 
all the curves. In the absence of any such modifiers, the system 
displays the data in Cartesian form, selecting one of 25 different 
plotting formats, based upon the data, with printed scale factors and 
labeled axes. 
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TABLE I continued 

S U M . O F . SERIES SUM . OF. SERIES operator is used to expedite the generation of 
functions by series expansions. 

The ERF (X) operator accepts an array expression as input and yields 
an array of error function values defined by 

2 « 
- 7 = e x p { - t 2 ) d t 
VTT JO 

as the result. 

The LAPLACE operator accepts an array f i t ) of exponential order 
as input and delivers the numerical representation of the Laplace 
transform, F(s), as output. 

The AVERAGE, SIGMA, MOMENTS, REGRESSION, and CORRELATION 
routines are self-explanatory statistical operators. The LEAST, SQUARES operator 
provides the coefficients for a quadratic least-squares fit to numerical data Y(X). All the 
trigonometric and hyperbolic operators are also present. 

Certain other operators based upon these fundamental algorithms are either available 
or are readily constructed. 

r N T E R PROGRAM 

1 . R E P R E S E N T 7 , 1 , 2 , Y - T A N X . 

T H I S I S T H E C O M P U T E R S P E A K I N G . I H A V C 

LOCATED A C R I T I C A L REGION 

T O T H E R I G H T O T T H E P O T N T T * 1 5 S 2 , 

S T A N D . 

SINGULARITY AT T » 1 . . I T A#$ 

TO B£ AN ESSENTIAL 

SIN&U.ARI r r . 

z . SCO-e . L l N t / * Y V i X 

FIG. 4. Man-Computer dialogue for automatic representation of tan x. 

ERF ( X ) 

L A P L A C E 
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To give a specific example of how the automatic mathematical system 
works, we consider the following problem: 

1. REPRESENT 7, 1, 2, Y = TAN X. 

2. SCOPE VECTOR, Y VS X. 

In statement 1, the first entry after REPRESENT gives the desired 
number of decimal places (7) accuracy required. The 2nd and 3rd entries give 
the desired range of X (1 to 2) over which the function is to be represented. 
The 4th entry (Y =TAN X) is the expression which is to be represented. 
Figure 4 shows the response from which the computer when it encounters the 
singularity at X = nil in representing the function TAN X. In statement 2, the 
results are displayed on the scope, using the automatic formatting routine 
(see Fig. 5). 

FIG. 5. Display of automatic representation of tan x. 
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III. AMTRAN as a Programming Language 

A major goal in developing AMTRAN was to speed up and facilitate the 
programming process, since the programming requirements of an automatic 
problem-solving system are so formidable. This was to be accomplished, first, 
by providing on-line debugging and editing capability for rapid check-out of 
programs, and second, by allowing the programmer to "bootstrap" his 
problem-solving system by defining higher and higher-level " instructions " in 
order to provide fewer and larger building blocks for his programs. 

The first objective was attained. Turnaround time has been greatly reduced 
in the debugging of programs. Since on-line terminal access to computers is 
becoming widespread, we will not dwell further on this aspect. 

The second objective, that of reducing programmer effort, requires a 
description of the AMTRAN language. Only the restricted version of 
AMTRAN for the IBM 1620 computer will be discussed here. It most closely 
resembles a blend of FORTRAN and ALGOL. It resembles FORTRAN in 
its use of certain symbols such as the = sign and its lack of formal declaration 
statements. It resembles ALGOL in its ability to provide recursive procedure 
calls, subscripted subscripts, compound statements, free use of mathematical 
expressions, use of the ALGOL IF test, and in certain other ways. However, 
1620 AMTRAN also differs from these languages in certain respects, including 
the following: 

A . AUTOMATIC DEFINITION AND DIMENSIONING OF ARRAYS 

Arrays are automatically defined and dimensioned when they are first 
created. For example, the statement X = ARRAY 0, 1, 50, will generate the 
numerical representation of the independent variable X(i.e., a ramp function) 
over the numerical range from 0 to 1 with 50 intervals. Then the command 

Y = CONCATENATE X and X. 

will create a new array Y which is twice as large as the X array. Y does not 
have to be defined by a dimension statement prior to its use. A third example is 
that in which we write 

X SUB 51 = 1.02. 

where X SUB 51 is the (previously nonexistent) 51st subscript location in the 
X array. If we transfer data to a subscript location which lies outside of an 
array, the array is automatically enlarged so that it can accept the data. 

