
Priority Ceiling Protocol in Ada

Kwok-bun Yue Sadegh Davari Ted Leibfried
University of Houston - Clear Lake

Houston, TX 77058
yue@cl.uh.edu davari@cl.uh.edu leibfried@cl.uh.edu

ABSTRACT

The priority ceiling protocol (PCP) is an effective protocol for minimizing priority inversions in real-time

scheduling. Priority inversion occw-s when a high priority task is blocked by a low priority task, such as at a shared

semaphore or a protected operation. PCP guarantees the absence of chained priority inversion or deadlock. The

ceiling locking (CL) priority on protected objects of Ada-95 also has these properties but has some limitations.
For example, tasks cannot suspend themselves inside a protected operation. PCP has no such restrictions. Thus,

PCP is more appropriate for some real-time applications. PCP has not been implemented in any language,
· including Ada. A guideline for emulating PCP using Ada-83 exists but it lacks generality and flexibility. This
paper discusses an implementation of PCP in Ada-95, the Ada-95 features that enable the implementation, the
design of the implementation and some related issues.

1. Introduction

In real-time applications, preemptive priority driven schedulers are used
to schedule concurrent tasks to meet deadline requirements. The rate
monotonic scheduling (RMS) is the best known preemptive fvced
priority scheduling algorithm [7 ,9] for scheduling periodic tasks. RMS
is optimal in the sense that if a real-time application is schedulable (all
tasks meeting all deadlines) by any fvced priority scheduling algorithm,
it is also schedulable in RMS. Since its introduction, RMS has been
generalized and extended in various aspects, including aperiodic tasks
with dynamic priorities [3,6,9].

RMS enables the users to perform schedulability analysis to
guarantee that the application is schedulable. For each task, the period
of time between its arrival and its deadline must accommodate the sum
of the worst cases of the following CPU times: (1) preemption time:
the time executed by all higher priority tasks, (2) execution time: the
execution time of the task itself, and (3) blocking time: the delay
caused by lower priority tasks because of priority inversion [4,9].

A common source of priority inversion is when a low priority task
is executing in a critical section. A high priority task will then be
blocked from executing its critical section which shares the same
resource with the low priority task. Since the low priority task may be
preempted by any number of medium priority tasks, the duration of
priority inversion may be unbounded: the duration of priority inversion
is not a function of the duration of the critical sections. Priority
inversion cannot be eliminated entirely. However, to improve the
performance of real-time systems, the duration of priority inversion
should be minimized.

l'~rmission to mak~ digital: hard ..:opi.:s ,,fall •>r part •>lli.IS work li>r
pl!rsonallll" dassroon1 us~.!' is granted with,,ut ~~~ pnH"id~d that ~opil!s
arl! th't madl! l)f distrihuh:'d l'i'r profit or L'l'lllllll!r....:ial ;u.h·antagl!. thl!
..:op\'right noti.:.:. th~ till.: ofth.: puoli.:ati,>n and it' dak app.:ar. and
llllli1..·l! is gi\'l!ll that copying is hy pl!nnissilm ~,f. \C\1. In..:. To '--'opy
,llh~rwisl.!. h) r!!pul11ish. h) P''st lm sl.!n·l.!rs l'l" hl rl.!distrihuk to lists.
rl.!quir~~ pri,)r spl.!~ili~ p!.!nnissilm and nr a 1;,;.~.

<"I <J% ACM O-X<J7<J 1-XOX-X/%/00 12 :uo

3

Many synchronization protocols have been proposed for reducing
priority inversion as well as preventing deadlocks. Mutually exclusive
access to shared resources from the critical sections of concurrent tasks
may be protected by different synchronization techniques. Examples
are semaphores, critical regions, monitors and protected objects (in
Ada-95). Since most proposed protocols use semaphores to protect
critical sections, we will also use semaphores in the following
discussion of the protocols. However, it is straightforward to modify
these protocols for synchronization techniques other than semaphores.

