
33rd Design Automation Conference 
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

A Strategy for Real-Time Kernel Support in Application-Specific HW/SW
Embedded Architectures

Steven Vercauteren Bill Lin Hugo De Man

IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
E-mail: fvercaut,billlin,demang@imec.be

Tel: +32/16/28.15.25 ; Fax: +32/16/28.15.15

Abstract
Heterogeneous embedded multiprocessor architectures are becom-
ing more prominent as a key design solution to today’s microelec-
tronics design problems. These application-specific architectures in-
tegrate multiple software programmable processors and dedicated
hardwarecomponents togetheron to a single cost-efficient IC. In con-
trast to general-purpose computer systems, embedded systems are
designed and optimized to provide specific functionality, using pos-
sibly a combination of different classes of processors (e.g. DSPs, mi-
crocontrollers) from different vendors. While these customized het-
erogeneous multiprocessor architectures offer designers new possi-
bilities to tradeoff programmability, processing performance, power
dissipation, and design turnaround time, there is currently a lack of
tools to support the programming of these architectures. In this pa-
per, we consider the problem of providing real-time kernel support
for managing the concurrent software tasks that are distributed over
a set of processorsin an application-specificmultiprocessorarchitec-
ture. This is complementary to current research activities that aim to
provide efficient retargetable code generation [8, 11, 10] for a broad
range of embedded processors.

1 Introduction.
Telecommunication and multi-media computing are among
the fastest growing segments of the microelectronics market
today. These market sectors are being fueled by new emerg-
ing business and consumer applications that are now possi-
ble with recent advances in wireless communication, video-
processing, and integrated networking technologies. The de-
sign of VLSI chips in these applications are often subject to
stringent requirements in terms of processing performance and
power dissipation. At the same time, programmability is be-
coming increasingly important for facilitating flexible designs
that can be customized with differentiating features for use in
multiple products. Further, strong economic pressures are de-
manding highly cost-efficient solutions that must be delivered
in increasingly shorter time-to-market windows.

To facilitate flexible low-cost designs in short design time,
emerging designs are based on heterogeneous embedded sys-
tem architectures, that integrate software programmable com-
ponents, e.g. DSP and microcontroller cores, together with
dedicated hardware components on to a single cost-efficient
IC. An example of a typical heterogeneous embedded pro-
cessing system is depicted in Figure 1. The shaded boxes
correspond to software programmable components and the

man−machine
I/F controller

programmable
DSP

FIFO

FIFO

programmable
DSP Codec

ADC

DAC

HW block

application
specificprogrammable

microcontroller

Fig. 1. Heterogeneous embedded system architectures.

non-shaded boxes correspond to hardware components. Pro-
grammability is introduced in these architectures (thus offer-
ing the desired flexibility in the design process), while main-
taining most of the advantages of customized VLSI architec-
tures (such as the potential to optimize the processing per-
formance and power dissipation), thus forming a synergy be-
tween pure ASIC and programmable processor solutions.

While application-specific multiprocessor architectures of-
fer designers new possibilities to tradeoff programmabil-
ity, processing performance, power dissipation, and design
turnaround time, there is currently a lack of tools to support the
programming of these architectures. In this paper, we consider
the problem of providing real-time kernel support for man-
aging the concurrent software tasks that are distributed over
these application-specific multiprocessor architectures. The
problem is exacerbated by the fact that any solution to this
problem must consider the inherent heterogeneity in these ar-
chitectures; i.e., different classes of processors (e.g. DSP vs.
microcontrollers) from different vendors may be combined
with dedicated hardware components in order to optimize for
specific functionality. This heterogeneity problem is partly ad-
dressed by current research efforts that aim to provide efficient
retargetable code generation [8, 11, 10] for a broad range of
embedded processors. These research activities complement
our work here, which aims to offer a methodology for provid-
ing real-time kernel support in application-specific architec-
tures.