B. IMPLIED ARRAY ARITHMETIC 

With implied array arithmetic, when an array is multiplied by a scalar, the 
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operation is automatically carried out on each element of the array without 
the need for writing a DO loop (or a FOR statement). For example, the 
statement 

Y = 2 SIN X, 

will cause the computer to take the SIN of each value of X, multiply each 
value of SIN X by 2 and store each value of 2 SIN X in the corresponding 
location of Y (defining and automatically dimensioning Y, if it has not been 
previously defined). 

One purpose of the automatic array arithmetic is to make it possible to 
deal with matrices and with the numerical representations of functions as 
mathematical entities. Of course, the user may override the array arithmetic 
and may write his own loops if he so desires. 

The automatic array concept has also been extended to other operations 
such as the IF test. For example, the statement 

IF |xl > .5, THEN X SUB INDEX = 0. 

will cause the computer to automatically test each subscripted value of X 
and set equal to 0 each value of X greater than .5. 

The implied array arithmetic has afforded an important fringe benefit for 
the 1620 AMTRAN interpreter by greatly enhancing its average speed of 
execution. This occurs for the following reason. Computers tend to spend 
most of their running time operating in program loops. When implied array 
operations are carried out in AMTRAN, efficiently programmed loops are 
employed. This means that, although the linkage from one implied array 
operation to the next may take much longer than it should (because of the 
inefficient 1620 interpreter), the overall degradation in performance is moder-
ate because most of the time is spent in efficient operation in the implied array 
loops, However, in Runge-Kutta integration, in which each value depends 
upon the preceding value and implied array arithmetic cannot be used, the 
1620 interpreter becomes exceedingly slow and inefficient. Efforts have been 
made to overcome such problems on the B-5500 and IBM 1130 versions of 
AMTRAN. 

In our experience, implied array arithmetic has been a success. No parti-
cular drawbacks or penalties have been experienced. 

C . SYMBOLIC (LIST) PROCESSING 

AMTRAN provides three types of variables: data, string, and text. Data 
variables are self-explanatory, text or literal variables are lists of characters, 
while string variables are used to store and manipulate executable strings of 
code. String variables differ from text variables in that, with string variables, 
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labels or reserved words are represented by numbers rather than by the actual 
multicharacter labels themselves. This permits the programmer to deal with a 
reserved word as a single entity or symbol, and it also bypasses the time-
consuming conversion of labels to computer code when recompiling a sym-
bolic variable. Functions and procedures may be regarded as string variables. 

D . THE EXPANDABLE INSTRUCTION SET 

In most high-level languages, the user has the ability to write his own 
higher-level procedures or subroutines in order to extend, in effect, the basic 
instruction set of the system to fit his particular needs. However, in certain 
languages such as LISP, it is possible to incorporate user-defined procedures 
into the compiler so that there is no clear-cut dividing line between procedures 
and the "intrinsic" instructions of the system. This makes it possible to 
" bootstrap " the compiler, and to provide larger (as well as smaller) building 
blocks for the programmer. 

This was a key principle in the development of AMTRAN. In order to 
facilitate the process, several extensions have been made to the rules for 
defining procedures : 

a. Binary procedures may be defined in which one operand precedes 
and one operand follows the operator. For example, the vector cross product 
can be a user-defined procedure and can be used in the usual A x B format. 
The 1620 system does not provide for establishment of levels of hierarchy 
among binary operators but we hope to provide for this in the B-5500 and 
IBM 1130 systems. 

