
A Message System for Interactive Dialog 

G. C. PATTON 

Bell Telephone Laboratories, Incorporated, Whippany, New Jersey 

I. Introduction 

When writing programs for interactive computer systems, programmers 
often find that it is difficult to develop the interactive dialog these programs 
require. The difficulty arises for two reasons. First, because interactive termi­
nals are relatively new, programmers are not accustomed to planning and 
developing computer dialogs. Second, there is often no easy way to program 
the dialog once it has been developed. The solution to the first problem is 
heavily dependent on the programmer, his training and his background, and 
does not lend itself to a computerized solution. The solution to the second 
problem, however, can be eased by providing a higher-level, dialog con­
struction language. The basic features for such a language appear in several 
systems used for computer-aided instruction [1-4]. The Message System builds 
on these features to provide a dialog construction language for general use. 

II. Using the System 

The Message System is used where interactive dialog is required. In a 
typical FORTRAN program this is accomplished by writing a CALL to a 
subroutine named MESSAG (Fig. I) each time interactive dialog is required. 
After the program is completely written, the programmer constructs the 
dialog associated with the calls to MESSAG using a program called MFILE 
(Fig. 2). MFILE is an interactive, self-teaching program which collects 
information from the programmer about the dialog and packs it into a 
message file on disk or tape. The message file can later be corrected or changed, 
using the edit features of MFILE. 

271 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2402536.2402566&domain=pdf&date_stamp=1967-08-01


272 G. C. PATTON 

o 

PROGRAMMER 

C A L L MESSAG 

C A L L MESSAG 

C A L L MESSAG 

F O R T R A N PROGRAM 

FIG. 1. Writing a program. 

o 
A . 
P R O G R A M M E R 

INTERACT IVE 
T E R M I N A L COMPUTER 

D ISK 

FIG. 2. Constructing a message file. 

After the program and its dialog have been written, the program is ready 
for interactive use. The interaction is controlled by the routine MESSAG, 
which is a general program that asks questions and receives and evaluates 
answers. MESSAG is " driven " by information previously placed in a message 
file by MFILE (Fig. 3). 

Although a programmer converses with MFILE using a higher-level, 
dialog construction language, the concept of the Message System is quite 

I NTERACT IVE 
T E R M I N A L 

o 
J V 

COMPUTER USER 

D I SK 

FIG. 3. Using a message file. 



A MESSAGE SYSTEM FOR INTERACTIVE DIALOG 273 

simple. MFILE is not a compiler and does not assemble machine instructions. 
MFILE is a collector, gathering information about a program's dialog; a 
translator, translating this data into standard units called messages which are 
placed in a message file; and a teacher, providing the programmer with 
self-teaching sequences when he requests assistance or when errors are 
detected. 

MESSAG is also conceptually simple. It is merely a routine to associate a 
given message file with a specific program. MESSAG is called during execu-
tion of a program whenever dialog is required. When called, it searches a 
specified message file for the requested message and interprets the commands 
in the message. The sequence in which the commands appear governs the 
communication with the user of the program. 

III. Description of a Message 

The message files constructed by MFILE and used by MESSAG, are 
composed of messages, the smallest set of information needed for one inter-
action. A message may contain four parts as listed in Table I. These parts are 
combined to form each message. 

T A B L E I 

PARTS OF A MESSAGE 

Part no. Part name Purpose Optional 

1 Identification Contains a number used for reference No 
and an indication of the type of message 

2 Text Information presented to the user Yes 
3 Choices Possible replies from the user Yes 
4 Branches Directions telling the program what to At least one 

do next necessary 

A typical message would thus contain identification such as 

Message Typed/1/1 

where "Message Typed" specifies that the text of the message is to be 
presented on a typewriter or a visual terminal, and " 1 " is the number assigned 
to the message. For convenience, system commands (message codes) may be 
replaced by their abbreviations. For example, the abbreviation for " Message 
Typed " is " MT." Such abbreviations will be used throughout the remainder 
of this paper. 

