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When relying on module generators to implement regular
datapathson FPGAS, the coar segranularity of FPGA cells can
lead to area and delay inefficiencies. We present a method
to alleviate these problems by compacting adjacent modules
using structure extraction, local logic synthesis, and cell re-
placement. Theregular datapath structureisexploited and pre-
served, achieving faster layoutsafter shorter tool run-times.

1 Introduction

Regular datapathsare the core of many CPU and DSP architectures.
The application of generator programs to create their constituent
moduleshasalong history in VLSI design ([2], [6], [10], [13], [14],
and many others). With growing FPGA die sizes, such datapath ar-
chitectures are also implementable on FPGAs. However, current
module generation techniquesfor FPGASs ([5], [19], [1]) do not ad-
dress the area and delay inefficiencies caused by the coarse-grain
architecture of FPGAs as compared to semi-custom or gate-array
chips. Furthermore, misfeatures of current module generators in-
clude limited layout topology options [1] and the inability to reg-
ularly place simple non-FPGA-specific logic [19].

The following paper presents a method that mitigates these in-
adequacies: A linear placement of generated modules with regular
layouts is compacted without disrupting the efficient structure, re-
gardless of whether the modules are FPGA-specific or simple. The
datapath regularity of horizontal dataand vertical control flowis ac-
tively exploited and has beenimplemented in the framework of SDI
[12]. SDI consists of acomplete suite of tools (a comprehensiveli-
brary of parametric modules, module generators, afloorplanner, and
the compactor) and a strategy for their application to implement an
efficient datapath combined with an irregular controller. The tools
are currently targeting Xilinx XC4000 FPGAs. However, the gen-
eral procedure can beappliedto all FPGAswith matrix architecture.
This paper describes only the compaction step, which processesjust
the regular part of the circuit.

2 Problem Description

A strictly module-based layout consists of a regular (often linear)
placement of regularly generated modules. Since a module is al-
ways at least one logic block wide, partially utilized blocks waste
areaand speed. Thesize of thewasted areaand thelossin speedin-
crease with the logic capacity of asingle FPGA logic block and the
number of modulesin the datapath.

Figure 1 is an example for such a scenario: The 3-bit datapath
contains three regular modules AND2, OR2, and AND2B1, imple-
menting the functionality of a 3-bit wide 2-1 multiplexer. However,
even assuming relatively fine-grained logic blocks on the FPGA
(e.g., Actel ACT logic modules, Atmel AT6000, or Xilinx X C6200
cells), the function MUX21 can be implemented in a single logic
block per bit. Thus, the sample datapath wastes 2/3 of its area and
only runs at 1/2 the speed of the single block solution. This situa-
tion becomesworsewith coarser-grained blockssuchasthe N-LUTs
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Fig. 1: Wasted spacein a strictly module-based layout
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found, e.g., in Xilinx XC3000/XC4000, AT&T ORCA, and Altera
FLEX FPGAs. The compaction process breaks module boundaries
in a strictly module-based layout and merges adjacent modules to
better utilize the logic blocks.

3 Overview

In our approach, acircuit is composed of regular modules (vertical
stacksof bit-slices ordered from bottom L SB to top MSB), that are
placedin aregular linear arrangement by the floorplanner. Only af-
ter considering this initial floorplan, a flattening, minimization, and
mapping processis performed to compact adjacent modules, reduc-
ing areaand delay. Each of these operations preservesregular struc-
tures. Thefollowing placement of blockswithin the compacted mo-
dule also aims o create bit-slices suitable for vertical abutment and
horizontal fit in the context of theinitial floorplan. Observethat this
approach aims at the compaction of entire sub-datapaths. This con-
trasts, for example, with the method in [18] for compacting single
modulesduring their generation.

Conventionally, a circuit is composed of library cells, flattened,
and reduced to basic gates. These are minimized, and the resulting
netlist is mapped onto the basic FPGA logic blocks (e.g., [15], [3],
[17], and many others). If placement did not occur during mapping
(asin [7]), the resulting netlist must then be placed. Often, thisis
handled by simulated annealing ([16]). Structure or regularity in-
formation islost during this process.

