
High-Performance Operating System
Primitives for Robotics and Real-Time
Control Systems

KARSTEN SCHWAN, TOM BIHARI, BRUCE W. WEIDE,
and GREGOR TAULBEE

The Ohio State University, Columbus

To increase speed and reliability of operation, multiple computers are replacing uniprocessors and
wired-logic controllers in modern robots and industrial control systems. However, performance
increases are not attained by such hardware alone. The operating software controlling the robots or
control systems must exploit the possible parallelism of various control tasks in order to perform the
necessary computations within given real-time and reliability constraints. Such software consists of
both control programs written by application programmers and operating system software offering
means of task scheduling, intertask communication, and device control.

The Generalized Executive for real-time Multiprocessor applications (GEM) is an operating system
that addresses several requirements of operating software. First, when using GEM, programmers can
select one of two different types of tasks differing in size, called processes and microprocesses. Second,
the scheduling calls offered by GEM permit the implementation of several models of task interaction.
Third, GEM supports multiple models of communication with a parameterized communication
mechanism. Fourth, GEM is closely coupled to prototype real-time programming environments that
provide programming support for the models of computation offered by the operating system. GEM
is being used on a multiprocessor with robotics application software of substantial size and complexity.

Categories and Subject Descriptors: C.3 [Computer Systems Organization]: Special-Purpose and
Application-Based Systems-process control systems, real-time systems; C.4 [Computer Systems
Organization]: Performance of Systems-design studies; D.4.1 [Operating Systems]: Process
Management-multiprocessing/mu~tiprogrammming, scheduling; D.4.4 [Operating Systems]: Com-
munication Management-message sending; D.4.7 [Operating Systems]: Organization and
Design-real-time systems; D.4.8 [Operating Systems]: Performance-measurements; 5.7 [Com-
puter Applications]: Computers in Other Systems-real time, military, process control

General Terms: Design, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Light-weight processes, operating software, parallelism, robotics

This research was sponsored by National Science Foundation grant ECS-8307216 and by the Defense
Advanced Research Projects Agency (DARPA) under contracts MDA903-82-K-0058 and DAAE07-
84-K-R001 monitored by the Army Tank Automotive Command. The views and conclusions contained
in this document are those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S.
Government.
Author’s Address: Department of Computer and Information Science, Ohio State University, 2036
Neil Avenue Mall, Columbus, OH 43210.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1987 ACM 0734-2071/87/0800-0189 $01.50

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987, Pages 189-231.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F24068.24070&domain=pdf&date_stamp=1987-08-01

190 l Karsten Schwan et al.

1. INTRODUCTION

1.1 Parallel, Real-Time Operating Software

To increase the reliability and speed of operation, the embedded computer
hardware controlling modern robots and industrial control systems is becoming
increasingly complex. Typically, it consists of many interconnected computers
operating at multiple levels of control or supervising different mechanical or
electronic system peripherals. However, increased performance is not attained
by hardware improvements alone. The operating software controlling such robots
or control systems must exploit the possible parallelism of various control tasks
in order to perform the necessary computations within real-time and reliability
constraints.

Operating software has two attributes distinguishing it from other multicom-
puter or multiprocessor applications [16, 30, 32, 73,861. First, it consists of both
(a) control programs written by application programmers and (b) operating
system utilities as an integral part of the program. Such utilities are tailored to
the application’s needs. Such tailoring is due in part to the embedded hardware’s
limitations in memory and processing capacity. More important, it is necessitated
by the stringent real-time and reliability constraints that can be met only if (a)
and (b) are tailored jointly with respect to the target hardware and the control
tasks to be performed. Second, since embedded systems often are highly experi-
mental and are also subject to dynamic change, operating software changes must
be static, during software development and dynamic, at run time. For example,
dynamic software reconfiguration is necessary to attain high reliability and
continued high performance in the face of dynamically varying operating modes
[2, 501 or hardware configurations [26, 37, 59, 851.

1.2 Operating System Primitives for Real-Time Robotics Software
The efficient execution of operating software requires that programmers deal
with a variety of issues that arise for any parallel application, including resource
allocation [13,46,69], task scheduling [761, load balancing [121, and programmed
dynamic reconfiguration [2, 31, 371. Similarly, operating system primitives for
task control, intertask communication, and device operation are needed. How-
ever, additional operating system support is required:

-Operating software exhibits multiple grains of parallelism [32]. Therefore, the
operating system must support parallel application tasks of differing sizes,
ranging from small tasks executed at high rates and by necessity consisting of
a small number of instructions, to large tasks executed infrequently.