While the design of real-time kernels is not new, earlier
kernels were bulky and did not address well performance is-
sues [4]. However, in recent years, a number of lightweight
real-time kernels dedicated to embedded applications have
emerged on the market [18, 19, 16, 17, 20, 15] that are smaller
in size and are better tuned for performance (e.g. fast con-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F240518.240646&domain=pdf&date_stamp=1996-06-01

text switch and interrupt service). They provide many high-
level services to support the run-time coordination of concur-
rent software tasks that are distributed over a set of processors.
Services include task scheduling and thread control, inter-
process communication mechanisms like semaphores, mail-
boxes, and queues, which significantly ease the implementa-
tion of distributed programs in software. Most kernel vendors
aim to support a broad portfolio of processors (both DSPs and
microcontrollers) by using a kernel architecture that isolates
processor specific aspects so that minimal porting is required
to support different processors.

However, the currently available real-time kernels are not
without limitations. They typically assume a fixed pre-
implemented multiprocessor architectures on printed circuit
boards (e.g. VME-based boards [7]), They cannot directly be
used for an application-specific architecture without manual
porting of low-level services such as interprocessor communi-
cation, and they do not at all support mixed hardware/software
solutions since functionalities for communicating and inter-
acting with dedicated hardware components are entirely lack-
ing. As a consequence, real-time kernels are rarely used for
embedded system-on-silicon applications, despite the impor-
tant functionalities that they provide. Instead, designers cur-
rently have to struggle with implementing manually low-level
assembly routines to implement communication and task co-
ordination functionalities that are often already a part of a real-
time kernel. The implementation of these routines is a labori-
ous and highly error proned task, without a clear methodology
to structure the implementation process.

In this paper, we present a methodology for provid-
ing real-time kernel support for application-specific hard-
ware/software embedded architectures. A key concept in our
approach is the generation of a hardware/software communi-
cation abstraction layer to assist flexibility of programming.
This is supported through a standard architecture, program-
ming structure and communication protocol. The result of this
work permits a reduced development cycle and can be used
as guidelines for real-time kernel vendors to structure the ar-
chitecture of their kernels and as guidelines for system CAD
vendors to incorporate real-time kernel technology into their
system design flow.

The remainder of this paper is organized as follows. In Sec-
tions 2 and 3, we describe our target implementation architec-
ture model and the basic kernel architecture, respectively. In
Section 4 we explain how real-time kernels can be ported to
our target architecture. The possible communication scenar-
ios are highlighted in Section 5. In Section 6 we discuss the
implementation issues, and we demonstrate our approach by
applyingour methodology to an existing commercial real-time
kernel family. Finally, conclusions are drawn in Section 7.

2 Target Implementation Architecture
In this section we describe our target implementation archi-
tecture model. In our model, the architecture is abstracted as
an interconnection of Processor Component Units (PCUs) and

DSP

P−RAM

D−RAM

I/O unit

Proc.
core

HW3

RISC

HW2Co−Processor
Hardware

Hardware
FIFO

Memory Component

Kernel

Task Task Task

Fig. 2. Target Architecture Model.

point-to-point unidirectional or bidirectional channels, as de-
picted in Figure 2. A processor component unit can either be a
hardware component or a software programmable component
(e.g. DSP, ASIP, or micro-controller core). Our target archi-
tecture is therefore based on the following concepts: commu-
nication channels, hardware components and software compo-
nents.

Communication Channels. Communication between the
different component units is based on sending and receiving
data to each other via communication channels. The chan-
nel communication semantics that we use is exactly that of
Hoare’s CSP rendezvous [6]. In this channel model, proces-
sor components can communicate with each other via explicit
send and receive operations on a specified channel or via
an intermediate shared memory component. We believe this
model is sufficiently general because other communication
models, such as buffered communication, can be mimicked by
using intermediate components that implement that commu-
nication behavior. In Figure 2 this is illustrated by allocating
a memory component that can be accessed by the DSP pro-
cessor, the RISC processor and the hardware componentHW3.
This configuration will allow the three processor components
to communicate with each other via shared memory. The same
reasoning applies for the FIFO buffer that buffers the commu-
nication between the DSP processor and the RISC processor.
The communication channels implement a common channel
protocol at the circuit level that is consistent with the CSP ren-
dezvous semantics. This channel protocol must be obeyed by
all components by using explicit communication constructs.
This ensures that all components can be integrated at the “im-
plementation” level. However, the implementation of a chan-
nel may differ depending on the clocking relationship of the
communicating components. Therefore, a channel can be seen
as an abstraction of the physical communication link between
two component units.