Our compaction is performed after a floorplanning tool has de-
termined the linear placement of all modules in the datapath. The
datapath may contain non-compactable modules. These are either
highly irregular or very complex hard-macros, such as multipliers,
laid out carefully to take advantage of the FPGA block and rout-
ing topologies and thus would deteriorate during the compaction,
or macros exploiting special FPGA-specific features that are not
covered by standard optimization tools. For the XC4000, this in-
cludes RAM/ROM blocks or the hard-carry logic for fast ripple-
carry adders. These modules are not compacted and pass through
the compactor unmodified.

Prior to the compaction process, the floorplanner selects sub-
datapaths (sets of compactable modules) that are to be merged into
asingle module (Section 5). The module boundariesare broken up,
and the separate functions of each module bit-slice are combined.
Note that only the inter-module boundaries are broken, not the re-
gular bit-slice structures within the modules.

By taking advantage of the regularity of the datapaths, the prob-
lem size for further operations can be reduced: The structure of
amerged module is searched for repeatedly occurring sub-circuits
(zones, Section 6). Each of these zones of duplicated logic is pro-
cessed only once, and replicated as required.

The compaction itself applies standard logic optimization and

33rd Design Automation Conference O
Permission to make digital/hard copy of all or part of thiswork for personal or class-room use is granted without fee provided that copies are not made

or distributed for profit or commercia advantage, the copyright notice, the title of the publication'and its date e tic
savgr/sgg/rotgorgdjs%tré%ute to lists, requires prior specific permssion and/or afee.

by permission of ACM, Inc. To copy otherwise, to republish, to post on
DYA% 96 - 06/96 Las Vegas, NV, U% U199 /(EpCM, Inc. 0&?9791—833

pear, and notice is given that copying is



From floorplanner Compaction area

(sub-datapath)
Zone analysis
Zone merging

1)

Slices to compact

for each slice

(@)
Networks of FPGA cells

(©)

Slices composed of FPGA cells

Placement areas Critical paths

4)

Columns of FPGA cells
Channels for control signals

(5) for each slice
Rows of FPGA cells
(6)
To floorplanner
Fig. 2: Stepsof the compaction process
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technology mapping to the zone functions (Section 7). Since the
placement information provided by the modulegeneratorsis lost af-
terwards, the mapped FPGA blocks of the merged module have to
be placed again in the context of the original floorplan.

The specialized two-phase placement algorithm is timing-driven
(Section 8) and takes the regular datapath structure and FPGA-
specific routing topologies into account. During the first phase,
blocks are placed horizontally, observing the alignment of adjacent
zones, and vertical control signalsare globally routed (Section 9.1).
The second phase assignsrow locationsto the blocks (Section 9.2).
Since vertical placement occurs separately for each zone, it has a
smaller problem size and can thusbe more detailed, allowing the use
of afiner representation of the routing structure of the target FPGA.

Finally, the placed netlist of the sub-datapath is assembled by du-
plicating and vertically stacking the zones according to the original
width requirements.

Theresult is anew regular module fitting within theinitial floor-
plan, but with reduced area and number of logic levels. Pin as-
signment and routing still have to be performed using conventional
tools. Currently, the PPR program of the Xilinx XACT suiteisem-
ployed to handle these tasks (Section 10).

The compaction processin Figure 2 will be explainedin detail in
the next sections.