-Tasks must be schedulable periodically or sporadically [53], and they must be
scheduled, synchronized, and executed within strict time constraints.

-Task communication is time-critical, and tasks may make different assump-
tions regarding the model of communication used [84]. For example, some
tasks may tolerate the loss of individual readings from a sensor in order to
perform an operation asynchronously at the highest rate possible, whereas
other tasks may assume that individual messages never get lost. Thus, the
operating system must support multiple models of task communication.

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

High-performance Operating System Primitives l 191

-Communication and scheduling mechanisms must be configurable for a variety
of real-time hardware, possibly exhibiting hierarchies [51] and inhomogeneities
[24, 49, 621 in communication links and processors.

-For performance reasons, most current real-time systems contain minimal
operating system software. However, substantial operating system support
must be provided for long-lived, highly complex systems [26, 51, 621, since
static configuration methods [36] must be supplemented with methods for and
therefore operating system support for, dynamic adaptations of software to
varying hardware configurations and performance requirements.

The GEM operating system was constructed for robot-operating software. It
runs on special-purpose multiprocessors, including one embedded in a complex
robot, a six-legged mobile Adaptive Suspension Vehicle (ASV) able to navigate
rough terrain [50, 51, 521. GEM’s design and implementation are an attempt to
apply two principles to attain high run-time performance of operating software:

(1) development of somewhat application-specific operating system primitives
[23]; and

(2) design and implementation of these primitives for their efficient, shared use.

Specifically, regarding (2) and in contrast to the basic, multipurpose mechanisms
offered by other contemporary operating systems [15, 31, 421, the sharing of
GEM’s utilities is made efficient by their selection or parameterization for each
specific use.

-Programmers can select one of two different sizes of tasks, called processes
and microprocesses. For each task size GEM offers scheduling and task-
switching operations with costs commensurate with their sizes and acceptable
to relatively high-speed control tasks.

-GEM supports multiple models of communication with a mechanism
that is parameterized with respect to different interprocess communication
characteristics.

-GEM’s mechanisms can be configured for a variety of real-time hardware.

GEM is being used with ASV application software and has been tested with
industrial control software [67] and with a synthetic workload generator [71].
Thus GEM’s implementation addresses the control of individual, complex robots.
However, its mechanisms and design should also be useful for the operating
software of multiple robots [21, 24, 351 or manufacturing subsystems [67].

1.3 The Programming of Operating Software

In addition to the construction of GEM, the research reported in this paper also
explores two facets of the programming of operating software. First, since the
programming of parallel control systems is quite difficult, programmers are given
domain-specific programming support tools for writing parallel software. Specif-
ically, the STILE [78, 801 graphical program editor supports the generation of
real-time programs from high-level graphical descriptions, and GEM can directly
execute the programs generated with the STILE editor.

Second, since the need for adaptations of operating software adds complexity
to the programming process, the ISSOS [68] parallel programming system offers,

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

192 ’ Karsten Schwan et al.

high-level, non-graphical programming primitives for the specification, enact-
ment, and partial automation of program adaptations. Such adaptations are
defined as small software changes made statically during software development
or dynamically during software execution in order to realize performance or
reliability improvements. The aim of the ISSOS system is to facilitate program
adaptation and to hide selected adaptation decisions from application program-
mers so that they need not be experts in the target parallel hardware and its
operating system.

In the remainder of this paper, the ASV’s operating software (Section 3)
motivates GEM’s alternative models of, and constructs for, task scheduling and
communication (Sections 4 and 5). In Section 6, the multiprocessor hardware
and GEM’s implementation and performance are discussed. The programming
environments are described in Section 7.

2. RELATED RESEARCH

This work touches upon four different areas of research: operating systems as
being investigated by computer scientists in general and by researchers in the
real-time domain specifically; other research regarding legged vehicles; research
regarding the design and implementation of specific real-time systems in the
domains of robotics, manufacturing, and aerospace; and the programming of real-
time software.

With other operating systems written for multiprocessors or computer net-
works, GEM shares the notion that kernel-level system mechanisms should be
simple and efficient [5,11,58], yet parameterized [15,31,42] so each mechanism
can satisfy a variety of application requirements. For example, GEM’s parame-
terized communication facility directly supports multiple models of message
communication. This idea is related to the V system’s notion of k-reliable message
communications [111 between process groups and to other reported parameteri-
zations [15, 31, 421. However, it originated from our observations regarding the
programming and operation of robotic control software, which are similar to
those of Lee and Shin [41, 741.

