
33rd Design Automation Conference 
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

Energy Characterization based on Clustering

Huzefa Mehta, Robert Michael Owens, Mary Jane Irwin

Department of Computer Science and Engineering,

The Pennsylvania State University, PA 16802

Abstract

We illustrate a new method to characterize the
energy dissipation of circuits by collapsing closely
related input transition vectors and energy pat-
terns into capacitive coe�cients. Energy char-
acterization needs to be done only once for each
module (ALU, multiplier etc.,) in order to build a
library of these capacitive coe�cients. A direct
high-level energy simulator or pro�ler can then
use the library of pre-characterized modules and
a sequence of input vectors to compute the total
energy dissipation. A heuristic algorithm which
performs energy clustering under objective con-
straints has been devised. The worst case run-
ning time of this algorithm is O(m3n), where m
is the number of simulation points and n is the
number of inputs of the circuit. The designer can
experiment with the criterion function by setting
the appropriate relative error norms to control
the `goodness' of the clustering algorithm and
the sampling error and con�dence level to main-
tain the su�ciency of representation of each clus-
ter. Experiments on circuits show a signi�cant
reduction of the energy table size under a speci-
�ed criterion function, cluster sampling error and
con�dence level.

1 Introduction

With the advent of portable computing, battery energy has
become a key commodity. Circuits and systems now focus
on power sensible designs. In order, to assist the designer
to meet the power budget, it is necessary to have accurate
and e�cient power estimation tools. Power estimation is dif-
�cult because it is strongly data dependent. Existing tools
[1, 4, 5, 6, 7, 10] operating at architectural and system levels,
perform power estimation from high-level abstracted mod-
els of modules by characterizing the estimated capacitance
that would switch when a given module is activated. [10]

perform energy analysis of programs by direct simulation
using instruction level power models. [8] describes a simu-
lation approach where `average' power costs are assigned to
individual modules, in isolation from other modules. The
power costs in this approach can add up to signi�cant er-
ror and this model also ignores correlation between di�erent
modules. [1] uses a similar power pro�ling/simulation ap-
proach (PPROF), but uses small black box models of each
module and does a lookup and evaluate for each module us-
ing the transition vectors computing energy per transition
rather than average energy. [7] uses Uniform White Noise
(UWN) in the technique called Power Factor Approximation
to derive the switching capacitance for the modules based
on random inputs and �t the capacitive coe�cients to the
results. This technique also does not account for strong
dependency of power consumption on the input statistics.
[4, 5] describes the Dual Bit Type (DBT) model in the
technique called Stochastic Power Analyzer (SPA) which ac-
counts for the random activity of the least signi�cant bits
and also the correlated activity of the most signi�cant bits
which also include the sign bit and hence has several ca-
pacitive coe�cients. Although accurate, the problem with
this approach is that it is not always possible to know the
input statistics beforehand. Though, this method may work
in DSP applications where signal statistics are predictable,
it may not work in control driven environments such as in
a general purpose microprocessor. Their subsequent work
[6] describes Activity-Based Control (ABC) which considers
activities of each module is obtained from functional sim-
ulation in this case and then the model is updated. The
models of each module in [6] is built by taking into account
the functionality whereas our characterization does not re-
quire any knowledge of the module functionality. The errors
of characterization can be set by the designer and is based
on clustering of input transitions.

Input statistics are highly dependent on the context of
the usage of the circuit and the application the circuit is run
on. So, high-level models of modules which are derived from
input statistics may not match that of the environment they
operate in. Hence, despite having accurate power models for
individual modules a great deal of overall accuracy may be
sacri�ced, a weakness arising from unavailable or incorrect
data statistics or inability to model the module interactions
correctly. In case of a microprocessor driven by instructions
it is impossible to know apriori the typical input patterns
to the individual modules. Our characterization approach
is based on the paradigm of direct simulation and pro�ling
and hence is based on input transitions rather than input

http://crossmark.crossref.org/dialog/?doi=10.1145%2F240518.240651&domain=pdf&date_stamp=1996-06-01

