
The Development of Systems
for On-Line Mathematics at Harvard

A D R I A N RUYLE

Harvard University, Cambridge, Massachusetts

I. Project T A C T

Project TACT (Technological Aids to Creative Thought), in the Aiken
Computation Laboratory of Harvard University, has been designing, imple-
menting, and using on-line systems since 1964. Our investigation has con-
centrated on a rather small class of interactive systems which are " dedicated,"
that is, tailored to provide a coherent set of tools for mathematical assistance,
and which use fairly powerful terminal facilities: display scopes and natural
input.

The reasons for not considering a wider class of technological aids are
several. Programmed instruction, the use of predetermined heuristic sequences,
does appear valuable for training in specific topics, but using programmed
instruction for assisting creative thought presents vast problems. In the first
place, teaching sequences may not be the most effective way of presenting
much of the ideational background material used in the creative process.
Moreover, even assuming that fully enlightening sequences were stored for
entire batteries of background topics, the problem of selecting the proper
sequence to assist the researcher at a particular point in his thinking is a full-
blown information retrieval problem.

A further possibility is to use programmed instruction to produce a
favorable set toward creative thinking. Covington and Crutchfield [1] report
that programmed instruction can be used to enhance general creativity in
school children. Their method is to tell mystery stories, breaking off at
critical points to introduce programmed sequences of speculative questions.

241

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2402536.2402563&domain=pdf&date_stamp=1967-08-01

242 ADRIAN RUYLE

However, it is not clear how to relate their method to advanced topics;
and in any case the result would at best resemble a mental tuneup, without
sufficient relevance to specific problems to be of direct use when help is needed.
Thus, our main focus is on systems in which the machine does not program
the man. Initiative rests, instead, entirely with the user, who employs a
computer ad hoc as a passive tool.

To avoid the fields of artificial intelIigence, linguistics, and information
retrieval, which are veritable sinks for research effort, we concentrate on the
fields in which data processing technology is well developed, hence the
emphasis on applied mathematics.

To keep the subject matter in the foreground and avoid clerical involve­
ment with the machine, we have restricted our attention to systems not
requiring specialized knowledge of computers or programming. The Com­
patible Time-Sharing System (CTSS) of Project MAC, for example, is a
powerful technological aid to creative thought for the programming elite;
but its facilities for compiling, disk file management, text editing, etc., taken
together, lack the simplicity and coherence necessary to make them readily
accessible to the nonprogrammer in a problem-solving situation.

On the other hand, JOSS is a simple coherent system. But it is one in
which the ratio of clerical detail required to power afforded is rather great.
While JOSS performs beatifully with scalars, it does not allow the user to
compute directly with functions without writing loops; and, JOSS has no
facilities for graphic display.

II. The Culler-Fried System

The Culler-Fried system [2-4] is mathematics-oriented, simple, coherent,
and powerful. It strongly influenced the growth of AMTRAN; and it was
chosen as a point of departure for the development of TACT's in-house
systems.

The Culler-Fried system functions roughly like a desk calculator, general­
ized to allow the user to compute directly on real and complex functions
(using many of the common operations of mathematical analysis) with the
same ease as with simple arithmetic operations on single numbers. As with a
desk calculator, the user initiates all computing by pushing buttons. The
buttons, or keys for operations, shown grouped in the upper half of the key­
board of Fig. 1, include not only the arithmetic operations but many more
used in mathematical analysis, such as sine, exponential, and forward dif­
ference. The keys for introducing numbers and saving data entities are grouped
in the lower half of the keyboard.

SYSTEMS FOR ON-LINE MATHEMATICS AT HARVARD 243

244 ADRIAN RUYLE

The DISPLAY bar, in the middle of the keyboard, causes output to
appear on an associated storage oscilloscope. Scalars are displayed as num-
bers, real functions are displayed as graphs, and strings of complex numbers
are displayed as arcs in the complex plane.

Pressing the key labeled I causes all the operator keys to refer to opera-
tions on scalars, and all lower keyboard alphabetic keys to refer to scalar
data entities. This keyboard state is called level I of the system. When the key
labeled II is pressed, the upper and lower keyboards deal with functions: the
operators specified by the function keys work on vectors, or strings of scalar
values; and the alphabetic keys refer to such vectors. A real function is
considered as a pair of vectors, an abscissa vector and an ordinate vector;
therefore, to accommodate functions on level II, two vector registers, called
the X register and the Y register, are maintained. Most of the level II operators
affect only the contents of the Y register. On level III all operations are
complex, and data entities are complex vectors. The power of the system on
level III is quite impressive, as may be seen .by the presence of the complex
operators SIN, EXP, ARG, SQRT, *, etc., together with the graphic display
facility.

