
5.3

Methodology and tools for state encoding
in asynchronous circuit synthesis *

Jordi Cortadella, Univ. Politecnica de Catalunya, Barcelona, Spain
Michael Kishinevsky, Alex Kondratyev, The University of Aizu, Japan

Lucian0 Lavagno, Politecnico di Torino, Italy
Alex Yakovlev, University of Newcastle upon Tyne, United Kingdom

Abstract

This paper proposes a state encoding method for asynchronous cir-
cuits based on the theory of regions. A region in a Transition
Sjstem is a set of states that “behave uniformly” with respect to
a Ziven transition (value change o f an observable signal), and is
analogue to a place in a Petri net. Regions are tightly connected
with a set ofproperties that must be preserved across the state en-
coding process, namely: (1) trace equivalence between the original
and the encoded specification, and (2) implementability as a speed-
independent circuit. We build on a theoretical body of work lhat
has shown the significance of regions for such property-preserving
transformations, and describe a set of algorithms aimed at effi-
cimtly solving the encoding problem. The algorithms have been
implemented in a software tool called petrify. Unlike many
existing tools, pe t r i fy represents the encoded specification as an
SI%, and thus allows the designer to be more closely involved in
thc synthesis process. The efficiency o f the method is demonstrated
on a number of “difficult” examples.

1 Introduction

In the last decade, Signal Transition Graphs (STGs) [7, 11 have
attracted much of the attention of the asynchronous circuit de-
sign community due to their inherent ability to capture the main
paradigms of asynchronous behaviour: causality, concurrency and
data-dependent and non-deterministic choice. STGs are Petri nets
whose events are interpreted with signal transitions of a modeled
circuit. The STG model, exactly like “classical” Flow Table mod-
els, may require some state signals to be added to those initially
specified by the designer. Adding those state signals is commonly
reierred to as solving the Complete State Coding (CSC) problem.

Since [l] a number of different techniques have been proposed to
solve the CSC-problem. The first totally general method, described
in [8], used an algorithm whose complexity practically precluded
any optimization, but produced only one,often suboptimal, solution.
The most recent method [9] is based on the concept of an excitation

*This work has been partially supported by grant CICYT TIC 95-0419 (J. Cor-
tadella), EPSRC visiting fellowship GWJ78334 (M. Kishinevsky), MURST project
“VLSI architectures” (L. Lavagno), and EPSRC grant GWJ52327 (A. Yakovlev).

33rd Design Automation Conference@
Permission to make digitalhard copy of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage, the copyright notice, the title of the publication and
its date appear, and notice is given that copying is by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 96 ~ 06/96 Las Vegas, NV, USA
01996 ACM 0-89791-779-0/96/0006..$3.50

region for a signal transition (a set of states in which a signal is
enabled to change its value). It has been able to improve on [8]
by adopting a coarser granularity in the exploration of the solution
space. This coarser granularity has a price, though: as we will show
in Section 6, there is a number of examples of STGs which could
not be solved by their method (nor by previous ones, mainly due
to the large nurnber of states), unless changes in the specification
(e.g., reductions in concurrency) are allowed. Moreover, the authors
could not characterize the class of STGs for which their method was
guaranteed to find a solution.

Our approach differs from the previous work in the area, because
it is based on the notion o f regions of states, which is more general
than, albeit related to, that o f excitation regions (an excitation region
is a spec& intersection of regions). By exploring a broader design
space than [9], we can thus solve a larger number of problems,
and potentially reach better solutions especially in terms of circuit
performance. For example, our approach can eficiently trade off
logic complexity with execution speed, by changing the level of
parallelism with which state signal transitions are inserted. On the
other hand, our search space is still reduced with respect to [8], and
thus we can claim better control on the quality of the solution.

This paper is organised as follows. Section 2 provides some
theoretical background (the interested reader is referred to [2] for
the details). Sections 3 and 4 define the idea of property-preserving
event insertion and apply it to solving the CSC problem. Sections 5
and 6 describe implementation aspects and experimental results.