If a task T; wants to execute the critical section protected by the
semaphore Si, it executes:

Request(Si); - request access to (lock) semaphore Si:
- i.e., P(Si) or Wait(Si)

- CR;i: the critical section ofT; that is protected by Si.
Release(Si); - release access to (unlock) semaphore Si:

- i.e., V(Si) or Signal(Si)

Protocols differ in the policy of granting locks to semaphores and
the policy of dynamically changing the priorities of tasks that have
locked a semaphore. The priority inheritance protocol (PIP) is among
the most popular protocols that avoid unbounded priority inversion [9].
In PIP, when a lower priority task T blocks the execution of higher
priority tasks, T inherits the priority of the highest priority task that it
blocks. PIP is supported by some operating systems. Although it
avoids unbounded priority inversion, deadlock and chained priority
inversion (where a task is blocked by more lhan one lower priority
task) are possible [4,9,10].

The priority ceiling protocol (PCP) [4,5,9] is a more recent
protocol that has the following desirable properties: (1) a high priority
task can be blocked by at most one lower priority task (no chained
priority inversion), even ifthe tasks suspend themselves within critical
sections, and (2) no deadlock is possible. PCP is not known to be
supported by any of the popular operating systems. It is based on
preemptive scheduling and has the following rules:

http://crossmark.crossref.org/dialog/?doi=10.1145%2F240678.240679&domain=pdf&date_stamp=1996-12-01

1. A lower priority task that blocks a higher priority task T inherits
the priority ofT.

2. (Locking Condition) A task T can only lock a semaphoreS if:

(a) the semaphoreS is not yet locked, and
(b) the priority ofT is greater than the priority ceilings of all

semaphores that are currently locked by tasks other than T.

The priority ceiling of a semaphore is defined as the highest
priority of all tasks that may request to lock the semaphore at any time.

PCP has been extended to the Optimal Mutex Policy (OMP) by
Rajkumar ct. al. [8]. OMP is optimal and is thus theoretically better
than PCP. OMP provides both the necessary and sufficient conditions
for limiting the worst-cas·~ blocking duration to a single critical section
for any lower priority task. PCP provides only the sufficient condition
but not the necessary condition. PCP is sub-optimal in the sense that
it is more restrictive than OMP. Under some scenarios, it is possible
that a request to lock a semaphore is granted by OMP, but not PCP.
However, OMP contains much more complicated rules and its
implementation is expensive [8]. With a much lower overhead, PCP
is sufficient for most real-time applications.

2. The Ceiling_Locldng Protocol of Ada

With its annexc:> in system programming and real-time
programming, Ada provides a different solution to the problem of
priority inversion. In Ada, instead of semaphores, protected objects are
used to protect critical sections. The real-time annex allows the
programmer to usc the pmgma Locking_ Policy to specify the details of
protected object locking. There is one predefined locking policy:
Ceiling_ Locking (CL) [1].

CL is similar to PCP in its usc of the ceiling priority. The ceiling
priority of a protected object should be an upper bound of the active
priorities of all tasks that may call operations of the protected object.
CL has a different set of rules:

1. A task that locks a protected object inherits the ceiling priority of
the protected object during the entire protected operation.

2. A task may lock a protected object if it is not yet locked.

CL has many desirable properties which include: (1) there is no
chained priority inversion if the task does not suspend itself in its
critical section, (2) no deadlock is possible, and (3) it is much easier to
implement than PCP. For many real-time applications, CL is sufficient
and is thus a suitable choice to be included in Ada.

Like PCP, CL guarantees the absence of chained pnonty
inversion, but unlike PCP, CL relies on the Ada rule which disallows
operations that may su:>pend tasks within protected operations. For
example, the subprograms defined in the language-standard input
output package are potentially blocking and are thus disallowed inside
protected operations [1]. PCP has no such restriction.

If suspension were allowed in Ada-95, then chained priority
inversion may happen, as illustrated by the following example. The
tasks T1, T2, T3 and T4 have priorities of 1, 2, 3 and 4 respectively, 4
being the highest. The protected object P1 is called only by tasks T1

4

and T3 and thus has a priority of3. The protected object P2 is called
only by tasks T2and T4 and has a priority of 4. Consider the following
sequence of operations.

(1) Task T2 callsan operation ofP2 and executes with an active
priority of 4.

(2) Task T 2 suspends itself for 1/0. Note that Ada-95 disallows
this operation.

(3) Task T1 calls an operation ofP1 and executes with an active
priority of3.