b. When calling a procedure from the keyboard, execution may begin 
before all of the parameters have been passed to the procedure. Furthermore, 
the number of input parameters may vary widely. We have called such pro-
cedures "context-sensitive" since the first few expressions which are passed 
to them determine the number and kind of additional parameters which they 
will request from the user. For example, consider the SOLVE operator. This 
procedure is written in AMTRAN. To use it, the scientist enters SOLVE 
followed by his equation or equations. These equations are analyzed and 
classified within the SOLVE procedure, which then requests from the user 
whatever additional inputs it may need to solve the problem (anywhere from 
1 to 100). The essential point is that the classification process and the request 
for inputs is a part of the SOLVE procedure which must be executed before 
the computer knows what inputs to request from the user. Furthermore, a 
variable number of inputs may be required. For the 1620 interpreter, this 
poses no problems, but for a line-at-a-time compiler it is difficult to accom-
plish. To illustrate the point, suppose that the SOLVE operator had been 
written in FORTRAN. In that case, a parameter string of some certain 
length would have to be designated when the subroutine was programmed. To 
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use the subroutine later on, a parameter string of that fixed length must be 
entered by the user in its entirety before he enters the end-of-line character and 
execution begins. This means that " context-sensitivity " is difficult to achieve. 
Yet " context-sensitive " interactive procedures are very important if an inter-
active system is to respond flexibly to a user's input! This is a problem we en-
countered which does not appear to arise in a batch-processing environment 
but which is apparently unique to the conversational mode. 

c. Code strings can be passed to procedures. This has been discussed in a 
previous section. 

The modifiable command feature makes it possible for AMTRAN to 
simulate other languages. For example, the CONCATENATE operator, as 
well as REFLECT, FORWARD, SUMMATION, INTEGRAL, and 
MINIM AX are written in AMTRAN but are intrinsic to the 1620 interpreter. 
Simple new operators can be added to the system in minutes, which makes it 
difficult to draw a hard-and-fast line between the basic instruction set and 
those which are added by the user. 

The authors should point out that the ability to expand or modify the 
AMTRAN instruction set can be a two-edged sword. It is of value in develop-
ing the system and can be used to good advantage by individual users. How-
ever, there must be some basic system which does not change form from one 
day to the next. Our present philosophy is to provide the user with a basic 
system, together with a disk file " public library " of " instructions " (extended 
procedures) which he can utilize but cannot modify without special dispensa-
tion. In addition, the user can define his own procedures and, within limits, can 
modify the AMTRAN system to suit his needs, but the master system 
remains in the background and he can always return to it. 

Space does not permit much more than the foregoing sample of features 
specific to AMTRAN. There are commands unique to interactive computing, 
such as BACKSPACE, DELETE, EDIT, RESET, etc. There are standard 
format input-output operators such as TYPE, PRINT, and SET, which permit 
the user to " converse " with the computer without necessarily writing format 
statements. 

There is automatic English formatting of code strings when the computer 
lists programs on the scope or punches out source programs on cards. 
Appendix I presents a list of the principal operators in the 1620 system. Two 
typical 1620 AMTRAN programs are presented in Figs. 6 and 7. 

One pertinent question that might be mentioned at this time is: how does 
AMTRAN relate to the principal scientific languages of the day, such as 
FORTRAN, ALGOL and PL/1 ? 

At the present time, AMTRAN programs cannot be converted to FORT-
RAN, ALGOL, or PL/1 because of certain AMTRAN features that come 
into play during execution. 
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1. X , Y. 
2 . ERASE, X1 = MINIMUM X , X2 = MAXIMUM X , X = ,666(X - X1 )/(X2 - X1) + .333. 

3. Y1 = MINIMUM Y, Y2 = MAXIMUM Y, Y = ,5(Y - Y1)/(Y2 - Y1) + .25. 
4 . WRITE.SCOPE X , Y. 
5. C = LEAST.SQUARES X , Y. 
6. X1 = MINIMUM X , X2 = MAXIMUM X , Y1 = MINIMUM Y, Y2 = MAXIMUM Y. 
7 . X = ARRAY X1 ,X2 , 50. 
8. Y = C S U B 0 X S Q + C S U B 1 X + C S U B 2 . 
9 . WRITE.SCOPE X , Y. 