Hardware Components. A hardware component unit
can either be a “pre-designed” library component, including
parameterized communication components like buffers, or a
hardware processor that has still to be synthesized. In both

cases the hardware component contain internal memory. In
the former case the library component can be in the form
of synthesizable VHDL source code or already at the circuit
level. To represent parameterizable components, the param-
eterization features of VHDL can be used. The main require-
ment is that all external communication with the outside world
must be implemented using the common channel communica-
tion protocol. In the latter case, the designer only needs to de-
clare the number of communication channels required for the
hardware processor component, their directions, and the data
width that they must support. A customized VHDL package
is then generated that implements the communication chan-
nels connected to the specific hardware component. The de-
signer can then “program” the hardware component by writing
a VHDL program that uses send and receive operations
provided by the VHDL package for external communication.
An important class of hardware components is the class of
memory components. They are key to our architecture model
as they will allow for shared memory communication, as indi-
cated above. Depending on the specified channel layout of the
memory component, the number of ports, the storage size, the
word width and other characteristics of the selected memory, a
hardware layer is generated around the memory that will im-
plement the necessary synchronizing and decoding logic. A
memory component therefore consists of a memory itself and
a hardware layer for arbitrating the different accesses to the
memory and for decoding supplied addresses, if necessary.

Software Components. In the case of a software pro-
grammable component, the processor component unit con-
sists of the processor core itself, an internal memory structure
for storing the program instructions and run-time data, and a
hardware I/O unit that implements the communication inter-
face to its external environment. The I/O unit acts as a “hard-
ware wrapper” that effectively encapsulates a software pro-
grammable component into a hardware component. In fact,
the hardware I/O unit implements the CSP rendezvous com-
munication channels according to the common circuit proto-
col, for interconnection with the other components. In this
approach, a software components is seen to the other compo-
nents simply as another hardware processor component. The
I/O unit itself is driven by the processor core via the software
that executes on it. In this paper we assume the software run-
ning on the software component is managed by a real-time
multi-tasking kernel. Based on the specified channel layout,
the I/O unit and the inter-processor communication software
routines of the kernel can be automatically generated, partly
based on a parameterized library solution.

3 Basic Kernel Architecture

In this work we propose the use of multiple autonomous ker-
nels with one kernel associated with each software proces-
sor component. In this case the kernel on each software pro-
cessor component only manages the application tasks that are
mapped to it. This is graphically shown in Figure 3. To have
the same semantics across all kernels in the system, the same

Real−time kernel

Software Processor Component

Real−time kernel

Software Processor Component

Command
Packet

Task
App

Task
App

Task
App

Task
AppKernel

Task
Service

Kernel

Task
Service

Kernel

Task
Service

Kernel

Task
Service

Fig. 3. Basic Kernel Architecture

kernel must be used for each software processor component.
This is a viable approach as today there exist already commer-
cially available real-time multitasking kernels that have been
ported to a large number of popular RISC processors, DSP’s,
and micro-controllers [18, 19, 16, 17, 20, 15].

Firstly, the kernel is responsible for scheduling the different
application tasks, handling communication between the appli-
cation tasks, and synchronizing the application tasks with each
other and with external events. To provide support for real-
time behavior a kernel typically uses a preemptive, priority
driven scheduling scheme for managing the timely execution
of the different application tasks. In this scheme a priority is
given to each application task. At any given instant the high-
est priority application task is granted execution control of the
software processor by pre-emptying the application task that
was currently executing. The thread of control associated with
an application task is blocked if it has to wait for a synchro-
nizing event from another application task, or from an source
external to the processor.