(4) Task T3 attempts to call an operation ofP1 and is biO<:ked.
(5) The 110 operation ofT2 is completed and T2 preempts T1

because of its higher active priority.

The task T 3 must now wait for both T 2 and T 1 to complet•c their
protected operations. This situation will not actually occur in Ada-95
because a task is not allowed to suspend itself within protected
operations and step (2) cannot occur. Note that if PCP is used, T 1 will
not be allowed to enter its critical section because locking condition (b)
is not satisfied.

Another advantage of PCP (and PIP) is its closer adherence to
priority scheduling. The priority of a task is only raised whe:n it is
necessary to minimize priority inversion. In CL, a task that locks a
protected object will always have its priority raised to that of the 1:eiling
priority of the protected object during the entire protected operation.
For example, consider the following sequence:

(1) A task T 1 locks a protected object S,
(2) A task T2 that has a priority higher than T1 but less than the

ceiling priority of S, arrives and tries to start executing its
non-critical section.

In CL, T 2 is blocked because T 1 has inherited the ceiling priority
of S. In PCP, since T1 has not blocked any higher priority task, its
priority dO<CS not change. Thus, T 2 preempts T 1 and starts its exe<:ution.

Thus, whereas CL is suitable for many real-time applications,
there arc other applications where PCP is more appropriate.

3. Related Work In PCP

It is not possible to implement PCP directly in Ada-83 without
implementation-dependent features and extensions. This is bl:x:ause
Ada-83 lacks various features that are needed for the implementation
ofPCP, such as dynamic priority assignments, priority entry queuing,
task identification, etc.

In [9], a coding guideline for emulating PCP in Ada-83 was
described to overcome the FIFO nature of the entry queues and other
Ada-83 deficiencies. This emulation has similar characteristics as CL
of Ada-95. Under this guideline, client tasks must not call each other
directly. All tasks are synchronized using critical sections prote<:ted by
server tasks. A server task protects a shared resource and contains the
code of the critical sections of all tasks that access the critical s-:x:tion.
Each server is made up of an endless loop containing a single select
statement with no guard. Server tasks are given priorities high1:r than
that of any client task.

Using this emulation guideline, in order to execute its 1:ritical
section CR;j for the shared resource Si, the task T; calls

Serverj.CR_Entry_i(...). The server task Serverj contains the
following code:

- body of Server j
loop

select
accept ...

or
accept CR_Entry_i(...) do

- code for c~j

end CR_Entry_i;

end select;
end loop;

Although useful, this emulation guideline in Ada-83 has some
limitations. Since each shared resource is protected by a task, there is
additional task overhead (unless passive implementation of tasks are
supported by the Ada-83 compiler) that could be significant. More
importantly, assigning higher priorities to server tasks is not acceptable
if a server suspends itself during rendezvous [9] as tasks may line up
in the FIFO entry queue in Ada-83. Not permitting suspension
excludes useful operations such as I/0 or nested critical sections. Even
if a priority-based entry queue is available, nested critical sections are
particularly difficult since one server must call another server directly.
Deadlock is possible if suspension is allowed. This also contradicts a
common design principle for making server tasks passive [2].

4. PCPinAda

Ada-95, in its Annex Con System Programming and Annex D on
Real-Time Systems, provides all features for implementing PCP
efficiently [I]. Furthermore, semaphores can now be implemented as
protected objects instead of tasks, tlms avoiding the additional task
overhead [11]. Note that ifCL is sufficient for the application, then
protected objects can be used directly to provide mutual exclusion.

There are several essential features for implementing PCP which
are effectively supported by Ada-95. These features arc not directly
supported by Ada-83 (without implementation-dependent facilities) or
are only partially supported.

(1) Ada-9 5 provides the ability to access resources according to
priority. The entry queues in Ada-83 are based on FIFO, and not
priority. Annex D of Ada-95 allows the programmer to define the
queuing policy by the pragma Queuing_ Policy. In particular, the
predefined queuing policy Priority_ Queuing ensures the servicing
of entry queues based on priorities.

(2) Ada-95 provides the ability to identify individual tasks. Annex C
defines the package Ada.Task_Identification for this purpose. It
includes the definitions of the data type Task_ ID and the function
Current_ Task that returns a value to identify the calling task. It
also defines the operator = for finding out whether two task id's
identity the same task. This can be simulated in Ada-83 by using
task pointers or indices of task arrays.