10. NAME.THIS DISPLAY.DATA 117. 

F I G . 6. AMTRAN subroutine D I S P L A Y . D A T A . 

(This is the DISPLAY.DATA subroutine. The two parameters X and Y which are to 
be picked up by the subroutine are listed on the first line. ERASE causes the erasure of the 
scope. MINIMUM and MAXIMUM locate the minimum and maximum tabulated values 
in the X array. Statement 5 causes the polynomial coefficients for the LEAST.SQUARES 
curve fit to be stored in an array called C.) 

1. N, A1, X1, X2, Y, ENTRY, H = (X2 — X1 )/10, X = X1, Y2 = Y, I = 0. 

2 . J = 0, REPEAT N, Y3 SUB I = Y SUB J and I = I + 1 AND J = J + 1. 
3. IF X GT = X2, THEN GO TO 19. 
4. Y1 = Y. 
5. RUN, A = H Z , X = X + H/2, Y = Y1 + A/2, F = A. 
6 . RUN, B = H Z , Y=Y1 + B/2. 
7. RUN, C = H Z , X = X + H/2, Y = Y1 + C. 
8. RUN, D = H Z , Y 2 = Y = Y 1 + ( A + 2 B + 2 C + D)/6. 
9 . RUN, A = H Z , X = X + H/2, Y = Y2 + A/2 + A/2, G = A 

10. RUN, B = H Z, Y = Y + Y2 + B/2. 
11. RUN, C = H Z , X = X + H / 2 , Y = Y 2 + C. 

12. RUN, D = H Z, Y = Y2 + (A + 2B + 2C + D)/6, RUN, D = H Z. 
13. E = ABS(Y - Y1 - ( F + 4 G + D)/3)/(.000001 ABS Y + A1), F = LOG MAGNITUDE K + 1. 
14. IF E GT 1, THEN X = X - 2H AND Y = Y1 AND IF E GT 2, H = H/(EXP(F LN 1.5848931)) 
14 .C AND GO TO 3, OTHERWISE H = H((.5/E)*» .2) AND GO TO 3. 
15. IF E LT = .016, THEN H = 2 H, OTHERWISE H = H((.5/E) " .2). 
16. J = 0, REPEAT N, Y3 SUB I = Y2 SUB J AND 1=1 + 1 AND J = J + 1. 
17. J = 0, REPEAT N, Y3 SUB I = Y SUB J AND 1=1 + 1 AND J = J + 1 
18. GO TO 3. 
19. Y3. 
2 0 . NAME. THIS RUNGE1 104. 

FIG. 7. Schlesinger-Sashkin adaptive Runge-Kutta subroutine for integrating sim-
ultaneous first-order differential equations. 

[This is the adaptive Runge-Kutta-Simpson's rule integration subroutine developed by 
Schlesinger and Sashkin at Aerospace Corporation. In this routine, the ENTRY which 
appears in the first line causes the computer to pick up a code string (namely, the differential 
equation), while the word RUN causes the accepted code string to be evaluated repeatedly.] 
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There is no provision in the 1620 system for the incorporation of FORT-
RAN or ALGOL subroutines or procedures. However, the B-5500 AMTRAN 
system is written in ALGOL and ALGOL procedures can readily be attached 
to it. It is planned that both FORTRAN and ALGOL subroutines will be 
attachable to the B-5500 and IBM 1130 systems. It is hoped that the B-5500 
and IBM 1130 systems can provide full conversational ALGOL when they are 
complete. 

We are now ready to return to one of the questions posed at the beginning 
of this section: how much can AMTRAN reduce the labor involved in 
applications programming? It will be apparent at this point that we have 
sought to achieve such reductions by (a) reducing the amount of bookkeeping 
with which the programmer must cope, and (b) by expanding (and allowing 
the programmer to expand) the instruction repertoire of the system. 

We do not yet have a clear and reliable answer to this question. How-
ever, in the eight benchmark tests which have been conducted on the 
1620, improvements in programming, keypunching, and checkout times 
have been measured which range from 2 : 1 to 20: 1 over on-line FORT-
RAN II. 