As in other operating systems for multiprocessors [15, 17,31,75], GEM allows
processes to communicate both via shared memory and via messages. The use of
messages leads to increased portability [lo] of operating software, but their
exclusive use as in local area networks [ll] is not acceptable in GEM. That
would preclude very low-latency process interactions on shared information, such
as those required for the on-board terrain scanner of the ASV robot vehicle (see
the description of the ASV application in the next section) or those required for
servicing high-rate actuators.

GEM’s concepts are similar to those of other real-time operating systems [lo,
20, 491, including the operating systems of the HXDP multiprocessor [4], the
MAFT multicomputer [Bl], and SIFT [85]. However, GEM’s primitives focus on
its primary real-time application, which is the control of the ASV legged vehic1e.l
For example, while recent research in operating systems has been addressing the
general notions of lightweight user or kernel processes [7], GEM’s idea of a

’ Other examples of parallel, real-time operating software appear in [67, 711.

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

High-performance Operating System Primitives l 193

microprocess is less general and addresses its specific use for synchronous device
control. Namely, a microprocess is a small section of code that can be activated
and executed at high rates; it cannot be interrupted or suspended and therefore,
resembles an event handler as used in traditional operating systems.

Most research regarding legged vehicles and research in the ALV program [62]
has dealt with mechanical designs, computer architectures [34, 511, and control
and planning algorithms [50,52,66]. Programming and operating system support
have not yet been studied methodically, despite the fact that future plans for
such robots state that their computer hardware will consist of both shared
memory machines and networked computers, including inhomogeneous machines
(such as LISP machines used in high-level planning). One exception is Donner’s
[18, 191 design of a special-purpose programming language called Owl’ for
Sutherland’s six-legged walking machine [79]. Owl supports the definition of
processes and subprocesses that execute in sequence or concurrently and interact
by mutual invocation and shared memory. Such hierarchical process structures
are not supported in GEM, but are the topic of our current research [67]. Another
interesting aspect of the Owl language not addressed in GEM is its support of
multiple semantics of parameter passing. A comparative evaluation of the per-
formance of Owl with GEM programs is not appropriate, since Owl’s run-time
system assumes the use of a single processor for program execution.

Robot manipulators research concerns the design of control algorithms and
their inherent parallelism. Such work is relevant because it describes potential
applications for the GEM machine and contains ample evidence of the inherent
parallelism in robotics software. However, it has focused on the design of special-
purpose VLSI or board-based architectures for such algorithms. Such designs
include architectures for (a) the small grain parallelism in computationally
expensive operations (such as inverse kinematics and Jacobian computations)
[39, 571 or in data-intensive operations (such as vision processing [28]); (b) the
medium grain parallelism inherent in entire robotics systems or subsystems for
controlling a manipulator [l, 3, 43, 45, 821, a hand [55, 611, or subsystems
consisting of multiple actuators and sensors [9, 21, 26, 54,881; and (c) the large-
grain parallelism inherent in entire manufacturing systems [24, 351. Of the
applications described above, the medium-grain parallelism inherent in those
tasks can be implemented efficiently on GEM, as partly shown by implementa-
tions of a controller for a robot arm and conveyor [67] and of dynamic arm
controls [43]. For high-performance robot arm control, however, special-purpose
VLSI-based algorithm implementations are necessary [43].

The programming systems associated with GEM and described in Section 7
assume that real-time programs [77] consist of sets of synchronous or asynchro-
nous interacting real-time tasks that are structured hierarchically [22, 48, 701.
However, for reasons of simplicity, lack of memory, and performance, such
hierarchical structures must be mapped to the two-level structure consisting of
processes and microprocesses supported by GEM. Furthermore, those program-
ming systems cannot directly describe the higher level information concerning
the parts manipulated or the terrain traversed by the robot [29, 381.

’ This should not be confused with another language called OWL [83] that is entirely different.

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

194 ’ Karsten Schwan et al.

In comparison, Donner’s work regarding robot programming mainly addresses
the ease of programming of robot programs coupled with their efficient unipro-
cessor execution, whereas recent research by Korein at IBM [36] mainly addresses
the exploitation of parallelism in the application and hardware of real-time
control programs.