statistics, without using any knowledge of module function-
ality and with the accuracy controlled by the designer. This
is what distinguishes our approach from earlier works. This
pre-characterization work is needed only once for each mod-
ule without prior knowledge of any input statistics. The �nal
outcome of the energy characterization work would be to es-
tablish a tool which takes as input stimuli, instructions to a
processor and then simulates/pro�les the energy consump-
tion of individual instructions executing on that processor
by looking up the appropriate energy coe�cients (clusters)
corresponding to the transition vectors. Instruction energy
trace and statistics such as average energy per instruction
or module, provided by this tool would be valuable informa-
tion for architects to design low power processors compiler
writers to retarget code for low-power [10] and application
developers to compare the power consumption of various al-
gorithms and data structures. However, the �rst step in
doing such a energy simulation involves accurate and ef-
�cient energy characterization of modules based on input
transitions. This paper concentrates on establishing such a
method which groups closely related energy patterns to ob-
tain clusters which to characterize the circuit. A comprehen-
sive solution is presented, which includes e�cient algorithms
to solve the clustering problem and the sub-problems asso-
ciated with it, while maintaining the quality and 'adequacy
of representation' of the clusters.

Section 2 describes the clustering approach to module
energy characterization. In section 3 the implementation is
discussed and the results of the algorithms are presented.
Finally we end with conclusions in section 4.

2 Module Energy Characterization

For the energy simulation/pro�ling methodology to be suc-
cessful it is necessary to estimate accurately and quickly the
energy dissipation of a module per input transition. The en-
ergy dissipation of a combinational circuit depends on the
previous and present input vectors while that of a sequen-
tial circuit also depends upon the previous state vector. A
circuit with n inputs and s storage elements (
ip-
ops) has
2n possible previous and present input vectors and 2s possi-
ble states. A fully characterized energy transition matrix of
a combinational circuit hence has 22n entries whereas that
of a sequential circuit has 22n+s entries. The clustering al-
gorithms presented compress this energy matrix thereby re-
ducing the number of entries needed to represent the circuit.
Although, the �nal results are shown only for combinational
circuits, this approach applies to sequential circuits also.
When considering sequential circuits, only the manner in
which the entries in the energy matrix are obtained (since
the state vector will have to be taken into account) needs
to be changed.

The problem with the simple approach of having a table
lookup of a fully characterized energy transition matrix, is
that the size of the characterizing energy table grows expo-
nentially with the number of inputs of the circuit (and states
of the circuit). It is not possible to store the energy values
for this table, let alone simulate the circuit for all entries
for large n. By observing these matrices, one notices that a
lot of the entries have similar values for certain input tran-
sitions. By collapsing the `bit patterns' of closely related
energy transitions the number of values needed to store the
matrix can be reduced. Furthermore, if error can be toler-
ated then a lot of the patterns could be clustered together.
Depending on the this error tolerance the 'lower order ef-
fects' of the matrix is retained and the 'higher order e�ects'

is discarded thereby, reducing the number of characterizing
coe�cients.

The values in the energy matrix (z) are energy per tran-
sition obtained experimentally by running a circuit simula-
tor (SPICE) or they can represent the switched capacitance
values as measured by IRSIM-CAP. Energy is proportional
to switched capacitances and can be obtained by scaling by
V 2
dd. IRSIM-CAP [5] is an enhanced version of IRSIM and

has been calibrated to within 10 � 15% of SPICE and is
used to obtain the switching capacitances for our experi-
ments. The switched capacitances along with the previous
and present input vector are read from a simulation �le. The
diagonal entries of the energy transition matrix are all zero
since energy dissipation is zero when the input vectors do
not change. The fully characterized energy table (switched
capacitances) for a 2:1 multiplexer is shown �gure 1 reveal
some of the energy patterns in 3-D. The x-axis represents
the present vector, y-axis the previous vector and z-axis the
energy values. The values are scaled between black (least en-
ergy dissipation) and white (maximum energy dissipation).
In order to identify the energy patterns one has to keep in
mind that these patterns are distributed over input vectors
which are in boolean space.

0

1

2

3

4

5

6

7 0
1

2
3

4
5

6
7

0

0.5

Figure 1: Energy matrix for 2:1 multiplexer

cube

function then it is a cluster)
(if cube satisfies criterion function

*
* *

*
* * *

*
*

* *
* *

* **
*
* * *

*

*
*

*
*

* *

* *
*
* * *

*

**

* * *

**
*

*

* *

*
* * *

*
*

simulation cube
dont-care cube

energy transition
matrix

Figure 2: De�nitions

2.1 Terms and de�nitions

Our commonly used terms and de�nitions (Figure 2) are
given below.