There is also facility for on-line storing of console programs, i.e., button-
push sequences which can be executed en bloc at a later time.

III. T O C S

The first system developed by Project TACT was TOCS (TACT On-Line
Computing System) [5], which was begun in 1965 with an effort to duplicate
the Culler-Fried system under CTSS at Project MAC, using the system
manuals [3,4] as design specifications.

Almost immediately, new ideas about on-line system design were incor-
porated into TOCS. First, a display facility was added which obviated certain
disadvantages of the Culler-Fried displays. One particular disadvantage stems
from the fact that this system displays each curve on its own scale. When more
than one curve is displayed on the screen, spurious intersection points can
result. The TACT display, on the other hand, gives an undistorted picture of
a selected rectangular region in the Cartesian or complex plane. Thus, the
console scope can be thought of as a window for scanning an unlimited
virtual plane. Instead of always showing an entire curve when a display
command for real functions or complex arcs is given, TOCS shows only those
portions of the curve which pass through the specified region of interest.

Next, operators oriented toward statistical calculation were included.
The ability to enter numeric data directly into vectors, an awkward process
in the Culler-Fried system, was implemented.

SYSTEMS FOR ON-LINE MATHEMATICS AT HARVARD 245

The first steps toward providing a capability for algebraic manipulation
were also taken; and, while these steps did not go far enough to allow (in
themselves) algebraic manipulation of formulas, they did permit the expression
of formulas within the system. A simple example will illustrate the importance
of this facility. Suppose a user has calculated two quantities, a and b, stored
them under buttons A and B, and reads in a textbook that a parameter of
interest, x, can be calculated f rom the formula

x = sin(a2 + b2)

In the Culler-Fried system, he must program the evaluation of this formula
for himself, as he would do on a desk calculator

I LOAD A SQ STORE T LOAD B SQ + T SIN STORE X.

Nonusers will not know what the sequence means, and even adept users will
have to decipher it before they know what is going on. The TOCS facility
allowed this user to type

LET x(a,b) = sin (a**2 + b**2)
E x(A,B)
STORE X

or if the formula is not needed again

E sin (A**2 + £**2)
STORE X

Not only does this save the labor of programming the evaluation of formulas,
but also it simplifies communication between users.

Based on a comparative use of the Culler-Fried system and TOCS, we
found the idea of calling operators with pushbuttons to be excellent, but
calling all operators in this way to be bad. Either we must provide a great
number of buttons and search through a huge panel like A M T R A N ' s for
the appropriate one, or we must double up. Culler-Fried doubles up, placing
such disparate operations as square root, and the operator which sorts a
string of numbers into ascending order, under the single button SQRT. To
keep track of which operator is intended by a button push, levels are intro-
duced. An operator such as exponentiation does not need level distinctions,
since the data type of its operand is sufficient to identify the operation; yet
under the button EXP on different levels are an exponentiation operator for
scalars only, another for real vectors, and a third for complex vectors. With
the button * on the other hand, there is no mathematical connection between
its meaning on the complex level as conjugation and its meaning on the real
level.

The worst feature of doubling up on the buttons arises with user-created
operators. Any composite program of operators is itself considered an

246 ADRIAN RUYLE

operator in the Culler-Fried system, and as such must reside under a button.
This leads to storing a composite program, such as an integration program,
under an available button like SUM or + on one of several " user levels."
This, in turn, leads to the necessity of providing system names arid comments
for such buried user programs, and burying these with their programs. The
name for a user program which is stored under USER I + will be stored
with the five button sequence STORE USER I DISPLAY + . Since storing
names and programs are distinct processes, the user must take care to keep
name and program under the same button on the same level. The user who
forgets where a console program is stored must hunt and peck with one eye
on the console scope until the appropriate name, or program listing, or com-
ment appears.

Therefore, in this version of TOCS, there was no doubling up on operator
names. Levels were dropped altogether, while retaining all of the Culler-
Fried real and complex scalar and vector arithmetic. This was made possible
by allowing arbitrary names for console programs, and considering the data-
type of operands when identifying operators during interpretation.

