
Implementation of a Reckoner Facility 
on the Lincoln Laboratory IBM 360/67 

PETER B. HILL 

AUERBACH Corporation, Philadelphia, Pennsylvania 

ARTHUR N. STOWE 

Lincoln Laboratory,1 Lexington, Massachusetts 

I. Introduction 

Another paper in this volume [1] has presented the concept of co-
herent programming as it is embodied in the Lincoln Reckoner [2], The 
term "coherent" implies a set of programs which may be independently 
developed, perhaps written in different languages, but which nevertheless 
operate on each other's results and call each other. This concept is being used 
to build a Reckoner facility on the IBM System 360 Model 67 at Lincoln 
Laboratory. 

Coherent programs will be supported by a base of services which we have 
called the Mediator. The Mediator, although outside the set of coherent 
programs, provides the coherent programs with services, including storing and 
retrieving files, and running other coherent programs. 

The primary mechanism for locating data files and programs is the strati-
fied directory. A general rule of the Mediator is that all files and programs are 
located by name, using Mediator data services. Under this procedure, file 
addresses are passed to the coherent programs. Once located by the Mediator 
data services, each file is operated upon directly by a coherent program. 

The status of the coherent programs which have been interrupted, or have 
suspended themselves when calling on other coherent programs, is maintained 
by the Mediator in a kind of push-down stack called the Return List. 

1 Operated with the support of the U.S. Air Force. 

385 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2402536.2402580&domain=pdf&date_stamp=1967-08-01


3 8 6 P. B. HILL a n d A. N. STOWE 

Both core and peripheral storage are managed by a set of services which, 
like the directory and return list services, are provided by the Mediator to 
fulfil one of the requirements of coherent programs, namely, that they and 
their results do not get in each other's way. 

II. Stratified Directory 

A major functional requirement of the Mediator is that the user be able to 
employ any set of coherent programs to solve his problem, regardless of the 
languages required for its execution. For example, all programs designed to 
operate on English text should be available to a user who is working on text. 

The problem, of course, is that each language has its own syntax and 
naming rules which are likely to be in at least partial conflict with those of 
another language. It is the Mediator's role to provide the means by which 
these conflicts can be resolved. One of the mechanisms used is the stratified 
directory shown in Fig. 1. 

L E V E L - 1 P U B L I C 

L E V E L 0 P R I V A T E 

L E V E L 1 S T A T E M E N T H A N D L E R 

L E V E L 2 P R O C E S S 

L E V E L 3 E D I T O R 

FIG. 1. The stratified directory. 



RECKONER IMPLEMENTATION 3 8 7 

The public directory, Level — 1, contains the names of public coherent 
programs, i.e., Reckoner routines, System Editor, etc., which are available to 
every user. Level 0 contains entries for files which have been accumulated by 
a user in past console sessions. This level is created when a user is first intro-
duced to the system. 

Level 1, normally containing the statement handler, is created each time 
the user initiates a console session. At the end of the session, this level is 
merged into the cumulative private level. 

The next two levels would be constructed if a user called upon a process 
which, in turn, called on an Editor service. The levels are established auto-
matically, without the user being aware of it. Whenever a routine which 
crosses a language barrier is initiated, a new level is created; as each barrier is 
recrossed upon a return, the just completed level is merged back into its 
predecessor. 

The significance of the stratified directory is that each level becomes a 
linguistic context in which the meanings of names may be different from the 
meanings they have in other levels, preceding or following. 

III. Temporary Names and Parameters 

Two other mechanisms for manipulating data within levels and across 
levels involve the use of temporary names, and the use of parameters (see 
Fig. 2). This figure shows a Reckoner process for computing the hypotenuse 
C, given the two inputs A and B. The line labeled Parameter contains the 
internal names by which the variables are known. The next line contains the 
names of ephemeral entities which will disappear when the process is com-
pleted. All of this is quite familiar to any programmer. 

The primary difference is the manner in which parameters and tem-
poraries are handled by the Mediator. Both are handled by name, not by 
address, as they are in ALGOL or FORTRAN. Another difference is that in 
the management of both, the Mediator must deal with the problems of 
crossing from one linguistic context to another. 

IV. Implementation 

At present, the implementation of the Reckoner and Mediator is proceed-
ing in two stages: the first stage will be completed in January 1968, and the 
second stage will be completed in the Spring of 1968. 



3 8 8 P. B. HILL a n d A. N. STOWE 

H Y P O T E N U S E 

• P A R A M E T E R A B C 

• T E M P O R A R Y A A B B C C 

• M U L A A A A 

FIG. 2. Computing H Y P O T E N U S E . 

• M U L B B B B 

• A D D A A B B C C 

• S O R T C C C 

• F I N I S 

The first phase items which comprise the basic Mediator are shown in 
Fig. 3. All essential services will be included; some less vital services will be 
postponed to the second phase. 

The set of coherent programs comprises the bulk of the first phase. Most 
of the Reckoner computational services will be written in FORTRAN IV. 
These services include basic scalar and array arithmetic, matrix algebra and 
routines to construct arrays from scalars, vectors, and smaller arrays. A set of 
error routines will also be built to print out computational error messages 
such as dividing by zero, or logical errors such as requesting a file that does 
not exist. Also tentatively planned for the first phase is a stripped down 
Reckoner process builder and runner. These facilities will allow the user to 
write named processes which can be stored away for later operation. The 
Hypotenuse shown in Fig. 2, is an example of such a process. 

The second phase items, shown in Fig. 4, will be expanded to include a 
broader range of services. The user will have more options that will allow him 
to field errors automatically. The Reckoner process builder and runner will be 
augmented to provide complete services. 

In addition, we plan to write a set of programs which will allow the user 
to express his computations and logical operations in an algebraic language. 



RECKONER IMPLEMENTATION 3 8 9 

M E D I A T O R 

• D I R E C T O R Y M A N A G E M E N T 

• R E T U R N L I S T M A N A G E M E N T 

• S T O R A G E M A N A G E M E N T 

S E T O F C O H E R E N T P R O G R A M S 

• S T A T E M E N T H A N D L E R 

• R E C K O N E R C O M P U T A T I O N A L S E R V I C E S 

• S I M P L E E R R O R H A N D L I N G R O U T I N E S 

• S I M P L E P R O C E S S B U I L D E R A N D R U N N E R 

FIG. 3. First phase (January 1968). 

• A U G M E N T E D E R R O R R O U T I N E S 

• F U L L P R O C E S S B U I L D E R A N D R U N N E R 

• A L G E B R A I C T R A N S L A T O R 

• C R T G R A P H I C A N D T E X T D I S P L A Y 

• A D V A N C E D M E D I A T O R S E R V I C E S 

FIG. 4. Second phase (Spring 1968). 

A cathode ray tube facility will be added to allow the user to display his data 
in either graphical form or as tabulated data. 

The completion of this second phase of the Mediator system will give the 
user a highly versatile on-line computational system and, at the same time, will 
not require that he be a professional programmer. 

R E F E R E N C E S 

1. WIESEN, R . A. , YNTEMA, D. B., FORGIE, J. W. , and STOWE, A. N , , Coherent Programming 
in the Lincoln Reckoner, this volume. 

2. STOWE, A. N . , WIESEN, R . A. , YNTEMA, D. B„ and FORGIE, J. W „ The Lincoln Reckoner : 
An Operation-Oriented, On-Line Facility with Distributed Control , Proc. Fall Joint 
Comput. Conf. 29, 433 (1966). 




