
33rd Design Automation Conference
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

VLSI Design and System Level Veri�cation for the Mini-Disc

Tetsuya Fujimoto , Takashi Kambe

SHARP Corporation

Nara 632 JAPAN

Abstract | In this paper, a new method for
the design of complex multimedia ASIC is intro-
duced. Using this design method, VLSI with em-
bedded software and high-speed emulators can
be developed concurrently. The method has proven
to be e�ective through actual design of VLSI for
audio compression and decompression in a Mini-
Disc system.

1 Introduction

To be competitive in the consumer electronics market,
it is necessary to enhance both cost and performance
of products rapidly, during their very short lifetime. A
typical case is Mini-Disc(MD), a new digital audio sys-
tem, in which we have experienced such a scenario in
the last four years. MD has the following two great
advantages over CD(Compact Disc). In MD, an audio
compression and decompression technology is adopted.
Playing time per disc, 75 minutes, is the same as CD
but MD needs only less than one-fourth of the disc vol-
ume. Another feature is that the system is recordable,
which means that MD can take the place of conventional
cassette tape. For this reason MD is a very promising
product in the consumer electronics market.

We have developed several generations of audio com-
pression and decompression LSI for the MD system over
the last four years. The most important requirement is,
of course, sound quality because this is an audio sys-
tem. Needless to say, short development time and low
chip cost are very important, but we also have to con-
sider the market requirements. In the early stage of
market growth, the VLSI design time must be short
because shipping new product earlier than competitors
brings larger market share and a leading market posi-
tion. On the other hand, cost must be lowered to be
more competitive when the market becomes saturated.

A top-down VLSI design methodology is considered
to be a solution. It is well known that we can achieve
high design productivity and short development time by
designing with an accurate speci�cation for an LSI and

design veri�cation. It is therefore a matter of course
that we adopted a top-down design methodology.

An open problem is how to guarantee the consis-
tency between a speci�cation for an LSI and require-
ments of a product. It is di�cult to de�ne the former
especially when the latter is complex or is not very de-
terministic. In the case of a complex system such as a
multi-media application it is very di�cult to provide an
accurate speci�cation for an LSI early in the design cy-
cle. In another case, for example, an LSI tightly coupled
to analog or mechanical components, we sometimes can-
not determine the speci�cation at all without �rst mak-
ing the characteristics of the other components clear.
Eventually an LSI may fail to work correctly in the tar-
get system for this reason.

Our LSI is also a typical case. The decompression
algorithm is the standard. However many other factors
a�ect to the sound quality. These factors are compres-
sion algorithm, error concealment method, round-o� er-
ror of �xed point arithmetic and so forth. Everything is
integrated in an LSI and then embedded into the MD
system. The sound quality must be good enough in the
product. Hence, it is di�cult to de�ne and verify the
speci�cation. So far, the CAD technologies which are
available have not provided a solution to this problem.

We can develop a correct LSI, using a top-down
design method, only when the speci�cation is correct.
Thus we need some method of performing system level
veri�cation, which is mainly the veri�cation of an LSI's
speci�cation against the requirements of a system.

In the case of our LSI, the �nal requirement is sound
quality and this can only be judged by listening to the
actual sound. No simulation tool is capable of doing
this. HDL simulation is too slow to be used for real
sound, and simulation using C-language software is too
far from the LSI implementation.

We decided to develop a high-speed emulator to lis-
ten to and evaluate the actual sound generated by an
LSI. Along with the development of LSIs, we have es-
tablished a new design method for developing LSIs with
complex speci�cations, and concurrently developing an
emulator for veri�cation of the LSI at the system level.

This paper is structured as follows: The MD system
is briey described in section 2. A design environment
is described in section 3. The method for the concurrent
design of both an LSI and its emulator, one of the most
important aspects of our method, is presented in section
4. Finally, the results of appling this method to the

http://crossmark.crossref.org/dialog/?doi=10.1145%2F240518.240612&domain=pdf&date_stamp=1996-06-01

audio compression and decompression LSI are shown in
section 5.