2 Theoretical background

2.1 TransiUion systems and Petri nets

P3

(a) (b) (C)

Figure 1: A TS (a), the corresponding PN (b), its RG (c)

Informally, a TS ([6]) can be represented as an arc-labeled directed
graph. A simple example of a TS without cycles is shown in
Figure 1 ,a. A TS is called deterministic if for each state s and each

63

label a there can be at most one state s’ such that s 5 s’. A TS is
called commutative if whenever two actions can be executed from
some state in any order, then their execution always leads to the
same state, regardless of the order.

A Petri Net is a quadruple N = (P, T , F, mo), where P is afinite
set of places, T is afinite set of transitions, F 2 (P x T) U (T x P)
is the flow relation, and mo is the initial marking. A transition
t E T is enabled at marking ml if all its input places are marked.
An enabled transition t may fire, producing a new marking m2 with
one less token in each input place and one more token in each output
place (ml 4- m 2) . A PN expressing the same behavior as the TS
from Figure 1 ,a is shown in Figure 1 ,b.

The set of all markings reachable in N from the initial marking
mo is called its Reachability Set. A net is called safe if no more
than one token can appear in a place in any reachable marking. The
graph with vertices corresponding to markings of a PN and with
an arc (m ~ , m2) in the graph if and only if ml + m2 is called
its Reachability Graph (RG). One can easily check that the RG
Figure 1 ,c derived for the PN from Figure 1 ,b is isomorphic to the
TS (Figure 1 ,a).

2.2 Regions and Excitation Regions
Let SI be a subset of the states of a TS, SI C S. If s $Z SI
and s’ E SI, then we say that transition s 5 s’ enters 5’1. If
s E S1 and s’ @ SI, then transition s s’ exits SI. Otherwise,
transition s 3 s’ does not cross S I . A region is a subset of
states with which all transitions labeled with the same event e have
exactly the same “entry/exit” relation. This relation will become
the predecessor/successor relation in the Petri net.

Let us consider the TS shown in Figure 1. The set of states
T~ = (s 2 , s3 , sfi} is a region, since all transitions labeled with a and
with b enter ~ g , and all transitions labeled with c exit ~ 3 . On the
other hand, (s 2 , sg} is not a region since transition S I 5 s3 enters
this set, while another transition also labeled with b , s 4 5 sfi, does
not.

A region T is apre-regionof event e if there is a transition labeled
with e which exits T. A region T is apost-region of event e if there is
a transition labeled with e which enters T . The set of all pre-regions
and post-regions of e is denoted with ‘ e and e o respectively.

While regions in a TS are related to places in the corresponding
PN, an excitation region for event a is a maximal set of states in
which transition a is enabled. Therefore, excitation regions are
related to transitions of the PN. A set of states is called an excitation
region for event a (denoted by ER, (a)) if it is a maximal connected
set of states such that for every states E ER, (a) there is a transition
s 2. Since any event a can have several separated E h , an index j is
used for the distinction between different connected occurrences of a
in the TS. In the TS from Figure 1 ,a there are two excitation regions
for event a : E R l (a) = {SI} and ER2(a) = {sg} . Similarly tc
ERs, we define switching regions as connectedsets of states reached
immediately after the occurrence o f an event.

3 Property-preserving event insertion

Event insertion is informally seen as an operation on a TS which
selects a subset of states, splits each state in it into two states and
creates, on the basis of these new states, an excitation and switching
region for a new event. Figure 2 shows the chosen insertion scheme,
analogous to that used by most authors in the area, in the three main
cases of insertion with respect to the position of the states in the
insertion set E R (z) (entrance to, exit from or inside E R (z)) .

................................
c h

d i W x)

+T3 t 7.. T...T,: c - h

.................................
ER@) ~

j ER(n)

Figure 2: Event insertion scheme

State signal insertion must also preserve the speed-independence
of the original specification, that is required for the existence of a
hazard-free asynchronous circuit implementation.

An event a of a TS A is said to be persistent in a subset S’
of states of S iff V s l E S’,b E E : [sl A(s1 5 s2) E
TI + s2 5. An event is said to persistent if it is persistent
in S. For a binary encoded TS, determinism, commutativity and
output event persistency guarantee speed-independenceof its circuit
implementation. Formally, we say that an insertion state set E R (x) ,
in a TS A’ obtained from a deterministic and commutative TS A by
inserting event x, is a speed-independence preserving subset (SIP-
set) iff (1) for each a E E , if a is persistent in A, then it remains
persistent in A’, and (2) A’ is deterministic and commutative.