4 Definitions

A circuit consistsof cells(nodesor ports) that can be placed at (x,y)
inside or adjacent to a placement area with height H and width W.
Ports have just locations (no extent) and are either data or control
ports. The location of a port may be locked to one or more sides
of the placement area, fixing one or both of the coordinates during
placement. A two-terminal net (TTN), represented by (a,b), hasthe
output of cell a assourceand aninput of cell b assink. A path ((a,b),
(b,c), ...) consists of an unbroken sequenceof TTNs. A dlicesis
asub-circuit (e.g., bit-slice). It can beinstantiated i timesto form a
zone (s, i) of replicated identical logic. When used in this manner,
the slice s is called the master slice of the zone. A stack S isase-
quence of zones describing a vertical stacking of zonesfrom top to
bottom. A module M consistsof astack S, and anetlist of TTNs.
A datapath © is a sequence of modules describing a linear place-
ment from left to right. An FPGA matrix is composed of a grid of
blocks (e.g., XC4000 CLBs).

Figure 3 shows a datapath of two modules, an 8-bit ALU and an
8-bit logical left shifter. ALU[7:0] is composed of a single zone
created by instantiating the 4-bit ALU master slice named ALU4
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twice. Thus, the stack associated with ALU[7:0] is {(ALU4,2)}.
The ALU4 slice consists of 24 cellsin a(4,6) placement area. The
ALU[7:0] module hasoperation select signals S;, . .., § ascontrol
inputs. If we assumethat ALU[7:0] isused in aripple-carry con-
figuration, it will have the carry signal as a vertical inter-slice net
between ALU4/0 and ALUA4/1. The shifter module LSHL[7:0] con-
tainsthe stack {(DWN2,3), (TOPDWN,1)} and hasthe shift enable
signal SHIFT ascontrol input. Each of the sliceswill haveavertical
inter-slice net to propagatea bit n to the next lower sliceashit n— 1.
Notethat one slice of ALU[7:0] can process4 bits, while the shifter
master slices TOPDWN and DWNZ2 processonly 2 hits per slice.

5 Selecting Sub-Datapaths for Compaction

Prior to compaction, the floorplanner determines parts of the origi-
nal datapath to be compacted (top of Figure 2).

Although this selection is not part of the compaction operation
itself, it significantly influencesthe quality of the resulting layout.
Becausethe compl ete datapath might contain modules not amenable
to compaction, the floorplanner has to determine the largest sets of
suitable modules. Each of these setsis considered a sub-datapath of
the whole datapath. The sub-datapaths are then handled indepen-
dently, allowing the parallel compaction of each set of modules.

Figure 4 shows an example: The floorplanner has calculated
a linear placement of modules (case a). H; and H, are hard-
macros, and thus mark the boundaries of the three compactable
sub-datapaths{M; }, {M, ..., Ms}, and {Ms, M;}. An even tighter
packing might be obtained if the boundaries were ignored (in Fig-
ure 4.b, the duplicated function f is removed), but this would risk
a degradation of wire lengths o’ and 8’ over their pre-compaction
levels. When the boundaries are respected, area is traded for
speed: The compacted modules My, Moys, and Mg; are larger than
M 234567 , but the wire lengths remain unaffected (Figure 4.c). Since
the compactor is primarily performance-oriented, it follows the ap-
proachin Figure 4.c.

6 Zone Analysis and Merging

After determining their extent for compaction, each sub-datapath ©
is processed separately. Since they are independent of each other,
all steps of the complete compaction processin Figure 2 can be per-
formed in parallel for al such®. The regular structure of © is ex-
ploited to reduce run-times of the following compaction steps.

2 issearched for zonesof recurring logic asthefirst compaction
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/* initially, we don’t know any zones*/
[* start at the bottom of the datapath to compact ... */

/* ... and work your way upwards*/

while (row <= max. height of datapath) do {
s := instances hit by horiz. scanlineat r ow;
h := height of tallest instancein s;

temp = {}; /* prepareto assembleinstancesintotemp */
r=row;
* now collect instances across the stacks*/
while (r <=row + h) do {
collect instances hit by horiz. scanlineatr into temp;
advanceupwardstor + 1;
b
if (tempisanew slice) then
add temp to S with iteration count of 1;
else
* we have seen an instance of this zone before*/
just incr. theiter. count of the last occurence;

/* now advanceto the next row of instances*/
row :=row + h;

}

Table 1: Algorithm for zone analysis

step (Figure 2.1). Thefunctionsof the separatemodules M in® are
merged into a single module M’ having the complete functionality
of ©. Themaster slices of the zonesof M’ are created by extending
the bit-slices of each M acrossthe module boundaries.