2 MD system and Audio com-

pression and decompression al-

gorithm

The MD system resembles the CD(Compact Disc) sys-
tem very closely, as shown in Fig.1. According to the
advantages of MD over CD as explained in the section
1, we note the following major di�erences:

� In play mode, after signal processing in common
with CD (EFM demodulation and CIRC error cor-
rection), compressed audio data, not an audio sig-
nal, is obtained. A decompression operation is
then necessary to obtain an audio signal from this
data.

� The signal processing system is bi-directional.

These di�erences are shown in Fig.1 by a shaded
area. In this paper, we will mainly discuss the design
method for the compression and decompression LSI, in-
dicated by \COMPAND" in Fig.1. To design the chip,
the compression and decompression algorithm \ATRAC"
(Adaptive TRansform Acoustic Coding) used in the MD
system, must be understood.

DA

AD

EFM
CIRCDISC

RF
PICKUP COM-

PAND

Figure 1: MD system

AUDIO Signal
16bit PCM

Recorded Bitstream
192bps

QMF(synthesis)

IMDCT

Bit Allocation

MDCT

QMF(analysis)

Format

C
O

M
P

R
E

S
S

IO
N

D
E

C
O

M
P

R
E

S
S

IO
N

Unformat

Dequantize Quantize

Figure 2: ATRAC algorithm

The ATRAC compression algorithm is outlined in
the right half of Fig.2. The input is a digital audio sig-
nal, which is 16bit PCM code at 44.1 KHz sampling fre-
quency. First, in the signal processing steps, the input
signal is analyzed by QMF(Quadrature Mirror Filter)
into three frequency bands. An MDCT(Modi�ed Dis-
crete Cosine Transform) is then applied and each fre-
quency band is transformed from the time domain into
the frequency domain to obtain the audio spectrum. In
the next compression step, bit allocation is calculated
to quantize the audio spectrum. Finally, the quantized
audio spectrum is formated into a bit stream with bit
allocation and quantization information. The compres-
sion ratio is 1/4.83.

Decompression is basically the reverse process of com-
pression, as shown in the left half of Fig.2. First, the
input bit-stream(294Kbps) is unformated to an audio
spectrum. The inverse transform of compression fol-
lows, that is inverse quantization, inverseMDCT(IMDCT),
and QMF. The output is an audio signal, again 16bit
PCM code at 44.1 KHz sampling frequency.

Although the ATRAC algorithm is complex, a few
transforms dominate the total calculation time. These
are the multiplication and add in QMF, the buttery
operation in MDCT, the min-max operation in the bit
allocation step, and so forth. Consequently our goals
were:

� To design hardware(LSI circuits) by means of the
top-down design method

� To develop ATRAC compression and decompres-
sion software on the hardware designed above.

� To develop an high-speed emulator to verify the
speci�cation of the designed LSI with the require-
ments, especially in terms of sound quality.

3 Design Flow and the Design

Environment

In order to support the concurrent development of LSI
hardware, embedded software, and an emulator, a new
design method is necessary. We have extended the con-
ventional top-down design approach to include software
and emulator development support as shown in Fig.3.
The new design environment is organized so that all
three of the design and development goals can be achieved.

3.1 Hardware/Software Concurrent De-
sign

The LSI is dedicated to the ATRAC algorithm, and its
architecture and software are tightly coupled.

We have introduced GAIO Technology Inc.'s XASS
system[3] to support this design stage. The system is
a set of general purpose cross-platform software devel-
opment tools. In our method, we have used these de-
velopment tools for the assembler and the simulation
debugger. The assembler development tool generates a

simple mnemonic to binary converter from a de�nition
of the mnemonics, instruction code, and syntax. The
debugger development tool generates a symbolic sim-
ulation debugger based on the information about the
architecture which is described in a special language.
The basic idea of this tool is similar to gcc.

Hardware Resource

Instraction Set

Instruction Timing

Circuit Partitioning

Architecture Design

Debugger

Assembler

VHDL

FPGA Synthesis

Software
Simulation

LSI Development

Software
Development

Rapid
Prototyping

Emulator

ASIC Synthesis

Conventional Topdown-Design Methodology

Figure 3: Design Flow

These tools have the following role in our design en-
vironment.
Assembler development tool

The architectural design goes like this:

1. De�ne hardware resources, block diagram, and in-
struction execution timing.

2. Develop an assembler using the assembler devel-
opment tool.

3. Develop the fundamental routines which dominate
the total ATRAC calculation time.

4. Verify the architecture in terms of the through-
put of routines developed above, by the use of an
ordinary VHDL simulator.