Secondly, the kernel also provides a subroutine interface
to a number of predefined kernel service tasks, that are called
“kernel services”. These kernel services provide, amongst
others, resource protection, memory (de)allocation and com-
munication and synchronization between application tasks.
They must be allocated by the user and can be moved any-
where in the network of software processors without any
changes to the application code. To support this topology
transparency, a kernel specific communication protocol is
maintained between the different kernels in the sense that
all information handled by the kernels is packetized. In this
scheme a task issues a kernel service by sending a command
packet via the kernel to the relevant kernel task. This com-
mand packet contains information about the requested kernel
service, a processor node identifier, argument data, etc. The
different autonomous kernels then communicate by sending
command packets to each other. Therefore, the different ker-
nels also provide I/O communication functionalities and sup-
port for routing a command packet to its destination processor.

4 Parameterizing the Kernel
4.1 Kernel Architecture Template
In order to support the programmer with standard communi-
cation and synchronization primitives, a kernel typically has a
layered architecture. We assume a kernel template that is di-
vided up into two layers: a scheduling layer and a communica-

tion layer. In this architecture template, the scheduling layer is
responsible for scheduling the different tasks that are mapped
to it, while the actual I/O communication is done in the com-
munication layer. This layer makes use of the processor spe-
cific I/O facilities and the communication bus characteristics.
In fact, the communication layer abstracts away the architec-
ture used and provide facilities for implementing the desired
standard primitivessomewhat akin to the conventional layered
approach in computer communication and networking.

Real-time multi-tasking kernels, as they are used today,
assume a fixed pre-implemented multiprocessor architecture.
They cannot directly be used for a custom processor-bus archi-
tecture without manual porting the communication layer. For
a custom system-on-silicon solution, manual porting of low
level services and low level adaptations to the communication
bus protocol are required. They currently do not at all sup-
port mixed hardware/software solutions since functionalities
for communicating and interacting with hardware processors
are entirely lacking.

By porting the different kernels to our target architecture,
we standardize on the architecture and on the bus protocol
used. As described in Section 2, our target architecture can be
seen as interconnection of PCU’s and point-to-point unidirec-
tional or bidirectional channels, that are implemented accord-
ing to a common channel protocol at the circuit level. Because
of the standardized communication protocol, the design of the
low level communication services is reduced to a one time ef-
fort, that can be saved away in a library. Using this library,
we can configure the kernel communication layer as a param-
eterizable software template. For a specific software proces-
sor component, we consider the communication layer param-
eterized in terms of the number of channels that the software
processor component is connected to, their directions and the
data with that they must support. Once the user has defined
the channel layout of the final architecture, the communication
layer can then be customized. Some generic functions used in
the predefined kernel tasks and the kernel itself are written in
C and are portable across platforms via re-compilation. Other
functions, especially in the communication layer, will be im-
plemented in assembly for efficiency reasons. These functions
are not entirely portable, as they must be rewritten for each
processor. In our approach this low-level porting is reduced
to a one time effort as all the processor specific functionalities
are implemented and stored in a parameterized library, assum-
ing our target architecture model. This strategy broadens the
application domain of real-time kernels significantly, as their
concurrent programming features can be used for the design
of application-specific embedded hardware/software systems
in a time efficient way.

4.2 Details of Communication Layer

In our kernel architecture, the communication layer will do the
actual communication with the outside world, via communica-
tion channels that are connected to the other components. In
constructing the communication layer, two types of channels

Software Processor Component

Command
Packet

Kernel Channel

Kernel Channel

‘‘raw’’ data Channel

Receiving
Task

Communication Layer

Sending
Task ISR

ISR

ISR

Scheduling

Layer

Kernel
Service

Task

App Task

Kernel
Service

Task

App Task

Kernel

Fig. 4. Kernel architecture with Communication Layer ex-
panded

can then be distinguished: kernel channels and data channels.