The master slices of the zones are now manipulated further and
replicated asreguired. Notethat M’ isnot yet optimized in this step
(Section 7), and that the zonesstill contain placed blocks, since the
origina layouts have not yet been invalidated.

Thealgorithm in Table 1 analyzesagiven ©. Applied to the ex-
ample of Figure 3, it proceedsas follows: Theinitial bottom scan-
line collects ALU4/0 and DWN2/0 into s. Thus, h becomes4. The
inner loop hits ALU4/0 and DWNZ2/0 twice, then it advances up-
wards to hit ALU4/0 and DWNZ2/1 twice. Each instance hit, how-
ever, is added only once per module to temp (e.g., we don't add
ALUA4/0 twice). Since we have now reached the upper border of
ALUA4/0, the inner loop terminates, and we add the new zone to
S with an iteration count of 1. We now repeat the process for
the next row up and acquire a second zone of one slice containing
ALUA4/1, DWN2/2 and TOPDWNY/O. This results in a stack S,/
{({ALU4,DWN2,DWN2)},1), ({ALU4, DWN2, TOPDWN},1)}.
The networksin the master slices of the zones are now merged by
following their intra-zone (but inter-module!) connections. Thus,
2 is being merged into a single M’ with the two slices ALU4-
DWN2-DWN2 and ALU4-DWN2-TOPDWN.

In the current example, we have not saved any work, because
each dlice occurs just once in ©. Nevertheless, if we assume a
12-bit datapath similar to the one in Figure 3, the slice {ALU4,
DWN2, DWNZ2} would occur twicein® aszone ({ALU4, DWN2,
DWNZ2}, 2). It would only be processed once during compaction,
the results being duplicated to build the 8-bit bottom zone of the 12-
bit M’. The gains are even more pronounced with wider datapaths,
such as 32 bits. In addition, the zone analysis and merging opera-
tion can be performed in parallel on each of the compaction areas
specified by the floorplanner.

Thealgorithm in Table 1 is asimplified version. The full imple-
mentation also considers special cases like vertically overlapping
slices and changing port locations between slices.

7 Logic Optimization
After obtaining the master slicesof AM’, wenow reduceareaand de-

lay. Theregularity extraction performed on® in Figure 2.2 allows
parallel processing of just the master slices instead of a monolithic

operation on all nodesin A'.

Optimization applies classical logic synthesis and technology
mapping algorithms to each master slice of AM'. This proceeds
across the boundaries of the modules M originally making up 2,
but preservesthe regular architecture of the datapath itself (vertical
stacks of bit-slices). The potential for optimization grows with the
size of the master slice (see Section 5 for limitations).

Sincethe compaction processisgenerally independent of the sub-
algorithms employed, it can easily take advantage of any new ad-
vances in the fields of optimization and mapping. For example,
theinitial version of the compactor supported only the “xI” (MIS-
PGA) commands in SIS 1.3 [17] to perform technology mapping
to N-LUTs. The current compactor can also employ the more re-
cent FlowMap package [8] that emphasizes delay over area mini-
mization, allowing the user to makeatrade-off by choosingthealgo-
rithm. Minimization and mapping transform the networks of FPGA
blocks (CLBs for XC4000, Figure 5.8) separately for each master
slice of A’ into optimized networks of cells. All placement infor-
mation is lost and has to be recreated by the following steps.
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For the XC4000, acell consistsof a4-LUT, optionally combined
with a flip-flop (Figure 5.b). The current compactor implementa-
tion does not attempt to handle irregularities in the FPGA logic
blocks (e.g., the H-block in XC4000 CLBs). Thus, two cells fit
inside the regular part of a CLB. With recent FPGA architectures
striving to avoid irregular structures (e.g., Altera FLEX and Xilinx
X C5000/X C6200chips), thisrestriction seemslesssevereand could
even be removed by the integration of the appropriate CL B packing
algorithms.