� An energy cube or cube is a 3-tuple consisting of three
vectors, viz., a set of previous input vectors, a set of
next input vectors and the energy estimate of those
transitions.

� A simulation cube is the cube corresponding to a simu-
lation point. A simulation cube has only one previous
and present input vector.

� When simulation is not performed for a particular in-
put vector transition, the respective energy value in
the matrix is unde�ned and is said to be a dont-care
cube.

� A cube is said to be a neighbor of another cube if the
number of bits of their input transition vectors di�er
by one.

0

10

20

30

40

1 6 11 16 21 26 31 36 41 46

R
el

at
iv

e
er

ro
r

pe
r

tr
an

si
tio

n
(%

)

Number of clusters (k)

Plot of relative error per transition versus number of clusters

Relative RMS error per transition (III)
Relative average error per transition (III)

Relative RMS error per transition (II)
Relative average error per transition (II)

Figure 3: Relative error per cluster v/s number of clusters
for 2:1 multiplexer

� A criterion function is some criteria which the energy
values of the simulation cubes covered by a cluster sat-
isfy. Some examples of criterion functions are given
below

{ The energy per transition of each cube should
obey certain relative error bounds (average, RMS,
maximum)

{ The distance of energy values between cubes of a
same cluster should be within a certain range

� The energy estimate of a cube is taken to be the mean
of all the energy values the cube represents.

� A cluster is a cube such that the energy values of the
simulation cubes it covers satis�es some criterion func-
tion.

� The sampling error of the cluster is the error bound
allowed between the observed and actual energy esti-
mate of the cluster.

� The con�dence level of the cluster is the con�dence
that is placed in the energy estimate such that it is
always bound by the sampling error of the cluster.

2.2 Criterion evaluation

In case of average energy or power, all transitions of the
simulation cube distribution map to a single mean value

�z =

P
z

m
. The problem is to partition the complete boolean

space of size 22n into a set of (say k) clusters (C1; � � � ; Ck)
in a manner that su�cient peaks of clusters are retained
with minimum impact in error while minimizing the num-
ber of clusters. The observed energy estimate (�zi) is the
average mean of all the simulation cubes the cluster Ci rep-

resents and is de�ned as �zi =

P
z2Ci

z

ni
where ni is the num-

ber of simulation cubes the cluster represents. The designer
can experiment with three error norms, average (�r1), RMS
(�r2) and maximum (�r1) relative errors to control the qual-
ity of the clustering. The algorithm will accept bounds on
any combination of the relative error per transition for each
cluster. If a cluster satis�es all the applied error bounds,
it is accepted. At the end of the clustering algorithm, the
relative error per transition for the total distribution is out-
put showing the total 'goodness' of the clustering. The plot
of error per cluster versus number of clusters for 2:1 mul-
tiplexer is shown in �gure 3. As expected the errors (both
RMS and average) increase with the decrease in the number
of clusters (for all the runs the maximum relative error was
bound to 30%). However, note that for a better heuristic al-
gorithm (III) the errors and the number of clusters are lesser

than the inferior heuristic algorithm (II). Also for 0.5% error
the number of clusters obtained by algorithm II is 41, while
that obtained by algorithm III is 34. In the average case
(i.e., one cluster), both the heuristics converge to the same
error. The quality of the clustering can be decided by the de-
signer by choosing the appropriate coe�cients (c1; c2; c3; c4)
of the following cost equation.

Cost = c1k + c2�r1 + c3�r2 + c4�r1

2.3 Coverage su�ciency

The clustering algorithm attempts to cover the entire boolean
space. However, one problem is still unresolved. How do
we say for sure that we have su�cient points representing
each cluster? The cluster must contain enough simulation
cubes to show that the observed energy estimate is a suf-
�cient. Hence, in order to bound the actual (�zi) from the
expected (�i) energy estimate by a sampling error of say �

(i.e., j�i��zij

�i
� �) with �% con�dence level, a certain num-

ber of representative points are needed. The cluster Ci is
represented su�ciently if ni � (

c��i

�zi�
)2 [2, 3] where ni is

number of points represented by the cluster, �i is the stan-
dard deviation of the cluster and c� is the standard normal
variable for �% con�dence interval (c90% = 1:645; c95% =
1:96; c99% = 2:58). The con�dence level is set to 95% and
the sampling error is set to 10% for our experiments.