The following two properties of insertion sets, based on theory
developed in [2], link together the notions of TSregions and SIP-sets
and provide a rationale for our approach.

Property 3.1
(P l) If r is a region in a commutative and deterministic TS, then r
is an SIP-set.

e (P2) I ~ T is an excitation region of an event a in a commutative and
deterministic TS and a is persistent in T , then r is an SIP-set.
(P3) I ~ T I and r2 arepre-regionsof the same event in a commutative
and deterministic TS, T I n ~2 is connected and all exit events of
rl n ~2 are persistent, then r1 n r 2 is a SIP-set.

These properties suggest that the good candidates for insertion sets
should be sought on the basis of regions and their intersections
(while the approach of [9] could exploit only case P2). Since any
disjoint union of regions is also a region, this gives an important
corollary that nice sets of states can be built very efficiently, from
“bricks” (regions) rather than “sand” (states).

4 Solving Complete State Coding

A Signal Transition Graph (STG, [l, 71) is a Petri net labeled with
up and down transitions of a set of signals (denoted by zt and x-
for signal z respectively).

A necessary condition for STG implementability i s consistent
labeling. Informally, this means that in every firing sequence from
the initial marking, rising and falling transitions altemate for each
signal. In other words, each marking can be uniquely labeled with a
vector of signal values. Once consistency is ensured, Complete State
Coding (CSC) becomes necessary and sufficient for the existence
of a logic circuit implementation. A consistent STG satisfies the
CSC property if for every pair of states s, 3’ of the associated TS,
such that U(.) = U(.’), the set of non-input transitions enabled in
both is the same.

Assume that the set of states S in a TS is partitioned into two
subsets which are to be encoded by means of an additional signal
to solve some CSC conflicts. Let T and F = S - T denote the
blocks of such a partition. In order to implement such an encoding,
we need to insert appropriate transitions of the new signals in the
border states between the two subsets.

In this paper we shall consider the so-called exit border (EB) of
a partition block T , denoted by E B (r) , which is informally a subset

64

o f states of r with transitions exiting r . We call E B (r) welllformed
if there are no transitions leading from states in E B (T) to states in
r - EB(r) .

Consider the example in Figure 3 (enabled signals have their
value followed by * in the signal label). State pair (1 * 1, 1 * 1 *) has
a CSC conflict, assuming that signal a is input and b is non-input,
artdsodo (1’1, l*l*) and (0*1,01*) (while (00*,0*0*) doesnot,
hecause b is enabled in both). The partition r = r2, F = r2‘
separates all conflicting pairs, and can thus be tentatively used to
sclve the conflicts. The borders, in this case, are denoted by the
shaded areas. If they are selected as excitation regions for the new
signal y, we obtain the TS (c). Note that some border states are
ccnflicting. This means that the new TS will still have secondary
C<SC problems, that must be solved by iterating the procedure (the
proof of convergence is given in [2]).

(a)
...........................

...
......

.................................

~ ,]”U*- GT-J r2 ~

d

3 - -

r?: . .. -1

Figure 3: Illustration of event insertion

Note that we need each new signal x to orderly cycle through
states in which it has value 0, 0*, 1 and l*. We can formalize
this requirement with the notion of I-partition ([8] used a similar
definition).

Given a TS T S = (S, T, E , s in) , an I-partition is a partition of
S into four blocks: So, SI, St and S-. S”(S’) defines the states
in which z will have the value 0 (1). S+(S-) defines ER(z+)
(ER(x-)). For a consistent encodingof x, the only allowed events
crossing boundaries of the blocks are the following: So + S’ -
S’ -+ S- -+ So, Ss --+ S- and S - -+ S s (the latter two would
cause a persistency violation, though).