8 Pre-Placement Activities

Sincethe minimization and mapping stepschangethe circuitsin the
master slices, the initially generated module layouts are no longer
valid and the cells of the slices have to be re-placed.

In order to executeatiming-driven cell placement, acritical path
analysis of the complete M’ has to be performed (Figure 2.3). To
do so, M’ isassembled by interpreting the topology in S - andin-
stantiating the slices accordingly. Next, the cells are interconnected
with vertical inter-slice nets and control nets.

The delay trace can then be executed using either the unit de-
lay or unit-fanout delay models of SIS. Afterwards, the arrival and
required times of inter-slice nets are back-annotated to their mas-
ter slices. For input ports, the arrival time becomes the latest time
at which their signal arrives at an instance of the slice. For output
ports, the required time becomes the earliest time the signal is re-
quired in aninstance.

While these timing constraints are not accurate enough to esti-
mateareal inter-slice path through its master slices, they can be used
to determine pathsthat are critical at all (having slacks< 0). Multi-
terminal nets are decomposed into one or more paths of TTNSs.

Theresult is alist of critical paths for each master slice, sorted
by ascending length. The timing-driven placement uses these lists
to minimize wire lengths on critical paths.

The floorplanner is responsible for determining the placement
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area for each dlice, in particular its height H. The whole floor-
plan will profit from a homogeneous bit-slice height (pitch) across
all modules (compacted and hard-macros). Thus, these calculations
cannot be performed by the compactor with itslocal view of the sub-
datapath ©.

9 Cell Placement

In order to create a regular placement of the cells in the optimized
master slices, the placer has to consider the context of M’ in the
original datapath aslaid out by thefloorplanner. In particular, thelo-
cation of datal/O portsand the general topology of the original data-
path have to be observed (how high should a bit-slice be for maxi-
mum regularity?).

The timing-driven placer is currently based on 0-1 integer linear
programs (ILP). It executesin two separate phasesfor column (Fig-
ure 2.4) and row locations (Figure 2.5). Both phases have different
aims, which would be too complex for asingle ILP model. Using
heuristics different from the IL Ps, placement might be attempted in
asingle phase. The compaction processis open to such alterations
in sub-algorithms. An alternative placer using simulated annealing
has already been implemented for experimentation. Due to space
limitations, only the models underlying the ILPs will be described,
see Section 10 for general comments on their actual formulation.

Thetwo phasesof the current ILP placement minimize the max-
imum wire length dy.x On the critical pathsin their objective func-
tions. Thelengthd, of apath pis obtained by adding up the lengths
|a — b| of the TTN segments(a, b) in p.

Since the two phases have different scopes (module in the hori-
zontal vs. sliceinthevertical phase), the placer usesdifferent length
metricsin each phase. Dueto its morelimited scope, themetric used
in the vertical phase (Section 9.2) can be more precise than in the
horizontal phase (Section 9.1).

Except for the allocation of vertical long lines (VLL) in the hor-
izontal phase, no effort is made to balance congestion in routing
channels. This seemsfeasible, becausethe pinson a CLB areinter-
changeableto alarge degree. Thus, the pin assignment and routing
steps can relieve congestion by swapping pins to less dense chan-
nels.

Both phases handle multi-locked ports identically (Fig-
ure 6).a. Assuming that a port P, sourced by node X, is
multi-locked to al sides of the placement area, the distance
dxp = maX(dxpl, dxpt, dxpr, dxpd) used as the Iength of TTN
(X, P) for critical path calculations will be modeled by taking the
maximum distance of all TTNs connecting its source node X with
the corresponding port location of P.