Kernel Channels. Kernel channels are exclusively used
for communication and synchronization between the different
kernels and cannot be used directly by the designer. A spe-
cial communication task is assigned to each kernel channel,
together with an Interrupt Service Routine (ISR). In Figure 4
a situation is depicted of a software processor component con-
nected to two opposite directed kernel channels. In this ex-
ample a sending task, a receiving task and two ISR’s are as-
signed to the two kernel channels. These special communica-
tion tasks receive command packets from the scheduling layer
and implement a state machine to decide what to do with a
specific command packet. For kernel services that require ar-
gument parameters, the corresponding command packet will
contain a memory pointer to the argument data. As in our
model each component can have its own local memory, the
communication tasks will then issue a complete interproces-
sor copy of the argument data, if necessary. In this scheme,
the communication tasks only implement the kernel specific
protocol by processing and interpreting the command packets
in a correct way. The lowest level communication is handled
at the “ISR layer”. The implementation of the ISR’s will in-
deed reflect the processor specific I/O facilities and the com-
munication bus characteristics. These routines are responsi-
ble for marshaling and de-marshaling the command packets
and possible argument data. Depending on the architecture of
the hardware template surrounding the processor core, the IS-
R’s will implement send and receive routines using the mem-
ory “read” and “write” instructions if memory-mapped I/O
is used for the specific channel, or the corresponding special
programmed I/O instructions if instruction-programmed I/O is
used. Therefore different types of ISR’s exist, that are saved
away in a library.

Data Channels. Data channels are exclusively used by the
application tasks for direct communication with a neighbor-
ing processor component. Some predefined kernel tasks pro-
vide services for sending and receiving data explicitly to and
from a specified data channel. Since in this case the speci-
fied data channel will transfer “raw” data, no special commu-
nication tasks are required as data channels will never trans-
port command packets. However, data transfer is still based
on an interrupt-driven I/O scheme. Therefore an ISR is as-

signed to each data channel. In Figure 4 a situation is depicted
of a software processor component connected to one outgoing
data channel. From the ISR’s perspective there is no differ-
ence with a kernel channel.

From this discussion, it is clear that we can configure the
kernel communication layer as a software template, parame-
terized in terms of the number and type of ISR’s, sending tasks
and receiving tasks. This is due to our target implementation
architecture model, as the standardized bus protocol will fix
the possible ISR types. Once the designer has defined the fi-
nal target architecture, we automatically customize the kernel
communication layer.

5 Communication Scenarios
In this section we highlight the possible communication sce-
narios that can exist when providing real-time support in
our target implementation architecture model. The following
cases can be distinguished:

� Case 1. An application task calls a kernel service located
on the same processor.

� Case 2. An application task calls a kernel service located
on another processor.

� Case 3. An application task calls a kernel service issuing
an explicit data transfer on a data channel connected to a
software processor component.

� Case 4. An application task calls a kernel service issuing
an explicit data transfer on a data channel connected to a
hardware processor component.

� Case 5. Communication between two hardware compo-
nents.

Case 1. In this case, an application task will request a ker-
nel service from a kernel service task that is residing on the
same software processor component. This kernel service is re-
quested by calling a predefined subroutine that sends a com-
mand packet to the kernel that will provide the requested ser-
vice and reschedule the application tasks afterwards. In this
scheme all communication takes place at the software level.

Case 2. In this case a communication takes place between
two software processor components. An application task calls
a predefined subroutine requesting a kernel service from a ker-
nel service task residing on another software processor com-
ponent. The kernel inspects the command packet to verify
whether the requested service is located on the host proces-
sor itself or on a other software processor component. If in-
deed the requested service is located elsewhere, the command
packet is sent along a kernel channel to reach the software pro-
cessor component that hosts the desired kernel task. This ker-
nel task will then implement the requested service.