2.4 Clustering algorithm

The clustering problem can be stated as follows: given the
simulation cubes of a circuit, �nd the minimal number of
clusters which satisfy a criterion function, coverage su�-
ciency requirement and cover the whole boolean space. Since
it is not possible to store the entire matrix, all entries are
internally represented as a list of simulation cubes. The cir-
cuit is simulated only form random vectors wherem� 22n.
The clustering algorithm is then performed (Figure 4). If
the cluster coverage is insu�cient, the process is terminated.
The circuit is simulated for additional m vectors and clus-
tering is performed using the new points. The algorithm
ends when the clusters satisfy the coverage su�ciency.

Run clustering to obtain
obtain clusters which obey
designer’s criterion function

Run simulation for m vectors
 2n m << 2

Is the clustering
coverage adequate?

Done

No

additional m vectors
Run simulation for

Figure 4: Overall methodology

Energy clustering is similar to a lot of di�erent classical
problems. The �rst is that of boolean logic minimization.
In boolean minimization, cubes can be merged if they are
neighbors and if they are ON (1) or dont-care (X). In energy
clustering, cubes can be merged if they are neighbors and if
the energy values of the merged cube satisfy some criterion
function. A dont-care cube can merge with any neighboring
cube and assumes the same energy value of the merged cube.
A good criterion function tries to minimize the total error
and the number of clusters. Clustering is similar to the test
pattern generation problem by simulation based directed-
searching. Clustering is also a well-de�ned problem in dis-
crete optimization; �nd those partitions of the set of samples

that extremize the criterion function. Since the sample set
is �nite, there are only a �nite number of possible partitions.
Thus, in theory the clustering problem can always be solved
by exhaustive enumeration. However in practice such an
approach is unthinkable for all but the simplest problems.
There are approximately cn=c! ways of partitioning a set of
n elements into c subsets, and this exponential growth with
n is overwhelming. For example, an exhaustive search for
the best set of 5 clusters in 100 samples would require con-
sidering more than 1067 partitionings. Thus, in most appli-
cations an exhaustive search is completely infeasible. A lot
of research has been done in clustering as a method of data
analysis [3] which use various distance functions (Euclidean,
Manhattan) and a variety of algorithms (nearest-neighbor,
furthest-neighbor, minimum mean-squared-error) or a com-
bination of them.

2.4.1 Exact algorithm

A straight forward way to form clusters is to merge lo-
cally and grow bottom-up. This is essentially similar to the
Quine-McCluskey method for logic minimization [9]. Each
cube is combined with its neighboring cube, if the combined
cube satis�es the criterion function and cubes at all levels
are combined till no further clusters can be formed. The al-
gorithm starts at the lowest level cubes (simulation cubes).
Neighbors are built for cubes at the current level. Merging
takes place among neighboring cubes which satisfy the crite-
rion function (validCluster). When cubes are merged, they
are added to the next level. The merging process terminates
if there is no merging at the current level. The �nal step is
a greedy disjoint cover �nding algorithm which starts at the
maximum level and attempts to cover the whole matrix.

Building neighbors should take O(m2) running time, how-
ever this true, only if the merges take place over the simu-
lation cubes. The objective however is to cover the whole
boolean space therefore the merges also take place over all
the `empty' dont-care space. Hence, this operation takes

O(22n
2
) = O(24n) running time. There are atmost 2n invo-

cations to this procedure (since the length of the previous
vector and the next vector are n bits each), the algorithm
hence takes O(24nn) time. The procedure validCluster (Fig-
ure 6) checks if each simulation cube covered within the clus-
ter satis�es the criterion function. Our present implementa-
tion of validCluster uses simple thresholds for the di�erent
relative errors. Therefore, validCluster is linear in the num-
ber of simulation cubes and the number of inputs O(mn). If
we had a complicated criterion function such as minimizing
the maximum distance between simulation points in a clus-
ter then validCluster would take O(m2n) time. This exact
algorithm, is expensive and is exponential in the number of
inputs of the circuit. Since the exact algorithm is not feasi-
ble, a faster heuristic algorithm is devised which will run in
polynomial time.