(3) Ada-95 provides the ability to determine the current active priority
of a task and the ability to set the active priority of a task

5

dynamically. This is provided in the package
Ada.Dynamic_Priorities by the functions Get_Priority and
Set_Priority, as described in Annex D.

(4) In task synchronization, Ada-95 provides the ability to release a
resource to wait for a certain condition to occur.

In PCP, if a task T calls a Request operation, the scheduler needs
to process the request. If the locking condition is not satisfied, it
is necessary for T to release the scheduler to process other
requests and to wait for the condition. There is no entirely
satisfactory way to do this in Ada-83 using the rendezvous model
(2]. In Ada-95, the requeue statement can be used for this
purpose by putting the calling task in the queue of the requeue
entry, releasing the protected object to perform other protected
operations [1].

An Ada-95 implementation of PCP is shown in Appendix 1. The
pragma Queuing_ Policy(Priority _Queuing) is first used to ensure that
semaphore operations are served in the order of task's active priorities.

It may seem that the logical choice in Ada-95 is to implement one
semaphore by one protected object. However, before granting a lock
of a semaphore, it is necessary to check the status of every other
semaphore in the system to ensure that Locking Condition (b) of PCP
(discussed in Section 2) is satisfied. Implementing one semaphore as
one protected object will thus require complicated communication and
synchronization between the semaphore protected objects. Hence, a
single protected object is instead used to serve as the scheduler for
granting all semaphores.

In this implementation (Appendix 1), the protected object
"Semaphores" implements the scheduler. It provides only two
operations in its public interface: the entry Request and the procedure
Release. Two parameters are needed in each operation: the task id of
the task that calls the protected operations and the index of the
semaphore the operation is intended for. The Request operation is
implemented as an entry since it contains a requeue statement.

The priority of the scheduler should be higher than that of any
client task which may call a semaphore. The range of the priorities of
the tasks, Task_Priority_Range, and the number of semaphores in the
system, N _SEMAPHORES, are application dependent and are left
unfilled in the code.

The exception EXCEEDING_ CEILING_ ERROR is raised when
the basic assumption of PCP is violated: when a task with a priority
higher than the priority ceiling of a given semaphore calls the Request
operation of the semaphore. The exception
UNAUTHORIZED_RELEASE_ERROR is raised when a task that
has not locked a semaphore S calls a Release operation to release S.
More sophisticated fool-proof checking to avoid abuses in calling the
Request and Release operations are also possible.

In the private part of the scheduler, the array
CEILING _PRIORITY stores the ceiling priorities ofthe semaphores
used in the real-time system. The Boolean array Locked is used to
indicate whether the semaphores are locked. When a semaphore is
locked, the task_id and the priority of the task that locked the
semaphore are stored in the appropriate entries of the arrays
Locking_ Task and Lock_ Time _Priority respectively. The array
Active_ Priority is used to store the active priorities of the locking tasks.

When a tusk T calls a Request operation, the id of task T and the
index of the semaphore S is passed to the entry Request of the
scheduler. The barrier of the entry Request is always true. The
condition for raising the exception EXCEEDING_ CEILING_ ERROR
is checked first. After that, the locking conditions are checked. The
function High_ Enough_ Priority implements the checking of the
Locking Condition (b) using the arrays Locked, Locking_ Task and
CEILING _PRIORITY. If the locking conditions are satisfied, the
semaphore is allowed to be locked and the task_id and priority of the
calling task are saved.

If the semaphore cannot be locked, the following two steps are
performed in order: (1) if the semaphore has already been locked, then
the active priority ofthe task that locked the semaphore is updated by
setting the appropriate entry of the array Active_Priority, and (2) the
calling task is requeued to the current requeue entry for future
completion of the Request operation. The current requeue entry is one
of the entries Request_ Again _1 and Request_ Again_ 2 and is indicated
by the variable Requeue_ I_ Tum. The variable is true if and only if
Request_Again_1 is the current requeue entry.