In addition, more convenient facilities for console programming were
developed. These include the ability to designate which variables are local to
a console program, and to designate variables as argument variables (local
variables to be assigned values from a list of parameters accompanying each
request for the console program's execution). The superb edit facilities of
Project MAC's TYPESET were made available from within TOCS for modi-
fication of console programs.

Some further improvements include the ability to define or redefine
system operators with only a limited knowledge of CTSS, the ability to use
vectors of unlimited length (to within memory size), the presence of error
messages, the ability to define synonyms for system operators, and the ability
to give multicharacter names to data entities.

TOCS has had considerable application. Two models of biological systems
were explored using an early version of TOCS [6,7], A later version was
applied to the area of ordinary differential equations. TOCS has also been
used " l i v e " in a number of lecture situations at MIT and Harvard.

To further expose TOCS to the test of use, the TOCS disk files have been
made accessible on a read-only basis to any legal user of Project MAC's
CTSS.1 At least one user has made use of TOCS in this way. The Research

1 The following commands by a MAC CTSS user will establish a working connection
to the system:

LINK TOCS BCD T262 3491
RUNCOM TOCS

a n d therea f te r the c o m m a n d :

R TOCS STDOPS

is sufficient to put him in touch with the system.

SYSTEMS FOR ON-LINE MATHEMATICS AT HARVARD 247

Laboratory for Electronics at MIT has been finding roots, with TOCS using
an interactive graphic method based on Cauchy's integral formula [8].

IV. Tact's Latest System: T O C 2

During the development of TOCS, experimentation with other systems
continued. A comparative study was made of AMTRAN, the Lincoln
Reckoner, MAP, and the Culler-Fried system [9].

Design of a new TACT system, dubbed TOC (TACT On-Line Computer),
was begun in 1966, using three basic system features borrowed from the
Culler-Fried system:

1. the use of pushbuttons to invoke operators,
2. operators which work automatically on entities larger than scalars, and
3. a repertoire of operators which provides the basic tools of operator

calculus. From the Culler-Fried operator set, it is easy to construct composite
operators which differentiate, integrate, etc.

We also borrowed two engineering features for console output.

4. The use of storage oscilloscopes: For refresh-type display scopes, a
data-image of any visible picture must be kept in memory as long as that
picture is maintained on screen. This necessitates either tying up computer
memory or else maintaining local memory at the console. For flicker-free
display, the transfer rate from memory to scope also must be quite high.
Storage oscilloscopes, which hold the picture from a single transmission
indefinitely, obviate these memory and speed requirements.

5. The ability to draw freehand on the output scope from the input
keyboard: Drawings are composed using 16 small directed straight line
segments, each associated with a button. Any button sequence which defines
a drawing can itself be stored under a button. This allows the addition of
special characters, new type fonts, etc. to the system.

Many more ideas are borrowed from TOCS. Multiple character names are
allowed for both operators and data. Synonymy is possible, and there are no
levels in the system. There are no restrictions on the length of arrays beyond a
single restriction on the user's total memory size. In TOC the user may also
declare a " diagnostic level" which specifies the extent of the system messages
he desires for guidance while working. In the lowest diagnostic level no
messages appear, in the manner of Culler; in the highest level errors and
omissions will trigger thorough explanatory messages to the user. Formula
expressions are allowed, enclosed within parentheses. Facilities for console

2 Since this paper was written this system has been renamed THE BRAIN (The
Harvard Experimental Basic Reckoning and Instructional Network).

248 ADRIAN RUYLE

programming of composite operators within TOC include predicate and local
declarations, as well as a branching ability. Access from within TOC to
LISP, assembly language, and PL/1 is planned.

Direct specification of output format is allowed via the F O R M A T
button. It is important to furnish the user with this type of explicit control in
order to discourage wasteful underground activity in beating the system. The
worst thing about such activity is that it comes to be regarded as a way to
optimize system use, that is, to "play the instrument properly." To illustrate
this point: on command, the Culler-Fried system will display numeric values
of components of vectors, one per line, on the console scope. If the vector is
complex, two numbers appear per line, one for the real part and one for the
imaginary part of the component. I recently mentioned to an experienced
user that displaying two numbers per line, for, say, abscissa and ordinate
values of a real function was difficult. His response was that the problem
was transparent if one really had a " f e e l " for the system: we load the X
vector register with an abscissa vector, the Y vector register with the ordinate
vector, then go to the complex level where these will be considered by the
system as a single complex vector, and displayed accordingly. Playing the
instrument this way is pernicious, for by the same token, to display numbers
four to a line, we would have to introduce quarternions into the system.