The problem of finding an I-partition is reduced to finding a
bipartition S. Each block b of S induces a bipartition { b , b } , ii;‘ =
S\ b). Given a block b, an I-partition can be calculated by defining
Si’ and S- with the following recursion:

i . { s E b 1 3 s + s ‘ A s ’ E b } s S +
{ s E b 1 3 s + s f A s ’ E b } C S -

: I . [s E s+ A s ’ E b A s-s’] =+ s ’ E S +
[S E S - A S ’ E F A s - + s ’] + S ’ E S -

and finally So = b-St and SI = b- S-. The sets of states defined

bricks = calculate-allbricks ()
frontier = goodblocks = {the best F W bricks}
repeat /* heuristic search */

new-frontier = 0
for each bl E frontier do

for each br E bricks adjacent to bl do
new& = bl U br
if cost(newJ1) < cost(bZ) then

goodblocks = goodblocks U {newN}
newfrontier = newfrontier U {nezudl}

frontier = select the best FW blocks from newfrontier
until newfrontier = 0
return the best block in goodblocks

Figure 4: Heuristic search to find a block for event insertion

by condition 1 correspond to the smallest “legal” exit border of b with
respect to b (EB(b)) . The additional states of condition 2 define
the smallest well-formed EBs. We will denote by MWFEB(b) the
minimal welllformed EB of b.

The set of candidates explored by our encoding algorithm will
be restricted to be an I-partition by construction. We proved in [2]
that the method is complete, in that it can solve CSC for any safe,
consistent, output-persistent STG.

5 A heuristic-search strategy to solve CSC
The main algorithm for the insertion of one state signal is as follows:

1. Generate a set of I-partitions that preseme speed independence

2. Estimate tlhe cost of the generated I-partitions

3. Select the best I-partition
4. Increase the concurrency of the inserted signal

Initially, all bricks of the TS are calculated by (1) obtaining all
minimal regions: of the TS and (2) calculating all possible intersec-
tions of pre-/post-regions of the same event. Since the number of
pre- and post-regions of an event is usually small, an exhaustive
generation is feasible.

The best block for event insertion is obtained as the union of
adjacent bricks. At each iteration of the search, a frontier of FW
(frontier width, i i parameter trading off solution quality versus time)
“good” blocks is kept. Each block is enlarged by adjacent bricks
and the new obtained blocks are considered candidates for the next
iteration only if they are “better”, according to the cost function,
than their ancestors. The final block for insertion is calculated as
the union o f best disconnected blocks. A greedy block merging
approach guided by the cost function is used.

Given a block b, Ss and S- are initially calculated as the
MWFEB of b and b respectively. This leads to a solution with
minimum concurrency of the inserted event. Concurrency can be
increased by enlarging S+ and/or S-([SI). In o w approach, after
having calculated the best configuration for event insertion, S+ and
S- are greedily enlarged by adding bricks that are adjacent to them.
The enlargement is only accepted if the new configuration improves
the cost of the solution. The following factors are considered in the
cost function for the insertion of signal x (in order of priority):

(figure 4)

ER(z+) and ER(x-) must be SIP blocks.

e The insertion of x must not modify the specification of the
environment (e.g., x cannot be inserted before input events).

65

benchmark I places I trans. 1 signals I states I CPU
master-read I 37 I 26 I 18 I 18856 I 927 benchmark states

adfast 44

par16
pipe8 24
pipel6

ASSASSIN petrify
area I CPU area I CPU
390 I 0.4 294 I 10.5

Table 1: Results for STGs with a large number of states

The number of solved CSC conflicts must be maximized.

The estimated complexity of the circuit inust be minimized.

In the current implementation, the complexity of the circuit is ap-
proximated by the sum of the number of trigger signals for each
ER. Each trigger signal labels one of the transitions which enter an
ER and corresponds to a fan-in signal in the implementation. More
accurate estimations are foreseen for future iniplementations.

6 Experimental results

The region-based approach presented in this paper has been inte-
grated in pe t r i fy , a tool for the synthesis of Petri nets [3]. We
have used several benchmarks that no other automatic tool, such as
SIS or ASSASSIN, has been able to solve. Some of them are even
difficult to solve manually by expert designers. Our approach has
succeeded in all of them.

One of the most important features of the CSC algorithm imple-
mented in p e t r i f y is the capability of managing extremely large
state graphs generated from STGs with high concurrency. Two fac-
tors are essential for this capability: (1) the symbolic representation
and manipulation of the state graph by means of Ordered Binary
Decision Diagram (2) the exploration of blocks of states at the
level of regions rather than states. Table 1 presents the CPU times
(in seconds on a SPARCSTATION 20) required to satisfy CSC for
some examples with a vast state space, which cannot be solved in a
reasonable amount of memory or time by SIS or ASSASSIN.

