
practical programmer

Reality is the murder of a beautiful
theory by a gang of ugly facts.

Iwant to say something radical at
the outset of this new incarna-

tion of an old Communications col-
umn. I believe in software practice,
and I believe in software practi-
tioners. And, as a corollary to
those beliefs, I do not agree with
those who put down software prac-
tice and software practitioners.

There was a time, a half-dozen
years ago, when a software engi-
neer taking that position would
have been laughed out of the
halls of academe and the pages
of the computing literature.
Cries of “software crisis”
opened nearly every article
on any software engineer-
ing topic, put there by an
author who believed his
(or, occasionally, her)
new proposal was the
solution to this
apparently rampant
crisis. Software was
always over bud-
get, behind
schedule, and of
low quality, the
crisis thinking
said. How could
anyone possibly
believe in prac-
tice or practi-
tioners?

Fortunately,
these things are

changing. The computing
world—and especially the societal
worlds at ACM and IEEE—are
beginning to be open to what was
once only a contrarian viewpoint,
that software practice is doing just
fine, thank you. A few respected
voices are beginning to cry out
that software practice is not in cri-
sis, and in fact is doing a pretty
good job. Such application
domain areas as aerospace, bank-

ing, process control, productivity
tools, and reservation systems are
thriving, woven successfully into
the threads of our daily lives. And
computing folks such as Al Davis,
Peter DeGrace, Tom DeMarco,
and Nicholas Zvegintzov are not
bashful about pointing at soft-
ware’s successes, and decrying
those who cry “crisis.”

Some, in fact, are willing to go
even further. Not only is practice
OK, these people say, but there
are some important flaws in the
theory and research area of the
field that may be of more concern
than the software crisis ever really
was. Theorists who fail to evalu-

ate their ideas in a practical set-
ting before advocating them
are of particular concern.
Fred Brooks, Norm Fenton,
Dave Parnas, and yours
truly have taken this view-
point in print and public
forums a few times, and
been surprised at the
force of both those
who support, and
those who oppose,
this viewpoint.

So this col-
umn will, in the
future, be a sort
of ode to soft-
ware practice. I
want to talk
about some of
the good things
that practition-
ers do, about

The Relationship Between
Theory and Practice in
Software Engineering

COMMUNICATIONS OF THE ACM November 1996/Vol. 39, No. 11 11

Robert L. Glass

R
us

s
W

ill
m

s

http://crossmark.crossref.org/dialog/?doi=10.1145%2F240455.240458&domain=pdf&date_stamp=1996-11-01

some of the better bridges
between an aware world of theory
and a receptive world of practice,
about some interesting software
practitioners, about some best-of-
practice findings, and about
lessons practitioners have learned
that will benefit both other practi-
tioners and theoreticians willing
to listen to them. And I hope
you’ll want to help me in this mis-
sion. I solicit your ideas, your
columns, and—yes—even your
criticism. After all, this new field

of software is roughly only 40
years old, and there is far more
speculation than truth in the
things both theory and practice
have come to “know” thus far.

To set the stage for all of this,
in this first column I want to talk
a little bit about the relationship
between theory and practice in
the field of software engineering.
This relationship is important
because some appropriate analy-
sis will tell us that in this new
field of ours, sometimes it is
preferable to listen to theory for
new ideas, and sometimes it is
preferable to listen to practice,
and the aware computer person
should know when each is appro-
priate. This, of course, applies to
both theoreticians and to practi-
tioners.

Perhaps you are surprised any-
one would ever think that prac-
tice could lead theory? You
shouldn’t be. In any new disci-
pline, it is often true people do
things for which theory has no
explanation and provides no
foundation, and theory evolves

only after practice has demon-
strated that something works. It
happened in aerodynamics,
where the invention of the airfoil
preceded and motivated the sci-
ence of aerodynamics. It hap-
pened in thermodynamics, where
the invention of the steam engine
preceded and motivated the sci-
ence of thermodynamics. It hap-
pened in the field of computing
only twenty-something years ago,
when the time-sharing system was
developed and marketed before
there was a solid theoretical back-
ground for it. And it was an

essential part of the early history
of the field, when computers were
being sold in the marketplace in
the 1950s, and the academic disci-
pline of computer science did not
appear on the scene until a
decade later.

Of course, the history of most
fields is more complicated. The-
ory and practice really tend to
evolve hand-in-hand. Early com-
puting work was done in acade-
mic laboratories, far before there
was much in the way of practical
application of the results. This in
turn spawned practical applica-
tion, which in turn spawned acad-
emic programs. Theory and
practice do and must progress
together; it is foolish to believe
practice always leads theory, but it
is also foolish to believe the oppo-
site.

Past is, of course, prologue.
But how important is this philo-
sophic history to the computing
field circa 1996? I think its impor-
tance is both profound and
underestimated.