The TOC terminal keyboard consists of 65 operator keys, plus a full
typewriter keyboard, as shown in Fig. 2. The operator keys are engraved with
a number only; the name of the canonical system operator associated with
each key is engraved directly under that key on a keyboard face plate overlay.
Whenever the user has arrived at a comfortable keyboard definition, by
replacing the system operators under function keys with programs of his
own, by assigning typed names to any operators and data entities, or by
creation of display values for any keys, he may store the entire keyboard
configuration with a name such as SESQUIPEDALIAN. At any later time,
if he does not delete this name or use it to name a different keyboard state,
he may restore the keyboards to the saved state by pressing the key labeled
INVOKE and then typing SESQUIPEDALIAN.

A complete description of the TOC system as it will look to the user is
contained in the Users' Guide [10].

TOC is in operation on an IBM 360 model 50 computer having 256
K bytes of fast core, 1 M bytes of large capacity storage, and a high-resolution
timer to allow time-sharing in the TOC system. Figure 3 shows the layout of
this machine.

The underlying system design of TOC [11], is tailored to the environment
of OS 360, fixed-task version. TOC, doing its own time-sharing to support its
consoles, will comprise one task. A real-time experiment monitor for the
Cambridge Electron Accelerator will be another task. A third task will be

SYSTEMS FOR ON-LINE MATHEMATICS AT HARVARD 249

250 ADRIAN RUYLE

i £
SIO initiates channel

Interrupt signals end of channel op.

CPU
360/50
(2050)

L C S
(2361)

CORE
(G50)

Channel
Program

I/O
Buffer

LOCAL
STORAGE

PSW, registers,
etc.

• 4 topes

• 2841 Disc drive
with two 2311
disc units

• 5 tapes

* 3 printers
* card reader
•card punch
* console

typewriter

FIG. 3. Configuration of the IBM 360/50 Computer, which is the present host of
TOC.

peripheral card-to-tape and tape-to-printer conversion for the Harvard
Computing Center. Two appendages have been added to OS: a timer interrupt
appendage to allow TOC to time-share, and an external interrupt appendage
to facilitate processing of the real-time keyboard inputs.

Within the TOC task there is, for each active TOC console, an independent
stream of activity called a process. A process is initiated when a user logs into

SYSTEMS FOR ON-LINE MATHEMATICS AT HARVARD 251

the system and terminates when he logs out. The tables and data used by a
process are saved for the user, between console sessions, on disk.

Services required by processes for keyboard input, scope output, and
memory allocation are handled by the TOC executive, as shown in Fig. 4.

TO 0S:
0S MACROS
GETMAIN
FREEMAIN
STIMER
TTIMER
EXCP
WAIT

TO EXEC:
SERVICE
REQUEST:
STORAGE,
I/O,

From
0S:
MACRO
Returns

T0C EXECUTIVE

FROM EXEC:
SERVICE
IMMEDIATELY
PROVIDED;
IMMEDIATE
RETURN

T0C PROCESS

From
0S:
TIMER
EXIT
(Interval
has
expired)

FROM EXEC:
SERVICE NOT
AVAILABLE IMMEDIATELY,
DELAYED
RETURN

FIG. 4. Gross organization of the TOC system.

The executive also handles time-sharing between processes. Figure 5 shows
roughly how the executive performs its time-sharing and service functions.

Within a process, input for a single keyboard is interpreted. The interpreter
itself is a collection of several dozen reentrant routines, shared by all processes,
which variously: (1) get the next operator specification f rom the process'

N>

Ln

K>

C g

Co
ul
d

To
 A
ct
iv
e

^
Pr
oc
es
s

FI
G

.
5.

 G
en

er
al

 o
rg

an
iz

at
io

n
of

 t
he

 T
O

C
Ex

ec
ut

iv
e.

SYSTEMS FOR ON-LINE MATHEMATICS AT HARVARD 253

input string and call the appropriate operator routine, (2) perform the opera-
tion, and (3) get arguments next in the process' input string for operations
which require them.

The following scenario of the events set in motion by a button push may
clarify the the functioning of the system:

1. A user, Joe, who has logged onto the TOC, pushes the button SHOW,
and types "ABC." His intention is to display the characters ABC on his
console scope.

2. The codes for his 6 button pushes are sent by the keyboard control
unit, mixed with any concurrent keypushes from other consoles, to the
computer, where they are stored immediately by a continuously running
channel program in the system input buffer.