One problem that has become apparent is that the addition of new high-
level operators to the system frequently requires modification of the basic 
interpreter. The SOLVE operator is a good example of this, since it required 
modifications of the system to handle "context-sensitive" procedures and 
symbolic variables. This experience has led us to our third objective: that of 
writing the interpreter or "pseudo-compiler" in such a form that it may 
readily be reprogrammed. 

IV. The Macro Compiler 

The 1620 AMTRAN interpreter is a complicated, interwoven unit. Every 
time a modification is made to some part of it, other parts must also be modi-
fied. This has inspired us to look for a better way. We hope to construct the 
1130 AMTRAN system in a completely modular way, including the time-
sharing monitor and the disk-core overlay scheduler. The system would be 
" driven " by control lists of core addresses which would cause the computer 
to branch from one macro module to another. Of course, " bootstrapping " 
of compilers is not a new idea. However, a further objective of this effort 
would be to define a higher-level machine language. This could then be 
microprogrammed into a read-only memory in order to augment, with 
hardware, the efficiency of the interpretive process. 
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V. Low-Cost Graphics Terminals 

We begin this section by reemphasizing that AMTRAN is not dependent 
upon a special keyboard terminal. AMTRAN can employ any standard I/O 
arrangement (e.g., punched cards or typewriter); however, our experience has 
indicated that the special terminals facilitate the AMTRAN conversational 
mode. We undertook the development of these terminals because, at the time 
the AMTRAN effort began (in 1964), low-cost ($10,000-15,000) graphics 
terminals with vector plotting capability were not commercially available. 
Like some others, we felt that storage scopes could be the key to low-cost 
graphics by eliminating the need for a small computer at the terminal to 
provide a continuously refreshed display. Since that time, Bolt, Beranek, and 
Newman has marketed a low-cost graphics display using a double keyboard 
and a 5-inch Tektronix storage scope tied to a voice-grade telephone line. 
Recently, M.I.T. announced plans to build a number of low-cost graphics 
terminals using the recently developed, high-resolution 11-inch Tektronix 
storage scopes tied to a voice-grade telephone line [4], Their target price for 
the terminal, having local character generation, a keyboard, a graphic input 
device, and interfaced with a 201 data set, is $5,000. If present plans material-
ize, high-quality graphics terminals in the $5,000-15,000 price range should be 
available from several manufacturers in the near future. 

It should be noted that these terminals achieve part of their economies by 
depending upon the computer for all display preparation and modification. 

Our experience with the 1620 AMTRAN terminal has been favorable. For 
many of our applications, a principle advantage of the scopes over the type-
writer has been the ability to print messages rapidly on the scope. This 
effectively provides a low-cost, on-line printer at the terminal. However, the 
graphics aspect has been quite valuable too. 

The electric typewriter, which provides hard-copy output, has slowed down 
our operations. It types out the user's commands to the computer as the 
computer receives them, as well as typing out specific data values and error 
messages. It is too slow for bulk data output, such as the listing of programs 
or the printing of the instruction manual. We hope that low-cost photostatic 
printers will be able to replace the typewriter within the next year or 
two. 

Our latest version of our keyboard is shown in Fig. 8. We have tried to 
ensure that each distinct input (e.g., + , SIN, DELETE, A, 1, etc.) should 
require a minimum of button pushes (ideally, only one). Of course, a type-
writer must be employed for the entry of the less commonly used labels and 
mnemonics. However, the use of the typewriter is somewhat tedious and a 
source of error, particularly if caseshifts are involved. Also, the typing of 
mathematical expressions is more difficult than the typing of text, and a well-
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FIG. 8. New AMTRAN keyboard. 

organized keyboard facilitates communication with the computer. Our key-
board contains the following: 

1. There is a typewriter keyboard with the letters and a few punctuation 
marks organized in the standard manner. Case shift for uppercase letters has 
been utilized on the typewriter keyboard since we naturally expect them. 