1 Slashes will be used to separate the parts of a message in the example. 



274 G. C. PATTON 

The text of the message follows the identification as shown below. 

MT/1 /On-line math library. Do you want instructions./ 

The text portion is the part of the message seen by the user. The text is 
normally followed by a series of possible replies (choices) which a user might 
be expected to type after seeing the text. Associated with each choice is a 
branch which gives the program action to be taken when a user types a 
specific choice. A typical series of choices and branches is shown below. 

MT/1/On-line math library. Do you want instructions. 

ICS/yes/BM /2/CS/no/BM/3/BM/4/ 

In this example the abbreviation CS stands for choice and BM is the abbrevia-
tion for branch to message. Thus the series could be interpreted: " If the user 

l o a d limits 142*2 16677 

this is m f i l e - d 1 . would you like 
instructions. type yes or n o . a s l a s h , 
and the key marked r e t u r n . 
i -no/ (cr) 

which console are you using 

1. teletype 
2 . sanders 
3 . ibm 
A. other 

t « t s l e t y p s / @ ) 

provide index record n u m b e r . 
i»nee/(CR) 

is t h i s a n initial r u n . 
»«yes/(cr) 

message typed or end of filel^message typed/ 

message number! =j_/(6r) 

type text 
icqn-line math l i b r a r y . do you want instructions./(cr) 

format* b r a n c h . r e t u k n , d e l e t e , r e a d , or choice 
» = c h o i c e / @ 

type choice 
««yes/(cr) 

b r a n c h . return, read 
«-branch/(g) 

you have erred after supplying a c h o i c e . do you need h e l p . 
i » y e s . i guess so/(cr) 

FIG. 4. Interacting with M F I L E . 



A MESSAGE SYSTEM FOR INTERACTIVE DIALOG 275 

replies yes, execute Message 2 next; if he replies no, execute Message 3; if he 
replies neither yes nor no, execute Message 4." 

IV. Interaction with MFILE 

A programmer constructs messages for his application program through 
interaction with a System program called MFILE. Using a series of questions 
and answers about message parts, MFILE helps the programmer build his 
dialog. This information is then put into a message file on tape or disk. A 
typical interaction between a programmer constructing dialog and MFILE 
is shown in Fig. 4. The programmer's responses are underlined in this and 
subsequent figures and a carriage return is indicated by the symbol CR 
(circled in the figures). 

P O S S I B L E R E P L I E S ARE : 

1 . BRANCH COOES, 8M, B S . AND BD 
2 . RETURN CODES* RT AND KC 
3 . HEAD CODES RA AND RN. 

WHICH O F T H E S E CODES WOULD YOU L I K E TO KNOW MORE ABOUT. 
I cNONE/(CR) 

BRANCH, RETURN, READ 
I sBRANCH M E S S A 6 E / @ 

TYPE MESSAGE NUMBER FOR BRANCHJ »2/_(CR) 

BRANCH, RETURN. READ. CHOICE . D E L E T E INPUT. MESS. TYPED. 
OR END OF F I L E 
J =CH0ICE/_(CR) 

TYPE CHOICE 
i'NO/fcfj) 

BRANCH. RETURN. READ 
»»BRANCH MESSAGE/fCR) 

TYPE MESSAGE NUMBER FOR BRANCHJ 

BRANCH. RETURN. REAO. C H O I C E , D E L E T E INPUT. MESS. TYPED. 
OR E N D O F F I L E 
l=BM/(CR) 

TYPE MESSAGE NUMBER FOR BRANCH! «3/(CR) 

MESSAGE TYPED OR END OF F I L E t » M T / @ 

FIG. 4. (continued) 