2.4.2 Heuristic algorithm (clusterII)

The exact method (since it is exponential in the number of
inputs) is not feasible for number of inputs greater than four.
This leads to an approximate method (clusterII) (Figure 6)
which reduces the running time signi�cantly. This algorithm
is a variant on the ESPRESSO-II, III minimization proce-
dure which uses the EXPAND heuristic. A random uncov-
ered simulated cube is chosen as a starting point (Figure 5).
This point is expanded to every other uncovered simulated
cube. This expanded cube is checked if it is a `valid cluster'.

If it is a `valid cluster' and does not intersect with other al-
ready found clusters (since the clusters are disjoint), then it
is chosen as one of the possible clusters. The cluster which is
�nally chosen, is the one which covers the most simulation
cubes. If no expanded cube can be validated as a cluster
then the starting cube is expanded arbitrarily into a cluster
in order to cover the dont-care space. The simulation cubes
covered by the chosen cluster are deleted from the list. The
algorithm repeats, till all the cubes from the list are cov-
ered. The quality of the algorithm is sensitive on the initial
starting cube (which is random). A bad initial cube might
prevent the search for good cluster.

all simulation cubes satisfied

Check if expanded cube
satisfies the criterion function

 if valid cluster then

 else expand to another cube

*
* *

*
* * *

*
*

* *
* *

* **
*
* * *

*

*
*

*
*

* *

* *
*
* * *

*

**

* * *

**
*

*

* *

*
* * *

*
*

Starting cube chosen
for expansion

for expansion
Ending cube chosen

Figure 5: clusterII heuristic

The algorithm takes O(m3n) worst case time since ex-
pansion to each cube can be in the worst case O(m2) (when
no merges can take place) and validCluster takes O(mn)
running time. This worst case running time occurs in the
case when ALL the simulation cubes are clusters and this is
highly unlikely. The expected running time is far less than
the worst case running time as shown by the experiments.

2.4.3 Additional heuristics (clusterIII)

By observing a set of clusters it was observed that only a
few points within a cluster violate the criterion function. If
these points are included in the cluster then the accuracy
per transition of the cluster su�ers. If these points are to
be excluded then the cluster cannot be formed resulting in
the formation of many small clusters. The previous heuris-
tic algorithm (clusterII) allows only disjoint clusters. This
makes the algorithm strongly dependent on the initial start-
ing point. Allowing overlapping clusters allows subsequent
clusters to be bigger in size and cover more simulation cubes.
An improvement is also obtained by eliminating the diago-
nal of the matrix (which is always zero) by marking them as
done. By starting at the violating exceptions and allowing
overlapping clusters, the number of clusters and the error
per transition and overall error can be signi�cantly reduced.
The extension to clusterII (clusterIII) (Figure 6) to incorpo-
rate for overlapping clusters is very easy. The notIntersect
check used in clusterII to maintain disjointness is not needed
and already covered simulation cubes are not accounted for
in validCluster. Subsequent cluster formations can then al-
low overlaps. In order to cover the exceptions �rst they have
to be identi�ed �rst. The question then arises is that 'How
do we �nd these problematic exceptons?'. The clusterIII al-
gorithm is modi�ed in the following manner. First, all the
m2 possible expansions are enumerated. Then a precedance
tree is established such that expanded cube A points to ex-
panded cube B i� B is completely covered within A (Figure
7). The covering algorithm starts at the top of the tree
(which is the complete boolean space). The current tree
node (expanded cube) is checked if it is a `valid cluster'. If
it is a `valid cluster', then the current node and all of the
descendants are marked as covered and the next uncovered
tree node is attempted for cover. If the node is not a `valid

procedure validCluster (c)
begin

if (numCovered() < reqNumCovered()) then exit(-1);
if ((relErrs() < userErrors) then return (FALSE);
return (TRUE);

end

algorithm clusterII
begin

cubeList := readCubes();
expandCubeList(cubeList);

end

procedure expandCubeList(cubeList)
begin

clusters := 0;
while cubeList do begin

c := arbitaryCube(cubeList);
cluster := expandCube(c, cubeList);
foreach (d 2 cubeList) do
if (coveredBy(d,cluster))then
cubeList := deleteFromList(d, cubeList);

clusters := addToList(cluster, clusters);
end

end

procedure expandCube(c, cubeList)
begin

while (notCluster(c)) do begin

expansions := 0;
foreach (d 2 cubeList) do begin

exp := smallestCubeContaining(c, d);
if (validCluster(exp)
and notIntersect(exp,clusters)) then
expansions := addToList(exp, expansions);