3. A REAL-TIME APPLICATION PROGRAM:
OPERATING A COMPLEX ROBOT

The Adaptive Suspension Vehicle (ASV) is a six-legged, three-ton vehicle pow-
ered by an internal combustion engine via hydraulic actuators (see Fig. 0). This
vehicle is operated via high-level commands issued by an on-board human
operator. These commands are translated into vehicle actions by extensive
operating software running on an embedded multiprocessor. Additional inputs
to the system’s operating software include an inertial reference system on the
body, pressure, velocity, and position sensors on the legs, and an optical radar
terrain scanner. The following discussion provides an overview of the major
subsystems of the operating software (see Figure 1).

The Co&ppit I/O subsystem provides the link between the human operator and
the ASV. It is composed of several processes, including:

-Cockpit Input (CI)-one GEM process, running at a rate determined by human
response bandwidth, typically several Hertz, accepts commands from the
operator, formats them appropriately, and passes them to Vehicle Motion
Planning (VMP) .

-Cockpit Display (CD)-one GEM process, running at a rate determined by
human response bandwidth and by the display device, typically several Hertz,
displays information on a periodic basis or on demand.

The Vehicle Control subsystem is reponsible for the stability and proper
movement of the vehicle as a whole. It is composed of several processes, including:

-Vehicle Motion Planning (VMP)-one GEM process, running at a rate deter-
mined by possible rates of change in body movements (body control band-
width), about 20 Hz, takes high-level commands from (CI), modifies them to
ensure stability of the body, determines the necessary leg velocities and sends
them to Leg Motion Planning (LMP), also sends commands for the desired
body position, velocity, and acceleration to Body Servo (BS).

-Body Servo (BS)-one GEM process, running at a rate determined by body
control bandwidth, about 20 Hz, takes information from Inertial Navigation
(IN) (VMP), calculates the necessary actuator pressures when the legs are in
the “support phase” on the ground and sends them to the Leg Servos.

The Leg Control, that is, subsystems (one for each leg) are responsible for the
movement of the individual legs. They are each composed of several processes,
including:

-Leg Motion Planning (LMP)-one GEM process per leg, running at about 20
Hz, determines the actual leg trajectories while they are in the air, or “transfer
phase,” and sends commands to corresponding (LS).

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

High-performance Operating System Primitives l 195

Inertial
Navigation I

Fig. 1. The ASV Robot’s operating
ware-subsystems.

-Leg Servo (LS)-one process per leg, each running at a rate determined by the
bandwidth of the hydraulic/mechanical system, typically about 100 Hz. The
Leg Servo processes form the feedback loops in the leg control systems,
combining the requested actuator pressures with feedback information from
leg sensors, and issuing commands to the hydraulic system.

The Inertial Navigation (IN) subsystem is composed of two GEM processes:
a high-frequency process (INH) running at about 20 Hz and a low-frequency

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

196 l Karsten Schwan et al.

e Model 1

-& Model 2

I VMP 1-d as 1

Fig. 2. The ASV Robot’s operating software-interaction examples.

process (INL) running at about 5 Hz. These processes jointly read the inertial
reference system, reconcile it with the position obtained by dead reckoning (i.e.,
the position deduced from previous commands to the machine), format the
information, and send it to (BS).

The Terrain Scanner subsystem consists of three GEM processes, each running
at about 2 Hz. These processes accept data from the optical radar terrain scanner,
convert it to fixed-earth coordinates, and store it in a terrain map. The data
stored are used by the Vehicle Guidance subsystem.

The Vehicle Guidance subsystem is composed of four GEM processes, each
running at about 1 Hz. These processes control body velocities and select
footholds when the vehicle is in terrain-following mode.

In addition to the periodic [53] processes above, several sporadic processes are
activated occasionally to support the computation, to collect test data for analysis,
and to handle errors, including:

-Data Log Collection (DLC)-one or more GEM processes that execute on
demand from an outside observer, collect traces of data from certain processes,
and pass these traces to an attached computer for analysis.

-Initialization (B-one global GEM process and one GEM process local to each
multiprocessor node, each of which executes only once at start-up time. These
processes initialize application-specific data structures.