276 G. C. PArrON 

The first four questions asked by MFILE in this example are used to define 
System parameters. For example, the index record number supplied in 
answer to the third question is used to identify the message file to be con­
structed or modified. The answers to the fifth and following questions supply 
MFILE with the message parts described in Table I. Note that halfway 
through the example the programmer has made ail error 'by not specifying 
which type of branch he wants (there are several types of branches and the 
question is supplied as a reminder rather than as a complete list of possible 
replies). The System discovers the error and is ready to help to the extent 
desired by the programmer. In the example shown, the programmer realizes 
his error immediately upon seeing the possible replies which he could have 
made (in their abbreviated form). Thus, he returns quickly to the normal 
series of questions without using the help sequence to its fullest. Two of the 
last three replies show how the MFILE program accommodates the more 
experienced programmer, allowing him to reply with the abbreviations BM 
and MT. Actually the programmer could have abbreviated all the system 
commands if he had desired. 

Figure 5 shows MFILE used by an experienced programmer who is able to 
anticipate the order in which MFILE will ask questions. He can thus take 

LOAD LIMITS 14212 16677 

THIS IS MFILE-DI. WOULD YOU LIKE 
INSTRUCTIONS. TYPE YES O~ NO. A SLASH. 
AND THE KEY MARKED RETUR~. 
laNO/TELETYPE/lleeIYES/~ 

MESSAGE TYPED OR END OF 'ILEI=MT/I/ON LINE MATHrciO 
I~LIBRARY. DO YOU WANT INST~UCTIONS./CS/YES/BM~CS~ 
I=NO/BM/4/BM/31 ® 
MESSAGE TYPED OR END 0, Y1LEla,H/3/INVALID REPLY. TYPE YES@) 
I-OR NO./S/IIIRC/II ® 
MESSAGE TYPED OR END OF 'ILEI=MT/4/CHOOSE A PROGRAMt~ __ 
10/S/II I. ROOTS OF POLYNOMIALS/S/II 2, CURV~==~ 
I=FITTING/S/IIICS/I/BM/5/CS/ROOTS/BM/5 ICS/2I8M121 7cir 
la/CS/CURVE/BM/21/CS/HELP/BD/6/CS/NONE/BM/7/BD/I/~ ~ 

MESSAGE TYPED OR END OF 'ILEI=EF/~ 

FIG. 5. Expert's interaction with MFILE. 

advantage of the feature of MFILE which allows him to answer a series of 
anticipated questions by typing a series of replies on a single line separated by 
slashes. In this case the slashes serve to delimit the answers to the questions 
asked by MFILE, and the carriage return serves only to transmit the line of 
information to the computer. 

In instances where multiple answers are specified on a single line, MFILE 
does not print the questions which have been answered. The next unanswered 



A MESSAGE SYSTEM FOR INTERACTIVE DIALOG 277 

question will be printed only if the line ends with a slash and a carriage return. 
The absence of a slash before the carriage return suppresses the printing of the 
next question. 

The abbreviated message codes appearing in the example are described in 
Table II. These codes are essentially self-explanatory. The additional explana­
tion provided in the following paragraph, however, gives an indication of the 
flexibility of the dialog. 

TABLE II 

DESCRIPTION OF MESSAGE CODES 

Code Description 

MT Message to be typed 
cs Choice or possible reply 
BS/X Branch to message X and save reply made 
BM/X Branch to message X 
BD/X Branch down to message X (the program remembers the current message 

so that it can be returned to later) 
SIX Skip X lines 
RC/X Return to choices of message X 
RT Return to message containing the last BD code or to the main program 
RA Read characters up to the next break character 
RN Read numbers (separated by blanks) up to the next break character 
EF End this message file 

During execution of an application program, messages are printed when 
the MESSAG subroutine is called (MT). After a question is printed, a reply 
may be requested (CS or RC, where RC specifies the choices in a previous 
message). The replies are then evaluated in terms of the information in the 
message file. Thus, ll; reply might cause the printing of text from a new mes­
sage (BM), or an immediate return to the main program (RT). When transfers 
are made between messages without returning to the calling program, one or 
more replies may be saved (BS, RA, RN) in a buffer for later evaluation by 
the calling program when it regains control. 