2. There is a number entry island consisting of the ten digits and decimal 
point, and these are accessible without a case shift. 

3. Special symbols such as + , — , [ , A, etc., are available in lowercase. 
4. Special control operators such as backspace, delete, and the end-of-

line character, also have separate buttons. 
5. Several blank buttons have been provided for on-line programming, 
6. The commonly used reserved words such as IF, TYPE, SIN, J, etc., 

have been assigned to separate buttons and organized for efficient use (e.g., all 
trigonometric buttons together). 

An experimental keyboard which incorporates the above guidelines is part 
of the 1620 AMTRAN terminal shown in Fig. 1. In operation, each button 
sends a distinct 3-digit, BCD number to the computer. The computer then 
automatically formats and displays the label associated with the button. Thirty 
to fifty "blank" buttons are available to the user, to which he can assign 
his own labels or symbols attached to his more commonly used procedures and 
variables. (His less commonly used operators and operands are called through 
the typewriter keyboard in the usual teletype manner.) 

This approach has its own advantages and disadvantages. On the positive 
side of the ledger, the automatic formatting facilitates the rapid and correct 
entry of mathematical expressions. In the future, it should be particularly 
useful in natural mathematical formatting of mathematical equations. 
Another advantage is that the direct transmission of a numerical code to the 
computer obviates the need for the time-consuming label recognition process 
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which occurs in the computer when a user-defined procedure name such as 
FOURIER is entered through the teletype. (Little computer time is required 
to convert the numerical code into a label and to display it on the scope.) A 
third important advantage of the large keyboard is that the user can define 
his own symbols and can attach them to the keys, or can manipulate displays 
on the typewriter or the scopes without affecting those displays. 

A disadvantage of the large keyboard is that it takes longer to learn than 
would be the case with a smaller keyboard. A new user has to learn how the 
buttons are organized before he can operate with any speed. A more serious 
disadvantage arises from the automatic formatting. Every time the user 
presses a button, the computer must interrupt what it is doing long enough 
to find and format the label associated with the button, and send it down an 
output line to the scope. This " formatting " service is separate and distinct 
from the serious computing which occurs when the user enters the end-of-line 
character; at that time, there is no difference to the computer between the 
keyboard and the teletype. However, the "formatting" service for keyboard 
labels leads to about ten times the interrupt frequency that is required by a 
buffered teletype. This "formatting" service can probably be furnished by a 
large, time-sharing computer system at negligible cost in computing time, 
provided that it can be handled as a special service by the time-sharing 
monitor rather than as a full-scale transfer of control from one program to 
another. Otherwise, the economics of the situation requires a closer look. 

Another promising approach to speeding up the entry of information to a 
computer is that of " menu selection," in which the user employs a light-pen 
to select a particular label or symbol on the scope. Here again, a service func-
tion must be performed by a computer after each selection which the user 
makes, and now, the service becomes sizeable. Instead of sending a single 
label down the line in response to a button push, the computer must send a 
whole set of new labels to the terminal after each label selection with the 
light-pen. 

It appears that graphics terminals in the $5,000-15,000 price range will be 
available from one source or another within a year or so, using the new 
11-inch Tektronix storage tube. Photostatic reproduction devices will prob-
ably be available at about the same time at a price of $2,000-3,000. 

In a long-term sense, the storage scopes are probably not the answer to 
computer graphics requirements. Eventually, we might envision a terminal 
unit cheap enough to be placed in the home, driving the home TV set. 

As digital logic costs drop, it would seem that mass-produced terminal 
units will eventually drop in price below the then-current price of storage scope 
terminals. However, if that day is to come, it lies some distance in the future. 
In the meantime, storage-scope terminals may fill the gap and may spur the 
search for lower-cost TV monitor displays. 
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VI. Conclusions 

The reader may be interested in some of the other systems which resemble 
AMTRAN in some respects and which differ from it in other ways. 

AMTRAN has been influenced by several other systems, particularly by 
the Culler-Fried, JOSS [5], and BASIC [6] systems. It has been more strongly 
influenced by JOSS and BASIC (as well as FORTRAN and ALGOL) and less 
strongly influenced by the Culler-Fried system than might be apparent from a 
cursory look. 