The importance is profound

because there are times when the-
ory has answers to questions prac-
tice has not yet asked, but there
are also times when practice has
answers to questions theory has
not yet raised, and it is important
to know who to listen to and
when to listen. From which
source should we expect the wis-
dom of the next millennium to
emerge? The notion of “best-of-
practice” concepts emerges from
the belief that practice can lead
theory.

The importance is underesti-
mated because most of us have an

intuition that says theory in general
is ahead of practice, and it is hard
to let go of that intuition even in
the face of evidence to the con-
trary. It may be sensible to believe
there are times when we should lis-
ten to practice first, but it is hard
to drop a deep-seated, almost reli-
gious belief that theory is where all
the answers come from.

So let me get specific. The fol-
lowing are some topic areas from
the field of software engineering
where I believe practice leads the-
ory. In these areas, I believe, both
theorists and practitioners should
start with the premise that the
knowledge of practice is superior
and more advanced than the
knowledge of theory. I don’t
bother to identify the other areas,
where theory leads practice,
because 1) there are probably
more of them, and 2) it is impor-
tant to stimulate the somewhat-
contrarian thinking that practice
can lead theory.

Here is my list of candidate
topics where practice leads theory
in software engineering:

12 November 1996/Vol. 39, No. 11 COMMUNICATIONS OF THE ACM

practical programmer

NOT ONLY IS PRACTICE OK, BUT THERE ARE SOME IMPORTANT

flaws in the theory and research area of the field
that may be of more concern than the software

crisis ever really was.

1. Software design. Practitioners
have designed software since the
first user brought the first problem
to a software specialist over 40 years
ago. But theory is still wrestling with
what design really is. The theory of
design tends to focus on method-
ologies and representations,
because those are “hard” and there-
fore teachable/testable topics. But
the best methodologies and repre-
sentations in the world will not
necessarily lead us to superior
designs. There is something else
to the act of design, and practi-
tioners have found it, while theo-
rists are still searching. In fact, in
many academic institutions the
best answer to the question “How
do we teach design?” is “In a labo-
ratory setting using mentoring.”
In other words, let those who can
practice design teach those who
are learning how.

2. Software maintenance. Practi-
tioners have been maintaining
software for as long as they have
been designing it. For years, the-
ory had little interest in mainte-
nance, believing it was either an
uninteresting subset of develop-
ment, or a nonintellectually
challenging task. That has only
changed in the past few years; it
is still true there is a rich lore of
maintenance knowledge in
practice, and only a slowly
emerging lore of knowledge
from research.

3. User interface. This is a topic
area where theory and practice
have progressed together. The
pioneering work at Xerox PARC
has led to the friendly interfaces
of the 1990s, commonly available
now on all commercially available
computers. Continuing explo-
ration is occurring in both indus-
try (e.g., Microsoft’s “Bob”) and
in academe.

4. Programming in the large. The
problems of today are up to 50
times larger than the problems of
yesteryear, and the complexity of
software solutions is growing at an
exponentially faster rate than the
growth of problems. Many solu-
tion approaches simply don’t

scale up to these massive prob-
lems, and one of the most impor-
tant issues in software
engineering is to define what will
and what will not scale. Whereas
practice is involved with these
huge problems on an ongoing
basis, because of its expense the-
ory is seldom able to do the
required research in the large.
Thus, now, and in the foreseeable
future, practice leads theory in
the understanding of program-
ming in the large.

5. Modeling and simulation. In
order to understand complex
problems, practitioners often
model the problem domain and
provide a simulation of solution
approaches in order to determine
solution feasibility. Since theory is
rarely involved with large and
complex projects, it is less familiar
with the role that modeling and
simulation can play.

6. Metrics. Theory and practice
are traveling very different roads
on the topic of software metrics.
Theoreticians have proposed a
number of metrics, but most of
them are unverified and there are
considerable differences among
theorists as to their value. Practi-
tioners, on the other hand, sel-
dom use metrics, but when they
do the set used is often unrelated
to the set proposed by theorists.

At the present time, it is difficult
to say whether theory or practice
is leading in the topic of metrics,
but it is possible to say that the
field is still in turmoil. In the next
decade, we should find out which
is ahead, theory or practice.

As I’ve mentioned, these are
candidate topics. You may or may
not agree with what I have
selected; you may or may not have
others to propose. But what is
important about this list, or your
list, or anyone else’s list, is that it
defines whose expertise is best in
the topic areas in question. If I
want to find out about program-
ming in the large or software
maintenance or whatever topic is
on this list in the 1990s, there is
no question in my mind that I will
seek my answers in practice, not
in theory.

As I said at the outset of this
column, this is still somewhat con-
trarian thinking. Some practition-
ers and many theoreticians will
probably not agree with or like
what I have said. I would be inter-
ested in what you think.

Robert Glass is president of Computing Trends and
publisher and editor of the Software Practitioner. He
welcomes feedback: 1416 Sare Rd., Bloomington, IN
47401.

© ACM 0002-0782/96/1100 $3.50

C

COMMUNICATIONS OF THE ACM November 1996/Vol. 39, No. 11 13