The barriers of the entries Requcst_Again_l and
Request_Again_2 are the Boolean variables Ready_1 and Ready_2,
which are initially false. They will remain false until a client task calls
a Release operation which may then change the truth value of the
locking conditions for the tasks waiting at the current requeue entry.

When a tusk T calls the Release procedure to release a semaphore
S, the procedure first checks whether T has locked S. If not,
UNAliTHORIZED _RELEASE_ERROR is raised. It then resets the
calling task priority to its original priority at lock time and marks S as
being unlocked. If some tasks are waiting in the current requeue entry,
they need to be re-examined as the locking conditions may now be
satisfied. In this case, the barrier of the current requeue entry is set to
true to allow re-examination of the waiting tasks. That is, if the current
requeue entry Request_ Again _1 is true (i.e. Requeue _1_ Tum is true),
then Ready _1 is set to true. Otherwise, Ready_ 2 is set to true.

The bodies of the entries Request_ Again _1 and
Rcquest_Again_2 arc symmetric to each other and arc similar to that
of the entry Release. If the number of tasks waiting in the current
requeue entry becomes zero, then its barrier is set to false. The current
requeue entry is set to the other requeue entry. If the semaphore can
now be locked, it is locked in a manner similar to that of the entry
Release. Otherwise, the task is requeued back to the other requeue
entry.

Thus, the two entries Request_Again_l and Request_Again_2
are examined alternately like a ping-pong system. Initially, all tasks are
requeued to the entry Request_Again_l. When a Release operation
arrives, all tasks in Requcst_Again_l and any newly arrived tasks that
cannot lock a semaphore are requeued to Rcquest_Again_2. When
another Release operation arrives, all tasks in Rcquest_Again_2 and
any newly arrived tasks that cannot lock a semaphore are requeued to
Request_ Again _1. This process is then repeated.

Note that it is not possible to use just a single requeue entry. If
only one requeue entry were used, a task that is not granted a
semaphore may need to be requeued to the same entry. Since the entry
is priority-based, this same task will be immediately re-examined again.

6

S. Conclusions

In this paper, we have presented an implementation ofPCP in
Ada-95. Although the implementation requires some overhead as
compared to the Ceiling Locking policy of Ada-95, it allows tas.ks to
suspend themselves in their critical sections. PCP also adheres to
priority scheduling better.

Acknowledgement

We would like to thank the Institute of Space Systems Operations
and the University of Houston - Clear Lake Faculty Research Support
Fund for partially funding the project. We would also like to than.k the
anonymous reviewer whose comments have improved the paper
significantly.

References

[1] Ada 95 Mapping/Revision Team, Ada 95 Reference Manual,
Intermetics, Inc., 1995.

[2] Burns, A., Concurrent Programming in Ada, Cambridge
University Press, 1985.

[3] Bums, A. & Wellings, A., Implementing Analysable Hard Real
Time Sporadic Tasks in Ada 9X. Ada Letters, Vol.l4, No.1,
Jan/Feb 1994, pp38-49.

[4] Davari, S. & Sha, L., Source of unbounded priority inversions in
real-time systems and a comparative study of possible solutions.
ACM Operating Systems Review, Vol.26, No.2, April 1992,
ppl10-120.

[5] Goodenough, J. & Sha, L., The priority ceiling protocol: a method
for minimizing the blocking of high priority Ada tasks. Ada
Letters, Special Issues: Proc. 2nd Int'l Workshop on Real·· Time
Ada Issues VIII, Vol.7, Fall1988, pp20-31.

[6] Lehoczky, J. ct. al., Fixed priority scheduling theory for hard real
time systems, in Foundations of real-time computing scheduling
and resource management. ed. by van Til borg, A. & Koob, G.,
Kluwer Academic Publishers, 1991.

[7] Liu, C. & Layland, J., Scheduling algorithms; for
multiprogramming in hard real time environments. Joumal of
theACM, Vol.20,No.l, 1973,pp46-61.

[8] Rajkumar, R., et.al., An optimal priority inheritance policy for
synchronization in real-time systems. In Son, S., (cdit)Adl'ances
in real-time systems. Prentice-Hall, 1995.

[9] Sha, L. & Goodenough, J., Real-time scheduling theory and Ada.
IEEE Computer, Vol.23, No.4, April 1990, pp53-62.