These four steps are repeated until we realize an ar-
chitecture with enough throughput and with reasonable
cost.

Debugger development tool

After the architectural design has been completed,
a simulation debugger, which is a software model of the

architecture, is developed. With the assembler and the
debugger, an application software development system
is then established, in which the whole speci�cation of
the ATRAC is implemented.

The simulation debugger provides debugging facili-
ties for the target architecture with clock cycle timing.
The debugger shortens software development and opti-
mization time, and the software quality becomes good
enough for physical implementation. This feature is also
e�ective in maintaining the behavioral consistency of
the hardware described by the VHDL and the debug-
ger.

Another advantage is that the application program
can be executed on the debugger one hundred times
faster than on an ordinary VHDL simulator. In our
case, audio data of nearly 2 seconds is computed in 1
hour of debugger time on an SS10.

3.2 LSI/Emulator Concurrent Design

There are two conicting requirements for the design
and development of an emulator. One is operation speed
and the other is cost, including development time. We
have used MP3, the FPCB (Field Programmable Circuit
Board) system from Aptix Corp.[1] as an emulator de-
velopment tool. This is a recon�gurable bread board de-
velopment system which uses FPGAs and FPICs (Field
Programmable InterConnect). With the MP3, Xilinx
4000 series FPGAs[2] are used to implement random
logic.

Although the interconnect delay through an FPIC
is signi�cant leading to reduced emulator clock speeds,
the advantage of FPICs in reducing the con�guration
time and e�ort for the emulator outweighs this.

Hence, in terms of operation speed and design cost,
this is a intermediate solution between conventional bread
boarding and general purpose rapid-prototyping tools
such as RPM from QuickTurn Systems Inc. But we
have tried to achieve as high operation speed as the
former with as small development cost as the latter re-
solving the speed-cost dichotomy above, in the design
environment in Fig.3.

4 Single design for an LSI and

an emulator

The goal and the concept of single design is to use the
same HDL description source for both implementation
and emulation of an LSI. In particular, the architecture
must be the same even if two di�erent HDL sources
are necessary for some small part of the design. This
is essential in a design process that handles a large and
complex design in order to avoid development delay due
to the additional design e�ort required for the emula-
tion, and for e�orts to maintain consistency between
two di�erent designs. Our basic goal is to improve both
the cost-performance of an LSI and the speed of the
emulator simultaneously with the architectural design.

function(A)

function(B)

function(C)

register(X)

register(Y)

BLOCK(1)

BLOCK(2)

TO register(X)

FROM register(X)
TO register(Y)

FROM register(Y)

NORMAL DESIGN OUR DESIGN

SLACK

Figure 4: circuit and timing partitioning

Generally, the speed of the emulator is slower than
that of an LSI based on the same architecture. There-
fore it is a very important task during architectural de-
sign to make the speed of the emulator as high as pos-
sible, while at the same time keeping detrimental side
e�ects to the cost-performance of the LSI as small as
possible.

The speed degradation of an emulator comes from
the following three factors:

Factor 1 On an emulator, signal propagation delay be-
tween electrical components such as FPGAs and
memory chips are much larger than those in an
LSI, because of the longer propagation distances,
the larger wiring capacitance and input/output
bu�ers between chips.

Factor 2 In the case of an emulator which uses pro-
grammable connection chips like the MP3 system,
more signal propagation time is needed because of
the delay through the connection chips.

Factor 3 A circuit implemented in FPGA is slower than
one implemented in LSI. This is because signals
inside the FPGA propagate through many pass-
transistor switches.

4.1 Partitioning

This subsection treats factors 1 and 2 described above.
At the architectural design we solve these problems mainly
by means of circuit and timing partitioning, taking into
account the characteristics of the emulator development
technology.