V. Calling Sequence to MESSAG 

Once a message file has been constructed it is used by subroutine MES­
SAG. MESSAG is called by the FORTRAN program which will interact 
with a user. The call sequence to MESSAG is shown below. 

CALLM ESSAG (MESGNO,NDATA,IW ,NOq 



278 G. C. PATTON 

The parameters of this call sequence are defined in Table III. 

TABLE III 

PARAMETERS OF MESSAG CALL 

Parameter Description 

MESGNO The message number of the first message to be printed (printing of sub-
sequent messages is dependent on a user's replies) 

NDATA A block of data in which the first word contains the number of the last 
message to be printed before the return to the calling program. The 
remaining words of the block hold any user replies which must be 
returned to the calling pr-ogram 

IW The line width of the text to be printed 
NOC The number of the choice which matched the user's reply to the last 

question printed 

Two arguments in this sequence, MESGNO and IW, are used to transfer 
information into the subroutine. The remaining two arguments serve to pass 
information back to the calling program about the interaction. This informa­
tion is in a form suitable for testing to determine the further course of the 
program (see Patton [5] for the exact format). For example, the number of 
the reply to the last message printed (NOC) could be used as the index in a 
computed GOTO statement or could be tested in a series of IF statements. 

VI. Interaction with MESSAG 

To a person interacting with the Message System via subroutine MESSAG, 
the construction of the message files and the calls to the subroutine are not 
apparent. In fact, if the dialog is adequately constructed by the programmer, 
a person feels that he is talking to a computer which understands him, since 
questions are asked in a natural language and he replies to the questions in 
the most natural way. A typical interaction using the message file developed 
by the programmer via the interaction shown in Fig. 5 is shown in Fig. 6. 

In this example the user interacts with the computer in a natural language. 
When the need for help is indicated by either a direct request from a user or by 
the System's discovery of a wrong or invalid reply, a sophisticated help 
sequence, which the programmer planned, can be initiated. 

When the same program is used repeatedly by one person, this approach 
(requiring detailed dialog) becomes inadequate since the user has to wait 
while the lengthy dialog is printed. To remedy this situation the Message 
System allows abbreviated dialog to be substituted easily in place of the 



A MESSAGE SYSTEM FOR INTERACTIVE DIALOG 

ON-LINE MATH LIBKAKY. DO YOU WANT INSTRUCTIONS. 
I.~@) 

CHlOSE A PROGRAM I 

I. ROOTS OF POLYNOMIALS 
2. CURVE FITTING 

IsROOTS OF POLYNOMIALS/@ 

DEGREE OF POLYNOMIALI.~~ 

TYPE COEFFICIENTS. LEAVE SPACES 
I .. HELP/@) 

TYPE COEFFICIENTS STARTING WITH 
HIGHEST POWER OF THE VARIABLE. 
SUCCEEDING LINES IF NECESSAKY. 
UNO/@) 

TYPE COEFFICIENTS. 
I" 

BETWEEN TriEI'I 

COEFrICIENT FOR 
CONTINUE ON 
NEED MORE HELP. 

FIG. 6. Using a message file. 

279 

original lengthy text. This is accomplished by constructing a second message 
file with abbreviated messages and allowing the user to request this file in 
place of the original one at run time. For example, a math assistant repeatedly 
using the program to find the roots of a number of polynomials may request 
that the program use a message file containing an abbreviated dialog. The 
result of his interaction with the abbreviated messages is shown in Fig. 7. The 
answer to the first question indicates that abbreviated messages are to be used. 
Note that the extended help sequence is still available when it is needed. 