end

if (expansions=0) c := expandCubeArbitrarily(c);
else c := selectMember(expansions, cubeList);

end

return (c);
end

algorithm clusterIII
begin

cubeList := readCubes();
enumeratedCubes := enumerateCubes(cubeList);
precedanceTree :=
buildPrecedanceTree(enumeratedCubes);
c := topOfTree(precedanceTree);
while (notCovered(c)) do cover(c);

end

procedure cover(c)
begin

if (validCluster(c)) then begin

markSelfandDescendantsCovered(c);
return (TRUE);

end else begin

foreach (child 2 children(c)) do
if (validCluster(child)) return (TRUE);

orderChildren(c);
foreach (child 2 children(c)) do
if (cover(child)) then return (TRUE);

end

return (FALSE);
end

Figure 6: validCluster, clusterII, clusterIII

cluster', then its children are tested for `valid clusters'. If
none of the children of the node are `valid clusters' then
the children are ordered based on the violating error of the
parent and the children are covered based on decreasing vi-
olating error. This process is repeated till all the tree nodes
are covered.

*
* *

*
* * *

*
*

* *
*

* **
*
* * *

*

*
*

*
*

* *

* *
*
* * *

*

**

* * *

**
*

*

* *

*
* * *

*
*

*

** ***** **

** Cluster B

Exceptions

Cluster A

Figure 7: clusterIII heuristic

The running time of the algorithm, clusterIII is still O(m3n).
Enumerating the cubes takes O(m2) time. Building the pre-
cedance tree does not take O(m3) time since the enumerated
cubes are inserted in a bucket of their level and while build-
ing the tree only cubes of adjacent levels are checked against
each other. The worst case scenario occurs when ALL the
tree nodes call validCluster which takes O(mn) time, hence
the worst case running time of clusterIII is O(m3n).

3 Implementation and Results

The exact and the heuristic algorithms (clusterII, clusterIII)
are implemented in C. The exact algorithm fails for inputs
greater than four. The heuristic algorithms run in poly-
nomial time O(m3n) where m is the number of simulation
points and n is the number of inputs of the circuit. The
input to the algorithm is a set of simulation cubes and the
desired relative errors (average, RMS, maximum) the de-
signer would like to control in the clustering algorithm. The
cluster sampling error and con�dence level is also speci�ed.
The output is the set of clusters and the relative errors for
the individual clusters and the total distribution.

In table 1 we have results for 12 circuits. The second
column shows the number of inputs (n), the third column
shows the number of simulation points (m) required for
su�cient representation of each cluster. The subsequent
columns show the `goodness' of algorithm clusterII and clus-
terIII in terms of the number of clusters (k), the CPU time
in seconds and the relative errors for the total distribution
obtained for the `best' runs. The term `best' to us meant
trying to minimize the RMS error and the number of clusters
while keeping an accepted maximum error bound per transi-
tion to 30%. As we see that the algorithm clusterIII which is
similar to clusterII but uses the `start at exception and allow
overlap' heuristic gives better results than clusterII almost
all the time. The acceptable con�dence level is set to 95%
for each cluster for 10% sampling error between the actual
and observed energy estimate of the cluster. We see that
while keeping the maximum error �xed with 30% and while
playing the RMS error bound within 10%�15%, a signi�cant
reduction in number clusters is obtained. One should note
that even one point with a large maximum error in ANY
of the clusters, forces the cluster and the entire distribution
to have that error although the RMS error can be relatively
small. However, the maximum error is useful when a large
spread cannot be tolerated. Another, important observation
is that maximum error violations occur with clusters with
small values. In all our circuits, the initial value of m was
su�cient enough for cluster representation.

Table 1: Clustering results for best runs (n:no of inputs, m:simulation points, k:no of clusters)

Circuit n m clusterII clusterIII
k time % relative error/transition k time % relative error/transition