In general, signal propagation delays between reg-
isters are constrained by the given clock cycle. Hence,
functions are implemented between registers making full
use of the given clock cycle time to derive high perfor-
mance.

In Fig.4, let X and Y be registers and let A, B and
C be functions. In the case of ordinary ASIC design
timing constraints for each register to register transfer
are the same if all registers are controlled by a single
clock .

Therefore functions A, B and C are designed so that
each of these delays satis�es the given constraint. At the
same time, the timing margin is explored by making the
maximum delay to be as small as possible. The middle
portion of Fig.4 shows such a design.

In our method, no function is allowed on a regis-
ter transfer path across a boundary between blocks. A
block may be a function block described by VHDL code,
in other words, a block may consists of only one VHDL
entity. If a block is too small to be one layout block
on an LSI, a merging strategy, which will be realized
at the oor planning, has to be formulated in order to
avoid too many block boundaries. Eventually most of
the clock cycle can be considered as timing slack for sig-
nals across the block boundaries. The rightmost portion
of Fig.4 shows an example. Function B may belong to
the preceding pipeline stage with function A or to the
succeeding stage with C, or may be divided into two
parts to belong to both stages. In this design method,
the timing margin may appear to degrade because the
maximum delay may increases inside a block. However,
the timing margin will be restored again after executing
chip layout. Introducing a new pipeline stage, the par-
titioning stage, is also a solution if function B has large
delay to distribute it to other stages.

This design strategy has the following advantages for
implementing both the LSI and the emulator:

1. If a large timing margin is reserved between blocks
then:

� In the case of an LSI, the design reiterations
caused by post-layout timing violation can
be avoided.

� In the case of an emulator, the maximum
speed increases by using large timing slack
for interconnection between components.

2. If glitches are restricted to be inside blocks then:

� LSI's power consumption decreases because
the amount of switching activity decreases on
long interconnections.

� The emulator is more stable because the amount
of switching outside the FPGAs decreases.

5 Results

5.1 The e�ect of the method

The design ow and method has been established along
with the development of second and third generation
ATRAC compression and decompression LSIs.

Using the method presented, we have succeeded in
developing LSIs which satisfy the given speci�cations
with great improvement in terms of cost and power con-
sumption, during a design cycle of one year. This is
mainly because we saved much time on veri�cation and
implementation and spent more time on architectural
design and software optimization.

Table 1 shows the dimensions of the 3 LSIs which
have been developed. In the table, the minimum op-
eration speed means the lower bound of clock speed
required to decompress the audio signal in real time.
This shows the throughput of the processor because the
amount of computation for decompression is exactly de-
termined by the algorithm of ATRAC. The comparison
of power consumption is also given in play mode.

We note the following:

� In terms of function and cost, the �rst generation
LSI supports only decompression but the second
generation LSI also supports compression, which
requires more speed, more software and more mem-
ory. In spite of those factors, the chip cost de-
creased owing to the more sophisticated architec-
ture. In the third LSI, performance was almost
doubled(++) without increasing cost.

� Cost, performance and power consumption has
greatly improved and contributed to the down-
sizing of the portable MD system.

Generation 1 2 3

Die size(mm2) 170 100 80

Technology(�) 0.8 0.8 0.6
Decompression + + +
Compression { + ++

Miscellaneous { { +

Performance comparison

Max. Operation speed(MHz) 17 24 24

Min. operation speed(MHz) 15 15 6
Power consumption(mW) 450 150 90

Table 1: ATRAC Compression/Decompression LSIs

5.2 VLSI and Emulator

We discuss the design of the third generation device
described in table 1. We have developed an LSI and
its emulator using the same architecture. In terms of
VHDL source code, 93% of 5,066 lines for an LSI is also
used by the emulator. Only on a 24 x 24 multiplier, we
need 209 lines for an FPGA, instead of 334 lines for LSI.

The dimensions of the LSI and the emulator are shown
in table 2.