Figure 2 shows a selected subset of the processes comprising the robot’s
operating software as well as their communication and control relationships. The
arrows represent data communication. While the precise meaning of each type

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

High-performance Operating System Primitives l 197

of arrow is elaborated in Section 5, here they indicate that processes interact
using elements of two distinct models of communication:

-A process may use as input the current values of various hardware sensors and
software variables and produce as output a set of current values. Inputs are
assumed to be always present. Output values overwrite the previous values.
Such processes are typically executed periodically, where the period is deter-
mined by the rates of change of the inputs. In Figure 2 for example, the LS
processes run periodically, read the current values of the leg position, velocity
and pressure sensors, and read the current values of the desired leg position,
velocity and pressure issued by the LMP and BS processes. The LS processes
then update the commanded positions, velocities, and pressures for the leg
actuators.

-A process may use as input discrete messages containing commands or data
values and produce such messages as output. Messages are queued up and
never overwritten. Such processes are typically executed when new input
messages arrive. In Figure 2, the CI process accepts commands from the
operator and sends discrete command messages to VMP. The CD process
receives discrete messages from other processes and displays the information
in them on the cockpit display.

In reality most of the processes use both models, as demonstrated by the VMP
process. It normally runs periodically, updating current values of commanded
position, velocity, and so on. When changing from one walking gait to another,
the VMP process sends discrete gait-change commands to many of the other
processes for synchronization purposes.

4. PARALLELISM AND SCHEDULING

The subsystems in the ASV application and the control tasks in those subsystems
differ widely in size. For example, because the Terrain Scanner (TS) subsystem
performs multiple control tasks, including interactions with the terrain scanner
and transformation and storage of the terrain data, it is represented as several
independently schedulable, asynchronous activities (GEM processes). These
GEM processes execute and communicate at moderate rates (2 Hz execution
rate) and jointly require the processing power of at least two Intel 8086 CPUs.
In contrast, the leg servo control (LS) task can be represented as a single activity
(GEM process) scheduled to execute at a very high rate (100 Hz) on a single
CPU. Internally, LS consists of two separable control tasks that share extensive
amounts of code and data. Only one of the control tasks is active at a given time,
depending on whether the leg is on the ground or in the air.

The coexistence of multiple, loosely interacting, larger activities (as in TS)
with tightly interacting, small activities (as in LS) motivates the support of two
different activity sizes in GEM-processes and microprocesses. A GEM process
may represent a larger control activity. It can be scheduled for execution at a
moderate cost in time and typically interacts loosely [32] with other processes.
For representation of activities that are activated frequently and interact tightly
with each other, a programmer may select a GEM microprocess, which is a

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

198 l Karsten Schwan et al.

separable control activity within a single GEM process. It may interact with
other microprocesses in the same or in a different process, and it can be activated
at a low cost in time.

GEM does not support the dynamic creation of processes, which is of limited
usefulness for the ASV and many other robotics application. Specifically, given
the high rate of execution (100 Hz) of the LS process, driving a single leg in the
robot vehicle suggests that the overhead of replacement of an unreliable or
crashed process by dynamic process creation (estimated at more than 2
milliseconds3) is too large. Such dynamic reconfiguration may be performed using
one or several statically created “buddy” processes [58] that sleep in operating
system queues until they are needed.

4.1 Processes

Process definition-A GEM process defines a single address space for a statically
defined set of control tasks. A process may be in any one of the following states.4
The various Asleep states are defined so that process actions can be time-
and/or event-driven:

Running currently executing
Ready available for execution but not currently executing
Asleep-T waiting until a time at which to resume execution
Asleep-W waiting until a “wakeup” call is received
Asleep-WorT waiting until either of the two previous events
Asleep- WandT waiting until both of the two previous events

The initial state of a process can be any of the states listed above (except
Running); the specific time until which a process initially sleeps must be
specified, if applicable; the final state of a process is a sleep state from which it
cannot be awakened.

The following scheduling information is maintained in the process control block
(PCB) of each process:

Deadline

Period

Priority

Specifies the time interval, measured from the time at which
it is made ready [53], within which the process should
complete the execution of all of its microprocesses that are
ready to run (if such microprocesses exist-see Section 4.2
for the definition of microprocess); this is used when the
“Deadline” mode is selected for the process scheduler (see
Section 6.2).
Specifies the process’ period of execution, that is, the num-
ber of time units between the times at which the process is
made ready to run; its value may again depend on the values
of its microprocesses’ periods; it is undefined if the process
is sporadic [531.
The scheduling priority of the process (higher priority pro-
cesses always run before lower priority processes).

3 This estimate is derived from timings of static process creation.
’ Actually, several other process states exist, but they are not visible to the user. See the Appendix.