The Culler-Fried system utilizes special keyboards and the 5-inch Tek-
tronix storage scopes. Its language is based upon an operator-operand con-
cept. The Rand Corporation's highly polished JOSS system employs type-
writers and is intended to be easy to learn. Darmouth's BASIC is also designed 
as an easy-to-learn language; and, like JOSS, is being used relatively widely. 
Columbia's Klerer-May [7] effort is broad, including a programming language, 
natural mathematical formatting, and automatic numerical analysis. The 
Lincoln Laboratory's RECKONER [8] was originally designed for matrix 
routines. It is implemented in a modular and readily expandable way. 
Harvard's TACT project is vigorously underway but, to the writer's knowl-
edge, is not yet operational [9]. MIT's MAP system is an on-line problem-
oriented language for mathematics—i.e., a general-purpose problem-solving 
system. IBM's APL system is an implementation of a subset of the Iverson 
programming language [10]. 

Purdue's NAPSS system is an extensive numerical analytical problem-
solving system. MIT's OPS-5 is a multilevel programming language [11]. 
Aerospace Corporation's POSE system is an outgrowth of the EASL simu-
lation language and is a general-purpose mathematical problem-solving 
system [12]. 

Obviously, it is impossible to do justice to these languages in one sentence. 
There are many differences, as well as overlapping areas among them. Also, 
the features which we have emphasized may not be their most significant 
attributes. Finally, the direction and complexion of these development efforts 
is changing rapidly with time. Perhaps the papers presented at this conference 
will provide up-to-date references regarding these systems. 
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APPENDIX 

Control operators 
1. SUPPRESS/EXECUTE 
2. DELETE 
3. BACKSPACE 
4. EDIT 
5. RESET 
6. CLEAR 
7. LIST 
8. LABELS 

to the interactive mode 
9. CORE 

10. TRACE 
11. MOVE PROGRAM 
12. FULL TYPEOUT 
13. HALT 
14. GENERAL INSTRUCTIONS 
15. SPECIAL INSTRUCTIONS 
16. TURN PAGE 

Mathematical operators 
1. + 17. LOG 33. INVERT 
2. - 18. £ 34. LET 
3. x 19. A / 35. STEP.FCT 
4. / 20. A6 36. CUBIC 
5. = 21. J 37. SUM.OF.SERIES 
6. -> 22. d/dx 38. ERF 
7. 23. Array 39. LAPLACE 
8. SQ 24. Left (Shift) 40. SOLVE 
9. * (exponentiation) 25. Right (Shift) 41. AVERAGE 

10. ABS 26. MINIMUM 42. SIGMA 
11. SIN 27. MAXIMUM 43. MOMENTS 
12. COS 28. MINI MAX 44. REGRESSION 
13. ARCTAN 29. MAGNITUDE 45. CORRELATION 
14. TAN 30. INTERPOLATE 46. LEAST. SQUARES 
15. EXP 31. REFLECT 47. (All the TRIG and 1 
16. LN 32. ZEROES functions.) 

48. REPRESENT 

Input-output operators 
1. TYPE 9. WRITE.SCOPE 17. Y.LOG 
2. PRINT 10. ERASE 18. POINT.PLOT 
3. PUNCH 11. PUNCH.PROGRAM 19. VECTOR 
4. PLOT.ON.SCOPE 12. READ.CARDS 20. HACHURE 
5. TYPE.OUT 13. * 21. GRID 
6. PRINT.OUT 14. @ 22. POLAR 
7. PUNCH.PROGRAM 15. SET 23. DISPLAY.DATA 
8. TYPE.ON.SCOPE 16. X.LOG 24. RANGE 

Programming and logical operators 
1. IF 8. SWITCH 15. ENTRY 
2. < 9. DIV.ZERO 16. RUN 
3. > 10. EXIT 17. TRANSFER 
4. THEN 11. GO 18. ACC 
5. OTHERWISE/ELSE 12. TO 19. CALL 
6. AND 13. REPEAT 20. NAME.THIS 
7. IF.INDEX 14. INPUT 21. = 
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APPENDIX continued 

