
VENUS: A Small
Interactive Nonprocedural Language

HOWARD F. MATTHEWS

The Boeing Company, Seattle, Washington

For this paper, the subtitle terms are defined as follows:

INTERACTIVE: The language processor and the user are engaged in

constant dialogue throughout the solution process.
NONPROCEDURAL: The input to the processor consists of a problem

definition and a request for the solution, rather than a solution procedure.

The guidelines used in the development of VENUS were chosen to give
the scientifically oriented nonprogrammer a tool which could be quickly
learned and easily used. The syntax was designed for incremental learning,
so that what the user did not know would not hurt him.

Since the predicated users are well acquainted with the notation and
meaning of algebra, it was used as the model. Most computer languages use
considerably modified algebra syntax, but most do not retain the semantics of
an equation-, that is, "A = 2 * B" usually means "when, in the sequential
execution of statements, this statement is executed, then set the computed
value 2* B into storage cell A." It is usually assumed that somewhere pre-
viously B as acquired a meaningful value. VENUS accepts "A = 2 * B" as
meaning " the value of A at all times should be twice the value of B at that
time." Should the value of B change, the value of A will be automatically
updated.

There are two types of statements in VENUS. A definition is an equation
defining a variable, and is terminated by an " !" . A query is an expression
terminated by a " ?" and generally requests VENUS to evaluate and print
out the current value of the expression.

The following is a short conversation with VENUS. The " <- " is a cue
character indicating that the system is ready for the next statement, and thus

97

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2402536.2402546&domain=pdf&date_stamp=1967-08-01

9 8 HOWARD F. MATTHEWS

it identifies the user's input. Notice how the value of A changes as the variables
B and Z are redefined.

2 + 2 ?
!(2 + 2) = 4

«-A = 3* B + C !

* OK *

* - B = - 5 !

* OK *

A ?

? PLEASE DEFINE WHAT THE VARIABLE " C " =

C = Z + 25!

* OK *

? PLEASE DEFINE WHAT THE VARIABLE " Z " =

< -A = ?

! A = 3 * B + C

? PLEASE DEFINE WHAT THE VARIABLE " Z " =

<- Z = — 4!

* O K *

! A = 6

<-B?
! B = —5

< - B = + 5 !

* OK *

< -A?

! A = 36

<- Z = 106!

* OK *

< -A?
! A = 146

In the current implementation on the PDP-6 time-sharing system, the
only conditional semantics is the conditional expression of the form:

(expression 1> [(logical expression)] (expression 2)
The left bracket is read as " IF ," and the right bracket is "ELSE." The
conditional expression is treated as a single subexpression, and may be
nested in many ways to depths of interest only to programmers.

VENUS 9 9

This symmetric form is more readable in complex statements than the
common IF . . . THEN . . . ELSE . . . form; it seems almost as natural to use,
and common algebraic notation is easily translated into it. For example,

(12a, if a < 6
/ = 1 7 - 6 , if a>6 and b <2

(12 alb otherwise

is written in VENUS as

F = 12 * A[A < 6]17 — B[B < = 2]12 * A/B

An extension for user convenience is the recognition of sets. A user may
define a symbol as being a set of other symbols, which may be variables or
other sets, e.g.,

SET2: A2, BETA, X

The values of the entire set may then be requested by

(user) SET2 ?

(VENUS) SET2 :

! A2 = -32E6
! BETA = 184.700
! X =1.98100

If in the course of calculation, some variable is undefined, VENUS
simply asks the user to define it and continues when possible. This assures the
user that nonexistent values are not used, as they might be in most procedural
languages, and thus takes part of the burden of bookkeeping off the user.
VENUS also checks for circular definitions such as

A = A +1
A = 15* B
B = A —17, etc.

Currently these are treated as errors, but in future versions it may be
possible to detect and solve certain forms of simultaneous equations in this
manner. To change any definition, the user merely enters the new definition.
Since each variable may have only one definition, and since the user is com-
municating at all times with the VENUS processor rather than a compiled
code as produced by most language processors, it is a trivial operation to
identify and replace any definition. A user may retrieve the current definition
of any symbol by typing

(symbol) (definition operator) ?

100 HOWARD F. MATTHEWS

The following is an example:

< - A = ?

! A = 2 * B

*- SET: ?

! SET: A, BETA, SET2, GAMMA

Other features of the current implementation are:
(1) library functions and user defined recursive functions,
(2) expression substitution,
(3) the ability to switch particular values or variables from base 10 to

any base from 2 to 36 for input or output form, and
(4) system keywords (preceded by a "$ ") which may be used for built-in

constants (e.g., $TRUE, $FALSE, $PI, and $E) or for system commands.
Planned extensions are:
(1) the use of units such as FEET, LBS, etc. with automatic conversion,
(2) the addition of subscripts for array and matrix work, and
(3) the addition of iteration clauses and functions similar to the FOR,

WHERE, SUM, and PRODUCT functions of the JOSS language.
The last two features would add considerable power to VENUS in a form

very similar to common algebraic notation. For instance, the product of two
matrices

m

Gij="LAikBkj, for / = 1 ,2 , . . . ,« , and j = \,2,...,p.
fc= i

would be written

G[I,J] = SUM(K = 1 TO M, A[I,K] * B[K,J]),

FOR I = 1 TO N, FOR J = 1 TO P

Conclusions
VENUS, by using the well known semantics of algebra, is easily learned,

lends itself to quick problem solution, and fits very naturally into the conversa-
tional mode of problem solution. Although it does not exhibit the power of
a procedural language like BASIC, it does fit many engineering computational
needs in a manner requiring no programming sophistication of the user,
and a minimum of typing for the nontypist. Yet it keeps the user in the problem
solution " loop " so that trial and error methods are straight forward, param-
eter variation is natural, and redefinition requires no "editing" from the
user. Subproblems or side-problems may be worked at any point. Often a set
of equations may be transcribed almost directly from a handbook or engineer's
notes to the computer with no "programming" involved. Chances for mis-
understanding between the man and the machine are greatly reduced; and,
this reduction is the main purpose of computer languages.