LSI Emulator

MP3 | 2 MP3 boards
Random logic 16K gates XC4010 � 6

Multiplier 12K gates XC4013 � 2
Datapath 7K gates XC4013 � 2

RAM 66Kbits 16 SRAMs
ROM 500Kbits 13 EPROMs

Operation speed 16MHz-24MHz 10MHz

Table 2: LSI and Emulator

In the previous section we emphasized the impor-
tance of circuit partitioning for successfully achieving a
single design for both LSI and emulator. In the case
of the actual design, the speed of the LSI satis�ed the
design goal, and using the emulator we succeeded in
recording and playing an audio signal in real time.

Fig.5 shows the relationship between the LSI layout
and the structure of the emulator. The LSI is imple-
mented using a building block and standard-cell method
in 0.6 � CMOS technology. The shaded blocks in Fig.5
are memories. Some standard cell blocks correspond
exactly to function blocks of the VHDL code, however,
others are composed of several function blocks which
are too small to be placed as a whole layout block.

No VHDL code is partitioned into more than two
layout blocks. The blocks are implemented on 10 FP-
GAs represented by numbers 0 to 9 in Fig.5. Except for
FPGAs 0 to 3, each FPGA consists of several function
blocks in order to use the FPGA more e�ciently, to re-
duce number of FPGA I/O pins, and to reduce number
of connections between FPGAs.

Because of the di�erent merging criteria for LSI and
emulator implementation the design hierarchy for each
implementation is �xed independently. Nevertheless,
the placement of function blocks on the LSI is very sim-
ilar to the partitioning for the FPGAs. Each FPGA
(except for FPGA9) includes function blocks which are
adjacent to each other on the LSI layout.

The result indicates that the initial partitioning at
the architectural design is suitable for both implemen-
tations in the LSI and the FPGAs.

5.3 Trade-o�s of the methodology

However, in this development there are some small inef-
�ciencies in terms of cost and power consumption of the
LSI. This is because the concept of ensuring a single de-
sign has �rst priority, even higher than cost-performance.

For instance, the LSI implements only one power
save mode, that is standby mode. We estimated that
3-5% of power consumption can be saved by using indi-
vidual clock distribution for each block. However, the
complex clock control would make it di�cult to develop
an emulator.

Some pipeline registers for the partitioning stage,
introduced in section 4, are also redundant. We would

FPGA0

FPGA1

FPGA2

FPGA3

4

5

6

7

8

9

4

5

6

6

7

7

8+9

8+9

Figure 5: layout and FPGA mapping

save nearly 2,000 gates for such registers, 5.7% of the
entire gate count if we were to remove them. But the
random logic part is only 40% of the core area and the
basic cell area is even smaller, so this would a�ect less
than 2% of the total chip cost. Moreover, removing the
partitioning stage may a�ect the preceding or succeed-
ing stages and we would need more gates to satisfy tim-
ing constraints. Consequently we have concluded that
the overhead is small enough in comparison with the
risk of insu�cient veri�cation quality.

6 Conclusion and Future Work

An extended top-down design method is presented and
applied to the design of audio compression and decom-
pression LSIs for a Mini-Disc system. In this design en-
vironment, VLSI devices, embedded software, and high-
speed emulator have been developed concurrently. We
have succeeded in greatly enhancing the cost perfor-
mance of the LSI and obtained a competitive key device
for our product.

One important role of this method is to verify the
speci�cation of an LSI against the requirements of a sys-
tem. Consequently, the top-down design method pre-
sented have become more e�cient and reliable because

we can avoid problems caused by the inconsistency be-
tween these two objectives.

The implementation part of the method, such as cir-
cuit design, is very well supported by various CAD tech-
nology and tools, not only for LSI but also for software
and emulation. However, the early stages of develop-
ment, such as architectural design, depends highly on
the skill of the designer. For these design stages, sev-
eral new CAD concepts and technologies are beginning
to appear. In order to make the method more e�cient
and capable we will attempt to apply new technologies
such as hardware/software co-design tools and tools for
the evaluation of cost-performance and power consump-
tion to the method in the near future.

References

[1] Aptix Corporation, \MP3 System Explorer Data
Sheet" December 1994.

[2] Xilinx, Inc., \XACT Libraries Guide" April 1994.

[3] GAIO Technology Co., LTD., \General-Purpose
Cross Software XASS-V series" July 1991.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