Special variables and data operators 
1. a 8. <]> 15. REG 
2. P 9. 1 16. ' (prime) 
3. r 10. VI 17. INSERT 
4. 8 11. X.MIN 18. CONCATENATE 
5. P 12. X.MAX 19. SORT 
6. 9 13. INTERVALS 20. ORDER 
7. 0 14. ROW 21. SUB 

Basic graphics operators 
1. LINE 1. AUTOSCALE 13. YZ.CURVE 
2. ARC 8. SYMBOL 14. XZ.CURVE 
3. ROTATE 9. THREE.D.MATRIX 15. XY.CIRCLE 
4. TRANSLATE 10. THREE.D.AXES 16. YZ.CIRCLE 
5. MAGNIFY 11. XYZ.CURVE 17. XZ.CIRCLE 
6. AXES 12. XY.CURVE 

Graphic circuit elements 
1. RESISTOR 4. GROUND 6. NODE 
2. CAPACITOR 5. BATTERY 7. FILTER 
3. INDUCTOR 

Special operators 
1. PARALLEL 4. DELTA.WYE 6. QUADRATIC 
2. SERIES 5. DETERMINANT 7. SIMPSON 
3. WYE .DELTA 

Complex routines 
1. TIMES 5. COS 9. CONJUGATE 
2. OVER 6. ARCTAN 10. POLAR.CONV 
3. POWER 7. EXP 
4. SIN 8. LN 

REFERENCES 

1. CULLER, C . J., and FRIED, B. D., The TRW Two Station, On-Line Scientific Computer: 
General Description, in "Computer Augmentation of Human Reasoning" (M. A. Sass 
and W. D. Wilkinson, eds). Spartan Books, Washington, D.C., 1965. 

2. RICE, J., and ROSEN, S., NAPSS—A Numerical Analysis Problem Solving System, 
Proc. ACM 21st Natl. Conf., 1966, p. 51. Thompson Press, Washington, D.C., 1966. 

3. SASHKIN, A. and SCHLESINGER, S . , A Runge-Kutta Integration Procedure with Automatic 
Interval Control. Rep. No. ATN-64 (59990-1), Aerospace Corp., San Bernardino, 
California, July 1964. 



6 6 R. N. SEITZ, L. H. WOOD, AND C. A. ELY 

4. STOTZ, R. H., and CHEEK, T. B., A Low Cost Graphic Display for a Computer Time-
Sharing Console, Information Display Symp. Conf. Rep. Datamation (July 1967). 

5 . BAKER, C. L . , JOSS: Introduction to a Helpful Assistant, Memorandum RM-5058-PR, 
The Rand Corp., Santa Monica, California, July 1966. 

6. KEMENY, J. G., and K U R T Z , T. E., BASIC Users Manual, Dartmouth College Computa-
tion Center, Hanover, New Hampshire, January 1966. 

7 . KLERER, M . , and MAY, J . , A User Oriented Programming Language. Comput. J. 8 , 
No. 2. (1965). 

8. RUYLE, A., BRACKETT, J . , and KAPLOW, R . , The Status of Systems for On-Line Math-
ematical Assistance, 20th Anniv. Conf. ACM, Washington, D.C., August 1967. 

9. TACT, Private Communication with Adrian Ruyle, Aiken Computation Laboratory, 
Harvard Univ., Boston, Massachusetts. 

10. IVERSON, K. E., "A Programming Language," Wiley, New York, 1962. 
11. GREENBERGER, M . , and JONES, M . M . , On-Line Simulation in the OPS System, Proc. 

ACM21st Natl. Conf. 1966. p. 131. Thompson Press, Washington, D.C., 1966. 
12. SCHLESINGER, S . , and SASHKIN, L., P O S E : A Language for Posing Problems to a Com-

puter, Comm. ACM 10, No. 5 ( 1 9 6 7 ) . 