Table 2 reports the results obtained with petr i fy in comparison
with the ones obtained by ASSASSIN ([SI). The quality of the
results is comparable to those obtained by ASSASSIN. Even with
the estimation of logic performed in pe t r i fy , ASSASSIN can
still offer slight improvements in a few examples. This means that
an estimation of logic based on only trigger signals is not accurate
enough.

7 Conclusions

In this paper we have presented a method and associated algorithms
for solving state coding problems by means of state signal insertion.
Our main target here was solving Complete State Coding problem,
one of fundamental issues in asynchronous circuit synthesis from
Signal Transition Graphs. We believe that our approach to: (1)
Transition System partitioning, (2) new signal insertion, and (3) re-
construction of the model in Petri net form, based on the concept
of region of states, will prove useful in solving other problems
in asynchronous circuit synthesis. In particular, the technology
mapping problem for Speed-Independent circuits ([4]) can be cast
in this form.

nak-pa

ram-read-sbuf
sbuf-ram-wnte
sbuf-read-ctl
mux2
postoffice
duplicator
specseq4
seqmix
seq8
trcv-bm
tsend-bm
ircv-bm
mod4xounter
master-read
mmu
mro
iIKl
mmu0
mmu 1
par.4
divider8
vme2int
combuf2
total

36
58
15
99
58
20
20
20
36
44
41
44
16

1882
174
302
190
174
82

628
18
74
11

406
764
244

1386
1094
294
236
324
480
826

1010
842
648
726
698

1008
912
886
700
506
848

1014
270

17658

0.2
0.7
0.0
3.0
1 .O
0.1
0.1
0.1
0.4
0.6
0.6
0.4
0.1

607.7
10.6
40.0
17.9
8.4
1.8

206.4
0.4
0.8
0.2

902.8

406
300
244

1774
800
294
236
324
480
824
962

I042
648
750
132
626
650
610
514
506
914
938
262

16364

6.0
23.9

1.4
142.2

0.0
5.9
6.2
7.5

37.8
56.5
0.0

64.3
0.0

75.1
51.9

153.6
23.0
48.4
45.0
88.0
18.7
44.4
3.7

927.4

Table 2: Experimental results compared with ASSASSIN

References
[I] T.-A. Chu. On the models for designing VLSI asynchronous digital

systems. Integration: the VLSIjournal, 4:99-113,1986.
121 J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and

A. Yakovlev. A region-based theory for state assignment in asyn-
chronous circuits. Technical Report 95-2-006, University of Aizu,
Japan, October 1995.

[3] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Syn-
thesizing Petri nets from state-based models. In Proceedings of the
Infernationul Conference on Computer-Aided Design, November 1995.

[4] A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanbekbergen, and
A. Yakovlev. Basic gate implementation of speed-independent circuits.
In Proceedings qf the Design Automation Conference, 1994.

[5] Bill Lin, Chantal Ykman-Couvreur, and Peter Vanbekbergen. A general
state graph transformation framework for asynchronous synthesis. In
Proceedings of the European Design Automotion Conference (EURO-
DACJ, pages 448-453. IEEE Computer Society Press, September 1994.

161 M. Nielsen, G. Rozenberg, and P.S. Thiagarajan. Elementary transition
systems. Theoretical Computer Science, 96:3-33,1992.

171 L. Y. Rosenblum and A. V. Yakovlev. Signal graphs: from self-timed
to timed ones. In International Workshopon Timed Petri Nets, 1985.

[8] P. Vanbekbergen, B. Lin, G. Goossens, and H. De Man. A generalized
state assignment theory for transformations on Signal Transition Graphs.
In Proceedings of the International Conference on Computer-Aided
Design, pages 112-1 17, November 1992.

[91 C. Ykman-Couvreur and B. Lin. Optimised state assignment for asyn-
chronous circuit synthesis. In Proc. Second Working Cot@ on Asyn-
chronous Design Methodologies, London, May 1995.

66