[10] Sha, L., Rajkumar, R. & Lehcozky, J., Priority inheritance
protocols: as approach to real-time synchronization. IEEE
Transactions on Computer, September 1990.

[11] Yue, K., Semaphores in Ada-94. Ada Letters, Vol.14, No.5,
1994, pp71-79.

Appendix 1 Ada's implementation of PCP

pragma Queuing_ Policy(Priority _Queuing);
with Ada.Task_Identification; use Ada.Task_Identification;
with Ada.Dynmaic _Priorities; use Dynamic_ Priorities;
with System; use System;

- Range of priorities of tasks accessing critical sections.
TASK_MIN_PRIORITY :constant Any_Priority -application dependent.
TASK MAX PRIORITY : constant Any_ Priority - application dependent.
subtype Task_ Priority_ Range is Any _Priority range TASK_ MIN _PRIORITY .. T ASK_ MAX_ PRIORITY;

- Priority of the scheduler scheduling semaphore operations should be higher than
- that of any ofthe tasks that call the operations.
SCHEDULEJ3-_PRIORITY :constant Any_Priority := TASK_MAX_PRIORITY + 1;

N SEMAPHORES : constant - application dependent.
subtype Semaphore_ Range is Integer range l..N _SEMAPHORES;
type Semaphore_ Priorities is array(Semaphore _Range) of Task_ Priority_ Range;
type Semaphore_Locks is array(Semaphore_Range) of Boolean;
type Semaphore_ Locking_ Tasks is array(Semaphore _Range) of Ada.Task _Identification. Task_ Id;

-- Raised when a task with a priority higher than the ceiling priority of a semaphore calls
- the Request operation ofthc semaphore.
EXCEEDING_ CEILING_ ERROR : exception;

- Raised when a task that has not locked a semaphore S calls the Release operation on S.
UNAUTHORIZED_ RELEASE_ ERROR : exception;

protected Semaphores is
- higher priority than all tasks that access critical sections.
pragma priority(SCHEDULER _PRIORITY);

-- Request and Release operations of the semaphore.
- Release must be a procedure as it changes the barriers ofRequest_Again_l and Request_Again_2.

entry Request(Calling_ Task: Ada. Task _Identification. Task_ ID;
S : Semaphore_Range);

procedure Release(Calling_ Task: Ada. Task_ Identification. Task_ ID;
S : Semaphore_Range);

private
- Indicate whether a semaphore is locked or free.
Locked: Semaphore_Locks :=(others=> FALSE);

- Tasks that lock the semaphore.
Locking_ Task: Semaphore_Locking_Tasks :=(others=> NULL_TASK_ID);

-- Ceiling priority of semaphores
CEILING_PRIORITY: Semaphore_Priorities:= ... ;

- Original priority of the tasks that lock the semaphores.

-- application dependent.

Lock_Time_priority : Semaphore_Priorities :=(others=> TASK_MIN_PRIORITY);

-- Current active priority of the tasks that lock the semaphores.
Active_Priority : Semaphore_Priorities :=(others=> TASK_MIN_PRIORITY);

~- True ifthe current requeue entry is Request_Again_l.
-- False if the current requeue entry is Request_Again_2.
Requeue_!_ Tum :Boolean :=True;

7

- Ready to examine the entry Request_Again_l; the barrier ofRequest_Again_l.
Ready _1 :Boolean :=FALSE;
- Ready to examine the entry Request_Again_2; the barrier ofRequest_Again_2.
Ready_2 :Boolean :=FALSE;

- Request_Again_l and Request_Again_2 requeue entries of the semaphore.
entry Request_ Again _l(Calling_ Task: Ada. Task _Identification. Task_ ID;

S : Semaphore_ Range);
entry Request _Again_ 2(Calling_ Task: Ada. Task _Identification. Task_ ID;

S : Semaphore_ Range);
end Semaphores;

protected body Semaphores is

- Check whether Calling_ Priority of the task Calling_ Task is larger than the ceiling priorities of all locked semaphores.

function High_ Enough_ Priority(Calling_ Task : Ada. Task_ Identification. Task_ ID;
Calling_Priority: Task_Priority_Range) return Boolean is

begin - High_ Enough _Priority
for Sin Semaphore_Range loop

ifLocked(S) and then Calling_ Task/= Locking_Task(S)
and then CEILING _pRIORITY(S) >= Calling_priority then
return FALSE;

end if;
end loop;
return TRUE;

end High_Enough_Priority;