9.1 Horizontal Placement

During horizontal placement (Figure 2.4), the placer strives to: (1)
Assign cells to the columns of the placement areain order to mini-
mize the number of VLLsused for control signal routing. (2) To al-
low vertical inter-slice netsin adjacent slicesof S 4 to berouted by
abutment, if possible. (3) To minimize the maximum routing length
on critical paths. For horizontal placement, all master slices of A

haveto be considered simultaneously, since control signalsand ver-
tical inter-slice signals cross slice boundaries.

The underlying ILP is based on the model shown in Figure 6.b.
The placement areas for Slice0, Slicel, and Slice2 in the example
each consist of a(2,3) grid of cells. Data ports of M’ can be placed
adjacent to the areasin columns O (for left ports) and 4 (right ports).
Each column also has an associated control routing channel with 10
vertical longlines (VLL) for control routing (amaximumof 2VLLs
per channel is used in the example). This channel is assumedto lie
left of the cell column. A control signal in channel n is availableto
cellsincolumnsn andn—1 (e.g., control bin channel 2 reachescells
incolumns1and 2). Notethat for control routing, the channel W+1
directly to theright of the placementarea (H, W) is also considered
available.

If necessary, control signals can be replicated and routed in mul-
tiple channels (not shown in the example). Thus, the number ¢ of
VL Lsusedfor control routing can begreater than the number of con-
trol signals.

Thealignment for inter-slice connectionsof adjacent cells(TTNs
(X,A) and (Y,B) in the example) is modeled by determining the de-
viation from the ideal alignment lines (axa and ayg) as [Xx — Xa
and |xy — Xg|, respectively. The placer should minimize the maxi-
mum alignment error ap.x. Theexamplehasayxa = landayg = 0,
thus apay = 1.

Thewiring delay of intra-slice TTNs, such as (A,B), is also mod-
eled as |[xp — xg|. However, this metric becomesincreasingly in-
accurate with growing H. Since the vertical distance is not known
during this phase, it is currently approximated as | H /4]. Thisas-
sumption is based on the XC4000 topology of a maximum of one
switch matrix for 4 cells (4-LUTs) ina(4,1) area. Thus, | A— B| be-
comes|xa — Xg| + | H/4]. Without an estimation, the model would
try to minimize the wiring delaysby mistakenly preferring the verti-
cal over the horizontal direction. The layouts lacking an estimation
are measurably worse in terms of delay than those with the proposed
estimation. Theimprecisenessof this approximation can bejustified
with the intent of the compactor to process flat bit-slices instead of
tall modules. Should this assumption fail, a more accurate assess-
ment would be necessary.

Given the three quantities introduced in the preceding para-
graphs, the objective function for the horizontal placement phase
becomesmin( wqOmax + WeC + Walmax ). Wy, we, and w, are user-
definable weights. E.g., a user might increase wy over w. when a
faster circuit at the cost of an increased number of control linesis
desired.

9.2 Vertical Placement

In contrast to the horizontal phase, the vertical placement phase
(Figure 2.5) concentrates solely on wiring delay minimization on
the critical paths. Sinceit is not concerned with inter-slice depen-
dencies, its scope can be limited to a single master slice.

With the reduced problem size, it becomespossibleto useamore
precise model of the FPGA routing architecture that better reflects
the non-continuous distance relations. This more detailed model
generates measurably better layouts over those obtained using sim-
ple manhattan distances, especially for more complex slices. Fig-
ure 7 shows the model, which is a simplified view of the XC4000
routing network. Cells A to | have been labeled to serve asexample
TTN nodesin further explanations. The model encompassesdirect
connections (no switch matrices passed) and general single-length
connections (one switch matrix per segment). Vertical long lines
were handled in the horizontal placement phase. Horizontal long
lineswere allocated during floorplanning to create chip-widebusses
or to route long-range inter-module signals. To limit the complexity
of the model, double-length lines are presently not included.