Now consider the same math assistant finding the roots of his one hun­
dredth polynomial. After using the root finding program 99 times he does not 
need even the abbreviated dialog for he has, by repeated use, memorized the 
sequence of questions. In such cases, the Message System allows him to 
anticipate the questions and put multiple answers on a single line if they are 

ON-LINE MATH LIBRARY. DO YOU WANT INSTRUCTIONS. 
I=SHORT/@) 

PROGRAM ROP. CF.laROP/@) 

DEG.I=~@) 

COEF .I"HELP/@) 

TYPE COEFFICIENTS STARTING WITH 
HIGHEST POWER Or THE VARIABLE. 
SUCCEEDING LINES IF NECESSARY. 
I"~® 
COEr.I" 

COEFrICIENT FOR 
CONTINUE ON 
NEED MORE HELP. 

FIG. 7. Using abbreviated dialog. 



280 G.C. PATTON 

separated by slashes. The resulting dialog is shown in Fig. 8. Note that the 
programmer has had to do no extra programming to add the multiple answer 
capability, since the system always looks for multiple answers and suppresses 
the already answered questions. Thus, when specifying answers in this fashion, 
the math assistant has the dialog and help facilities of the System available. 

ON-LINE MATH LIBRARY. DO YOU WANT INSTRUCTIONS. 
I=SHORT'ROP'4'~ 

COEF".I.HELP/~ 

TYPE COEF"F"ICIENTS STARTING WITH COEF"F"ICIENT F"OR 
HIGHEST POWER OF" • • • • • 

FIG. 8. Interaction anticipating questions. 

For example, if he ends a line with a slash, the next message to be answered 
is printed to remind him of the next reply. If the line ends without a slash, the 
next question is not presented and he may type the next reply or series of 
replies. This flexibility in interacting with a message file through MESSAG 
is identical to the flexibility offered to the programmer who originally made 
up the message file while interacting with MFILE. 

VII. Special Message System Features 

The techniques used in the Message System apply equally well to languages 
other than English. Thus, the same FORTRAN program could be used in 
many languages by changing only its message file. In fact, the first question 
asked by a program could determine the language of interaction, and the 
appropriate message file could be selected at run time. Figure 9 illustrates this 
feature by showing the previous program using a message file translated into 
German. 

In a similar manner a message file could be constructed in which the text 
was replaced by instructions for running an audio output unit (preceded of 
course by an MA [message audio] command in place of an MT command). At 
run time a decision could be made as to the type of terminal, teletypewriter or 
audio, and by using the proper message file, the same program could inter­
act with users at either console. 

Another feature of the Message System is the ability to change dynamically 
the width of a page without rewriting the dialog. For example, a change in the 
line width from the 72 characters of a teletypewriter to the 40 characters of a 
visual display, requires a change of only one parameter in the MESSAG 
calling sequence. 

A detailed description of other features, system programs, and the format 
of the message files is given by Patton [5]. 



A MESSAGE SYSTEM FOR INTERACTIVE DIALOG 

ON-LINE MATHEMATIK-PROGRAMM-BIBLIOTHEK. WOLLEN SIE 
I NSTRUKTJ.Q.NEN. 
I"~~ 

NENNEN SIE EINES VON OlESEN PROGRAMMENI 

I. WUR!ELN VON POLYNOMEN 
2. KURVENANPASS~NG 

laWUR!ELN VON POLYNOMEN/~ 

GRAD DES POLYNOMSI.4/~ 

NENNEN SIE DIE KOE"I!IENTEN, GETRENNT DURCH 
!WISCHENRAUM. 
I",~@) 

NENNEN SIE DIE KOE"I!IENTEN IN DER REIHEN,OLGE 
ABSTEIGENDER POTEN!EN DER VARIABLEN. BRAUCHEN 
SIE MEHR HIL'E. 
I .!!lli!!..~ 

NENNEN SIE DIE KOE"I~IENTEN. 
I" 

FIG. 9. Interaction using German message file. 

VIII. Evaluation of the Present System 

281 

In over a year's experience at the Bell Telephone Laboratories, the most 
important feature of the System was found to be the ease with which dialog 
could be constructed. This allowed the development of dialog which would 
otherwise not have been attempted, and therefore, of more meaningful pro­
grams which could be used by people with little computer experience and 
little knowledge of the programs they were using. 