The Request operation on the semaphoreS called by the task Calling_ Task.

entry Request(Calling_ Task: Ada.Task_Identification.Task _ ID;
S : Semaphore_Range) when TRUE is

Calling_ Task_priority: Task _Priority _Range := Get_Priority(Calling_ Task);
begin -- Request

if Calling_ Task_ Priority> CEILING _pRIORITY(S) then
raise EXCEEDING_ CEILING_ ERROR;

elsif (not Locked(S)) and then High_ Enough _Priority(Calling_ Task, Calling_ Task_Priority) then
- Semaphore available for locking.
Locked(S) := TRUE;
Locking_Task(S) :=Calling_ Task;
Lock_ Time _priority(S) := Calling_ Task_ Priority;
Active_ Priority(S) := Calling_ Task_ Priority;

else -- Semaphore cannot be locked.
-- Update the active priority of the task that locks the semaphore if appropriate.
ifLocked(S) and then Active_Priority(S) < Calling_Task_Priority then

Active _priority(S) :=Calling_ Task _priority;
Set _priority(Calling_ Task_ Priority, Locking_ Task(S));

end if;
-- Wait in current requeue entry for future checking of the availability of the semaphore.
ifRequeue_l_Tum then

requeue Request_Again_l;
else

requeue Request_Again_2;
end if;

end if;
end Request;

-- The Release operation on the semaphoreS called by the task Calling_ Task.

procedure Release(Calling_ Task: Ada. Task_Identification.Task _ ID;

8

s : Semaphore_Range) is
begin - Release

if Calling_ Task/= Locking_Task(S) then
raise UNAUTHORIZED_ RELEASE_ ERROR;

end if;
Set_ Priority(Lock _Time _priority(S), Calling_ Task);
Locked(S) :=FALSE;
ifRequeue_l_Tum then -Check Request_Again_l

ifRequest_Again_1'Count > 0 then
Ready _1 := TRUE;

end if;
else -- Check Request_ Again_ 2

if Request_ Again_ 2'Count > 0 then
Ready_2 :=TRUE;

end if;
end if;

end Release;

- If semaphoreS is not available to the calling task Calling_ Task, the entry Request will be requeue to Request_Again_2

entry Request_Again_1(Calling_Task: Ada.Task_Identification.Task_ID;
S : Semaphore_ Range) when Ready _1 is

Calling_Task_Priority: Task_Priority_Range := Get_Priority(Calling_ Task);
begin -- Request_ Again _1

if Request_ Again _1 'Count = 0 then
Ready_l :=FALSE;
Requeue_1_Tum :=FALSE;

end if;
if(not Locked(S)) and then High_Enough_Priority(Calling_Task, Calling_Task_Priority) then

-- Semaphore available for locking.
Locked(S) := TRUE;
Locking_Task(S) :=Calling_ Task;
Lock_ Time_Priority(S) :=Calling_ Task_ Priority;
Active_Priority(S) := Calling_Task_Priority;

else
requeue Request_ Again_ 2;

end if;
end Request_Again_1;

- If semaphoreS is not available to the calling task Calling_ Task, the entry Request will be requeue to Request_Again_l

entry Request_ Again_ 2(Calling_ Task: Ada. Task _Identification.Task _ ID;
S : Semaphore_Range) when Ready_2 is

Calling_ Task_ Priority: Task_Priority_Range := Get_priority(Calling_Task);
begin- Request_Again_2

ifRequest_Again_2'Count = 0 thl'n
Ready_2 :=FALSE;
Requeue_]_ Tum:= TRUE;

end if;
if (not Locked(S)) and then High_ Enough_Priority(Calling_ Task, Calling_ Task_Priority) then
-- Semaphore available for locking.

Lockcd(S) := TRUE;
Locking_Task(S) :=Calling_ Task;
Lock_ Time _Priority(S) := Calling_ Task _priority;
Active_Priority(S) := Calling_Task_Priority;

else
requeue Request_ Again _1;

end if;
end Request_Again_2;

end Semaphores;

9