The horizontal phasewas concerned only with placing cells. The
vertical phase, however, hasto take FPGA block boundariesinto ac-
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count and thus operates on a CLB matrix with the same width, but
half the height of itsunderlying cell matrix. Theupper cell of aCLB
will beplacedinthe G-LUT and thususethe Y and Y Q outputs, the
lower cell will belocated inthe F-LUT with its output being routed
through the X and XQ pins (Figure 5). Y/Y Q and X/XQ output pins
are assumed equivalent for routing purposes: The Y/Y Q pins reach
above and to the right of their CLB, the X/XQ pins below and to
theleft. The location of input pinsis not modeled becausethey are
located at all four sides of the CLB. A signal is assumed to be avail-
able at the inputs of all cellswithin aCLB when it reachesthe CLB
boundary.

Themetric employedin this phaseis not based on simple manhat-
tan distances, but only on an actual count of switch matrices(SM) in
asignal path. In order to do so, three major cases based on the hor-
izontal distance of cells (a, b) of aTTN haveto be considered. For
each caseand sub-case, the corresponding TTNsin Figure 7 will be
pointed out.

If the horizontal distanceis 0, the SM-distanceisthe simple CLB
manhattan distance |y, — yy| if the cells are placed in different non-
adjacent CLBs((A,F), dsy = 2) . If they are placed within the same
CLB, the SM-distance becomesO ((A,B), dsy = 0). In the case of
adjacent CLBsin the same column, the possibility of adirect dgy =
0 connection depends on the LUT assignment of sourcecell aina
CLB: If a is below b, a should be assigned to the G-LUT ((A,D),
dsy = 0). If aisaboveb, a is better placed in the F-LUT ((D,A),
dsw = 0). If theseassignmentsare not possible, the signal will have
to pass through one SM ((B,D), dsy = 1).

If the horizontal distance is 1, a direct connection is possible if
the two cells are placed in the same row and a is assigned a suitable
LUT. Specificaly, if bisto theright of a, a should beassignedto the
G-LUT ((A,C), dsm = 0). If bisto theleft of a, the F-LUT should
be chosen ((C,B), dsy = 0). Otherwise dgy is the manhattan dis-
tance of one SM ((B,C), dsy = 1). When a and b are placed in dif-
ferent rows, dsy becomesthe |y, — Yol ((AH), dsy = 1), adjusted
for an inopportune LUT assignment: The distance is increased by
one if b is to the right and above a and a was assigned to the F-
LUT ((B,H), dsy = 2). Similarly, an assignment that placesa in
the G-LUT but has b located to the left and below a, will incur this
SM-penalty ((I,H), dsy = 2).

If the horizontal distance is greater than 1, another effect be-

XACT PPR SDI
UFC-A | T16 | TALU32 | UFC-A | T16 | TALU32
| Wiredelaysinns |
best 36.3 | 304 421 335 | 280 35.9
worst 512 | 376 63.9 40.7 | 30.8 38.3
| Total run-timesfor oneiterationin s |
best 834 345 6460 444 143 925
worst 694 353 4493 430 131 971
[ runs | 73] 77] 123 | 114 | 821 | 596 |

Table 2: Benchmark results and run-times

comes evident: When the vertical distance also becomes greater
than 1, the SM-distance is reduced by 1 over the pure manhattan
[Xa — Xo| + |Ya — Ybl, Since the corner SM can be shared to ad-
vancein horizontal and vertical directionswith asingle step ((A,l),
dsw = 3). Thisoccursin addition to the correction for inopportune
LUT assignments as outlined above ((B,l), dsy = 4). However,
when a and b are placed in the same row, both effects vanish and
dsm reverts to a pure manhattan distance ((A,E), dsy = 2, (B,E),
dsy = 2).

10 Experimental Results

The compactor has been implemented as part of the SDI strategy
[12]. It consists of 6000 lines of C that extend SIS 1.3 [17]. The
modelsareformulated aspure0-1 problemsto allow pre-processing
by OPBDP [4], which performs “logic optimization” on the ILPs
and quickly generates an upper bound using constructive enumer-
ation techniques. CPLEX [9] solvesthe resulting models.