Another important feature was that a user could talk to a computer in a 
natural language. This, along with the System's ability to recognize errors and 
provide help sequences, allowed people who had never used a computer before 
to interact with one without any previous instruction . 

. Because most business and scientific programs are used over and over again 
by the same people, the feature which allows input of multiple answers on one 
line, when the sequence of questions is known, was also found to be very 
useful. Once the main series of questions was mastered, a user could eliminate 
the long waits while lengthy messages were typed out, and even more im­
portant, not worry about the time-sharing delays between each interaction. 
These delays, 7 seconds to print an average message, and 10 seconds minimum 
between each interaction, do not appear large at first. The seconds quickly 
add up, however, even for short programs, and soon become a frustrating, 



282 G. C. PATTON 

psychological bottleneck. This frustration is especially serious when the user 
knows in advance the series of questions which is going to appear. 

The ability to store the dialog on secondary tape or disk storage was 
another feature which proved quite useful, especially during the System's 
early development which took place on a small time-sharing system. This 
secondary storage feature aided development of the extensive dialog needed 
for adequate interaction, since the only core required for interaction was the 
2000 locations containing the MESSAG subroutine. 

At first 2000 locations seem excessive, but when compared to the storage 
required to hold only the dialog (not the reply evaluation logic) it is quite 
realistic. For example, a small-to-average program requires from 50 to 
100 messages, and the average message contains two lines of text, each 
about 72 characters long. Thus, a minimum storage of 7200 characters is 
needed just to store the text. On a small machine with 3 characters in a 
computer word, 2400 words of core would be required to hold the smallest 
set of messages. 

IX. System Improvements and Uses 

Although the present version of the Message System has been quite 
adequate for our purposes, there are several improvements which could be 
made. For example, in the future we plan to implement system commands 
which will result in greater flexibility when specifying possible replies, more 
flexible output of data within messages, and more sophisticated formatting of 
messages, especially for visual display equipment. 

The expected uses of the System are numerous. In addition to its present 
use with business, scientific, and military programs, it can be used alone as a 
teaching machine. After the anticipated system commands for formatting and 
line-by-line editing of message texts are added, the System could be used for 
composing, context editing, and other publication tasks. 

Since the System is written completely in FORTRAN, it can be used with 
only slight changes on a wide range of computers. To date it has been used on 
computers having both 3 and 6 characters per word, and work is presently 
going on to adapt it to work with 9-bit instead of 6-bit characters. 

The System is both flexible and easy to use. It is easy to construct messages 
and to interact with the messages once they have been constructed. The System 
is flexible in the construction of messages, terminals on which the messages 
are displayed, and the machines on which the System can be used. Thus, it 
provides a solution to the majority of problems associated with interaction 
dialog. 



A MESSAGE SYSTEM FOR INTERACTIVE DIALOG 283 

REFERENCES 

1. FEINGOLD, S. L., and FRYE, C. H., User's Guide to PLANIT-Programming Language 
for Interactive Teaching, System Development Corp., Santa Monica, California, 1966. 

2. ANONYMOUS, IBM 1401, 1440, or 1460 Operating System Computer Assisted Instruction, 
Form C24-3253-1, IBM, Endicott, New York, 1965. 

3. SILVERN, G. M., and SILVERN, L. c., Computer-Assisted Instruction: Specification of 
Attributes for CAl Programs and Programmers, Proc. of the 21st Natl. Can!, ACM, 1966, 
pp. 57-62.5. Thompson Books, Washington, D.C., 1966. 

4. UHR, L., The Compilation of Natural Language Text Into Teaching Machine Programs, 
Proc. Fall Joint Comput. Can!, 1964 26, 35-44. Spartan Books, Washington, D.C., 1964. 

5. PATION, G. c., The Message System, Master's Thesis, Newark College of Engineering, 
Newark, New Jersey, 1967. 