Case 3. An application task exchanges “raw” data with an
application task on a neighboring software processor compo-
nent in a explicit manner. This means an application task is-
sues a kernel service specifying the data channel and the data

that must be transferred along that channel. This communica-
tion is non-blocking in the sense that the application task can
proceed immediately after issuing the communication. When
the requested data transfer has completed an event is generated
by the specific ISR that can be waited for by the application
task. In this case no command packets are sent between the
two software processors components.

Case 4. In this case a communication takes place between
an application task residing on a software processor compo-
nent and an “application task” located on a neighboring hard-
ware processor component. From the software programmer’s
perspective there is no difference with Case 3. The hardware
programmer on the other hand can program external commu-
nications on the specific application channel by issuing send
and receive operation provided by a customized VHDL
package, as already described in Section 2.

Case 5. In this case two hardware processor components
are communicating with each other via a data channel. From
the hardware programmer’s perspective, there is no difference
with Case 4.

6 Experimentation
The proposed techniques that have been presented in this pa-
per are part of Symphony, a system integration tool-box within
a larger heterogeneous system co-design environment called
CoWare under construction at IMEC [3].

To evaluate our strategy we studied an existing commer-
cially available real-time multi-tasking kernel, called Virtu-
oso, provided by Eonics Systems Inc. Currently Virtuoso pro-
vides support for developing real-time embedded software ap-
plications on PC and VME-based [7] multi-processor boards
of different vendors. It assumes multiple autonomous ker-
nels with one kernel associated with each processor. It pro-
vides many high-level services to support the run-time co-
ordination of concurrent tasks that are distributed over a set
of processors. Services include task scheduling and thread
control, high-level interprocess communication mechanisms
like semaphores, mailboxes, and queues, which significantly
ease the implementation of distributed programs. How-
ever, it is currently targeted towards a limited set of “fixed
pre-implemented” boards. For other commercially available
boards or custom developed boards, custom porting is re-
quired, but this can take considerable time. Therefore, sepa-
rate kernel versions are designed for each processor and for
each board in which it used. This design practice prevented
us currently from using the Virtuoso product family into our
system-on-silicon design trajectory.

We applied the strategy presented in this paper for using the
Virtuoso kernel into a custom embedded architecture, involv-
ing ARM RISC cores [14]. To incorporate the ARM-6 RISC
processor core into an application-specific heterogeneous ar-
chitecture, we constructed a parameterized hardware template
architecture, consistent with our target implementation archi-
tecture model described in Section 2, as well as a parameter-
ized kernel communication layer template that is graphically

Address
Decoder

Select lines

Port
I/O

Port
I/O

Port
I/O

nMREQ
nRW
MCLK
nIRQ
nFIQ

I/O unit

MemoryData

Address

Interface
Controller

ARM−6 Core

Kernel

ARM−6 Core

Communication Layer

Architecture Template

ISR

ISR

ISR
Sending

Task

Receiving
Task

Scheduling
Layer

Fig. 5. Parameterized template for the ARM-6 RISC core.

depicted in Figure 5.
For the hardware template architecture we have chosen a

memory mapped I/O scheme. The hardware template contains
a address decoder and an interface controller that are param-
eterized in terms of the number of supported channels, their
directions and data width. For this we use the parameteriza-
tion features of VHDL. The same reasoning applies for the
kernel communication layer, that is parameterized in terms of
the number of ISR’s, sending tasks and receiving tasks. When
the user freezes the target implementation, our prototype tool
not only customizes the hardware template architecture but
also customizes the kernel communication layer, based on the
specified channel configuration. Our parameterized architec-
ture approach will allow to integrate the ARM-6 RISC proces-
sor core into application-specific hardware/software embed-
ded architecture, while providing real-time kernel support for
managing the execution of the different tasks running on the
processor core(s) and for high-level interfacing with the hard-
ware blocks.