3. CPU control is continually bouncing between the TOC executive,
active processes, and (briefly on interrupts) OS. A process is executing. An
external interrupt occurs, signalling TOC to prepare to process input. Such
interrupts occur several times per second, independent of console activity.

4. OS gains control, sets a bit in a TOC executive table, and returns
control to TOC. The interrupted TOC process resumes where it left off.

5. A timer interrupt occurs, signaling the expiration of a TOC time slice.
OS gains control, then passes it to the TOC executive. Among other things,
the executive detects the input reminder bit which was set earlier, and invokes
its input director subroutine.

6. The input director distributes all new keypushes f rom the system
input buffers. The process input buffer for Joe's process receives the keypush
codes for SHOW "ABC."

7. Joe's process is given a time slice by the executive. It begins execution
in the interpreter. One routine of the interpreter looks at his process input
buffer, encounters SHOW, and calls the interpreter display routine. The
display routine in turn calls several other interpreter routines to read "ABC,"
and establishes a display file. The display routine then calls the TOC executive
for output service.

8. The service request processor in the executive finds the scope free at
Joe's console. It sends to this scope the display file created in Joe's process.
Since Joe for the moment has nothing further to do, his process relinquishes
control back to the executive.

The entire scenario is played in a small fraction of a second. As more
consoles are added to TOC and response becomes more sluggish, the system
will have to be (to some extent) reprogrammed to maintain a lively response
for each user. For instance, the scheduling algorithm used by the executive
will probably be refined f rom its initial implementation as an equal-time cyclic
succession among all processes. TOC, however, has been designed to allow

2 5 4 ADRIAN RUYLE

this kind of reprogramming, and we anticipate considerable growth in service
f rom the system as user demand develops.

ACKNOWLEDGMENTS

The preparation of this paper was supported by the Advanced Research Projects
Agency, through Project TACT under Harvard University Research Contract SD 265,
and through Project MAC under Office of Naval Research Contract No. Nonr-4102(01).

The author wishes to acknowledge the contributions of A. G. Oettinger, Robert
Fenichel, Kenneth Winiecki, Robert DesMaisons, Arra Avakian, Inez Hazel, Randall
Spitzer, and Don Davis.

R E F E R E N C E S

1. COVINGTON, M.V., and CRUTCHFIELD, R.S., Facilitation of Creative Problem Solving,
Programmed Instruction 4,3-10 (1965). Association Press, New York, 1965.

2. CULLER, G. J., and FRIED, B. D., The TRW Two-Station, On-Line Scientific Computer:
General Description, in " Computer Augmentation of Human Reasoning" (W. D.
Wilkinson and M. A. Sass, eds.). Spartan Books, Washington, D.C., 1965.

3. FRIED, B. D., STL On-Line Computer, General Description, Vol. I, TRW/Space Tech-
nology Laboratories, Redondo Beach, California, 1964.

4. FARRINGTON, C. C., and POPE, D., STL On-Line Computer, User's Manual, Vol. II,
TRW/Space Technology Laboratories, Redondo Beach, California, 1964.

5. WINIECKI, K . , (ed.), TACT On-Line Computing System, Aiken Computation Labora-
tory, Harvard Univ., Cambridge, Massachusetts, 1966.

6. BOSSERT, W . , Application of the Culler Simulator to a Problem in Population Genetics.
Aiken Computation Laboratory, Harvard Univ., Cambridge, Massachusetts, 1965.

7. BOSSERT, W., and SCHWARTZ, W. B., Relation of Pressure and Flow to Control of
Sodium Reabsorption in the Proximal Tubule, Am. J. Physiol. 213, No. 3,793-802 (1967).

8. FRIED, B. D., On-Line Root Finding in the Complex Plane, Rep. No. 9990-7308-
R0000, TRW Systems, Redondo Beach, California, 1966.

9 . RUYLE , A., BRACKETT, J . , and KAPLOW, R . , The Status of Systems for On-Line Mathe-
matical Assistance. Proc. Natl. Conf. ACM(\961).

10. WINIECKI, K . , TACT On-Line Computer: User's Guide, Aiken Computation Labora-
tory, Harvard Univ., Cambridge, Massachusetts, 1967.

11. SPITZER, R., TOC System Manual, Preliminary Version, Aiken Computation Labora-
tory, Harvard Univ., Cambridge, Massachusetts, 1967.