(secs) ave RMS max (secs) ave RMS max

mux21 3 64 14 1 13.33 14.33 28.34 5 2 12.24 13.24 29.93
fa 3 64 15 2 10.44 13.21 29.72 6 3 10.05 12.96 29.77

sda3 6 200 19 137 13.03 13.73 29.32 15 183 11.86 10.12 27.09
mult4 8 500 27 191 9.62 13.32 23.64 16 256 10.46 14.32 22.21
rca4 8 500 23 172 11.23 14.42 24.44 13 272 10.23 12.21 21.23
cla4 8 500 21 167 13.73 14.73 29.31 12 298 11.14 14.62 26.99
hpar 9 500 36 286 8.53 9.42 25.62 15 432 7.33 8.2 22.21
mux81 11 500 47 202 11.36 12.69 25.36 25 477 10.27 13.53 22.43
hcomp 11 500 49 272 12.67 12.98 27.93 23 456 11.13 13.4 21.61
halu 14 500 59 291 12.24 12.26 23.13 27 487 11.52 14.37 22.33
rca16 32 1000 173 4497 13.37 14.31 22.55 123 5239 12.32 13.62 29.54
cla16 32 1000 155 4263 12.39 14.20 21.35 97 5033 12.00 13.53 28.62

4 Conclusions

We have established a new method to cluster the energy ta-
ble for modules. The discerning features of our work are that
characterization is based on input transitions rather than
input statistics, without knowledge of module functionality
with the accuracy being controlled by the designer. Energy
characterization needs to be done only once for each module.
The heuristic algorithms devised achieve good compression
of the energy tables while running in polynomial time. The
input is a set of simulation cubes and criterion function es-
tablished by setting bounds on either the average, RMS or
the maximum relative error per input transition. The worst
case time complexity of the algorithm is O(m3n) where m
is the number of simulation cubes and n is the number of
inputs of the circuit. The worst case scenario O(m3n) oc-
curs when ALL the simulation cubes are clusters (highly
unlikely). It is di�cult to derive the average running time,
however actual CPU time suggests that the average running
time is much less than O(m3n).

As explained in section 2, although the results are shown
only for combinational circuits, this table collapsing ap-
proach by clustering is also applicable to sequential circuits.
The only thing which has to be modi�ed is the method of
obtaining the entries of the energy table (since for sequential
circuits the energy is also dependent on the state vector).

Our next step is to build a library of such clustered tables
for the modules. This library can then be used directly in
in a simulation/pro�ling tool. We would like to work on the
following as part of further research:

� The initial implementation of the algorithm is naive
since the e�ort was concentrated on the establishing
the methodology rather than obtaining an e�cient al-
gorithm. The running time of the algorithm can be
reduced by incorporating better search mechanisms to
detect exceptions and using better data structures.

� Using hints on the type of module functionality to de-
crease the number of clusters

� Work on obtaining a library of module clusters for dat-
apath combinational modules

� Obtain results for benchmarks on sequential modules
(register �les, controller etc)

� Incorporate the module clusters into the simulation or
pro�ling framework.

REFERENCES

[1] Huzefa Mehta, Robert Owens, and Mary Jane Irwin. In-
struction level power pro�ling. In International Confer-
ence on Acoustics, Speech and Signal Processing, 1996.
To appear.

[2] James T. McClave and Frank H. Dietrick. A First
Course in Statistics. Macmillan Inc.,, 1989.

[3] Lothar Sachs. Applied Statistics - A Handbook of Tech-
niques. Springer-Verlag, 1984.

[4] Paul E. Landman and Jan M. Rabaey. Power estima-
tion for high level synthesis. In EDAC-EUROASIC,
pages 361{366, 1993.

[5] Paul E. Landman and Jan M. Rabaey. Black-box
capacitance models for architectural power analysis.
In Proceedings of the International Workshop on Low
Power Design, pages 165{170, April 1994.

[6] Paul E. Landman and Jan M. Rabaey. Activity-
sensitive architectural power analysis for the control
path. In Proceedings of the International Workshop on
Low Power Design, pages 93{98, April 1995.

[7] Scott R. Powell and Paul M. Chau. Estimating power
dissipation of VLSI signal processing chips: The PFA
technique. In VLSI Signal Processing IV, pages 250{
259, 1990.

[8] T. Sato, M. Nagamatsu, and H. Tago. Power and per-
formance simulator: ESP and its applications for 100
MIPS/W class RISC design. In Proceedings of the 1994
IEEE Symposium on Low Power Electronics, pages 46{
47, Oct 1994.

[9] Tsutomu Sasao. Logic Synthesis and Optimization.
Kluwer Academic Publishers, 1993.

[10] Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Power
analysis of embedded software: First step towards soft-
ware power minimization. In Proc. of the Int'l Confer-
ence on Computer Aided Design, pages 384{390, Nov
1994.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