7 Conclusion
In this paper we presented a strategy for providing real-time
support in application-specific hardware/software architec-
tures. Our approach is based on a simple scalable target ar-
chitecture. We showed that the concurrent programming fea-
tures of a real-time kernel can be leveraged to the design of
systems-on-silicon, when ported to our architecture model.
We also plan to expand our support for a larger portfolio of
processor cores and to develop a better kernel customization
strategy. We will also investigate how our real-time support
strategy can be leveraged by emerging software synthesis ap-
proaches [1, 2, 5, 9, 13].

Acknowledgments
We would like to thank K. Van Rompaey, D. Verkest, I. Bolsens,
G. Goossens, F. Catthoor, B. Gyselinckx, J. Silva, C. Ykman,
T. Kolks, E. Verhulst for numerous insightful discussions on the sys-
tem integration problem.

References
[1] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and

A. Sangiovanni-Vincentelli. A formal methodology for hard-

ware/software codesign of embedded systems. IEEE Micro,
August 1994.

[2] P. H. Chou, R. B. Ortega, G. Borriello. The Chinook Hard-
ware/Software Co-Synthesis System, International Symposium
on System Synthesis, September 1995.

[3] H. De Man, I. Bolsens, B. Lin, K. Van Rompaey, S. Ver-
cauteren, and D. Verkest. Co-design of DSP systems. NATO
ASI Hardware/Software Co-Design, Tremezzo, June 1995.

[4] K. Ghosh, et al. A Survey of Real-Time Operating Systems.
Technical Report nr. GIT-CC-93/18, Georgia Institute of Tech-
nology, Atlanta, Georgia, February 1994.

[5] R. Gupta and G. De Micheli. Hardware-software cosynthe-
sis for digital systems. Computers and Electrical Engineering,
10(3)29–41, September 1993.

[6] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985.

[7] IEEE, IEEE/ANSI Standard 1014, Versatile Backplane Bus:
VMEbus, IEEE Service Center, Piscataway, NJ, 1987.

[8] D. Lanneer, J. Van Praet, K. Schoofs, W. Geurts, A. Kifli,
F. Thoen, and G. Goossens. Chess: retargetable code genera-
tion for embeddedprocessors. In P. Marwedel and G. Goossens,
editors, Code Generation for Embedded Processors. Kluwer
Academic Publishers, Boston, 1995.

[9] R. Lauwereins et al. Grape-II: A system level prototyping en-
vironment for DSP applications. IEEE Computer, pages 35 –
43, February 1995.

[10] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, A. Wang. Code
optimization techniques for embedded DSP microprocessors.
ACM/IEEE DAC, June 1995.

[11] P. G. Paulin, C. Liem, T. C. May, and S. Sutarwala. FlexWare : a
flexible firmware development environment for embedded sys-
tems. In Code generation for embedded processors, pp. 67–84,
Kluwer Acad. Publ., Boston, 1995.

[12] A. W. Roscoe, C. A. R. Hoare. Laws of Occam Programming.
Theoretical Computer Science, 60, 177–229, 1988.

[13] F. Thoen, M. Cornero, G. Goossens, and H. De Man. Real-time
multi-tasking in software synthesis for information processing
systems. ISSS’95, September 1995.

[14] A. van Someren and C. Atack. The ARM RISC Chip, A
programmer’s Guide. Addison-Wesley Publishing Company,
1994. ISBN 0 201 40695 0.

[15] EOS - Etnoteam Operating System, Etnoteam S.p.A.

[16] pSOS+ - Integrated Systems.

[17] VxWorks - WindRiver Systems.

[18] J. F. Ready, “VRTX: A Real-Time Operating System for Em-
bedded Microprocessor Applications,” IEEE Micro, pp. 8-17,
Aug., 1986.

[19] SPECTRON Microsystems, “SPOX - the DSP Operating Sys-
tem,” 5266 Hollister Av., Santa Barbara CA 93111 (U.S.A),
Jun., 1992.

[20] E. Verhulst, “Virtuoso: Providing Submicrosecond Context
Switching on DSPs with a Dedicated Nano Kernel,” Interna-
tional Conference on Signal Processing Applications and Tech-
nology, Santa Clara, Sept., 1993.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