Due to the lack of an established benchmark suite for datapath
structures, two non-standard circuits were selected as examples. In
the context of the compactor, only regular datapaths are examined.
Controller processing is |eft to other SDI components. To evaluate
the quality of our regular approach and avoid inaccuracies due to
different module generators libraries, all test circuits were entered
manually. We comparethe performance of our regularly compacted
circuits against those obtained by the standard design implementa-
tion procedure using the Xilinx XACT PPR tool (irregular place-
ment of flattened design).

UFC-A is part of an addressgenerator for fast DES encryption. It
was entered initially as 26 16-bit combinational modules. Regular
compactionusing MIS-PGA reduced the sizefrom 368 t0 96 LUTSs.
Irregular optimization and mapping of the flattened circuit by PPR
yielded areductionto 112 LUTs.

T16 is a16-hit datapath consisting of two instances of a sample
combinational module with a structure common to many bit-slices
(shared control lines, vertical inter-slice signals). It is composed by
stacking a single slice of sixteen 4-LUTs 4 times per module. For
thisbenchmark, logic optimization or technology mapping was per-
formed neither by SDI nor by PPR in order to directly compare the
regular (SDI) to the conventional irregular placement (PPR).

TALU32isa32-bit ALU with registered inputs built by stacking
eight 74181 [11] 4-bit ALU dlices. The 74181 slice has been mini-
mized and mapped for area efficiency from 65 nodesto 24 4-LUTs
by MIS-PGA commands.

PPR was always run with maximum optimization (placer_effort
= b) in performance-driven mode (dp2p, dc2p) with all pads float-
ing. Both SDI and PPR placementswere routed by PPR, also using
maximum optimization (router_effort =4). Therun-timesin Table2
were measured on an unloaded Sparc 20/71 workstation with 64MB
RAM. Since the simulated annealing in PPR is non-deterministic,
measurementsare listed for the best and worst cases over a number
of runs.

The two resulting layouts of T16 are shown in Figures 8(a) and
8(b). Even at first glance, the SDI-placed solution is obviously
more regular, since the natural structure of the datapath has been



exploited. The SDI layout is less congested than the PPR one, es-
pecially in the first quadrant. Most of all, the routing delay in the
critical path of the best SDI solution is 8% to 26% shorter than in
the maximally optimized PPR layout. The reproducibility of good
placements with SDI is also improved over PPR: SDI has a best-
worst interval of 2.8nsover 821 runs versus PPR with 7.2nsover 77
runs. For PPR, theinterval is growing with the number of runs exe-
cuted. The execution of an SDI placement followed by PPR routing
takesroughly half aslong as performing both placement and routing
through PPR.

Thegainsare evenmore pronouncedwith thelarger TALU32cir-
cuit, with the routing delay of the best SDI-solution being 15% to
44% shorter than in the PPR-generated layout. The SDI best-worst
interval is only 2.4 ns over 596 runs compared to 21.8ns over 123
runsfor PPR. On average, one SDI-PPR cycletakesone-sixth of the
time of a PPR-only cycle.

e
e e

(b) SDI placement and PPR routing

Fig. 8: T16: Placement and routing

UFC-A does not improve as much as TALU32. This is most
likely caused by its very simple bit-slices (few inter-slice connec-
tions or control lines). Performance improvements using SDI seem
to grow not only with the regularity of the bit-slices, but also with
the degree of datapath-like interconnections (module-wide control
lines, inter-slice signals).

11 Conclusions

For strictly module-based datapaths, the compaction process has
consistently outperformed the standard tools in both run-times and
routing delay minimization. The general method is applicable for
all FPGAswith amatrix structure.

Even further speed-upsof the algorithm are possible by fully ex-
ploiting the options for parallel execution and optimizing the ILPs
(e.g., by adding explicit cutting planes). By refining the FPGA rout-
ing model (e.g., including double-lengthlines), an additional reduc-
tionin circuit delay timesis also achievable. However, considering
thelimited number of circuits evaluatedthusfar, further benchmark-
ing is necessary and still in progress.
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