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

High-performance Operating System Primitives . 199

TimeSlice The number of time units this process should be run before
it loses the CPU and another process of the same priority
is run. This is used when the RoundRobin mode is selected
for the process scheduler (see Section 6.2).

Process scheduling operations-The scheduling operations provided by GEM
allow processes to control themselves, and they allow higher level system or
application-dependent “scheduler” processes to control the actions of other
processes. Specifically, a process (when Running) can place itself into any of
the Asleep states by use of the operation:

GoToSleep (State, WakeTime)

“State” specifies the specific waiting state to be used and “WakeTime” specifies
the time at which the process should be awakened; if “State” is Asleep-W,
WakeTime is ignored. The counterpart of this operation is executed by other
processes:

Wakeup (Processld)

This operation has the following effects:

-If the given process is currently Asleep-W or Asleep-WorT, it will be made
Ready.

-If the given process is currently Asleep-WandT, it will be made Asleep-T.
-If the given process is currently Running, Ready or Asleep-T, the process

state is not changed.

The first Wakeup performed on a Running, Ready, or Asleep-T process is
not lost-GEM remembers this event until the next execution of GoToSleep by
the target process. However, subsequent WakeUps do not pend, they are dis-
carded. The purpose of the pending first Wakeup is to eliminate the possibility
of lost WakeUps due to race conditions. Appendix B contains a complete
description of GEM’s state transitions.

In addition to the GoToSleep operation executed by a process on itself,
application-dependent or operating system schedulers can control the execution
of a process by setting its scheduling parameters (timeslice, priority, deadline
etc.), by awakening it via the Wakeup operation and by forcing it to enter an
Asleep state using the operation:

PutToSleep (Processld, Mode, State, WakeTime)

where “ProcessId” is the name of the target process, “State” specifies the sleeping
state into which the target process should be placed, and “WakeTime” specifies
the time at which the target process should be awakened, if applicable.

“Mode” denotes the time at which the PutToSleep action should become
effective. Specifically, if “Mode” has the value “immediate,” then the PutToSleep
action becomes effective at the next possible scheduling point on the target
processor, regardless of the current state of the target process. That scheduling
point is defined as either the time of the next clock interrupt on the target
processor or the next execution of GoToSleep by an.y process on the target

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

200 - Karsten Schwan et al.

processor, whichever is first.5 If “Mode” is “deferred,” then PutToSleep does not
affect the target process until the target process executes its next GoToSleep.

Use of the simple scheduling operations-The ASV operating software makes
use of the GoToSleep, Wakeup, and PutToSleep scheduling primitives and of
the Period, Priority, and TimeSlice values in each process’ PCB. Deadline
scheduling is not currently being used in the ASV application, but is available in
GEM and is used in other real-time applications [76].

GoToSleep(Asleep-T, . . .) is used in the processes leg motion planning (LMP)
and leg servo control (LS). Both are periodic processes with period values adjusted
to the minimum frequencies with which leg actuators must be driven or com-
mands must be sent to LS, 100 and 20 Hz, respectively. In the outline of those
processes below, “Time” is a local variable recording current time set with the
GetTime system call. The value of the “Period” parameter is the value in the
Period field of the process control block. Comments are enclosed in curly
brackets. Additional detail concerning the computations in both processes is
given in Section 4.2.

LS Process:
{This process is scheduled at priority 6)
(Its period value is initialized to 10 milliseconds)
GetTime(Time);
while true do

begin
(main computation}
Time := Time + Period;
GoToSleep(Asleep-T, Time);
end

LMP Process:
{This process is scheduled at priority 5)
(Its period value is initialized to 50 milliseconds}
GetTime(Time);
while true do

begin
{main computation)
Time := Time + Period;
GoToSleep(Asleep-T, Time);
end

The LS process is run at a higher priority than LMP. Therefore, LS, which is a
fairly small task with a short period, may interrupt the execution of LMP, which
is a larger task with a longer period, if both processes are on the same processor.
In the current process-to-processor assignment, this is the case.

Regarding the PutToSleep operation, GEM’s distinction of “immediate” from
“deferred” scheduling actions is motivated by the volatile nature of time-critical
control actions involving mechanical or electronic equipment. Their interruption
at arbitrary times by “immediate” PutToSleep actions can result in equipment
damage or data inconsistencies between cooperating processes. Usually “deferred”
and “immediate” actions are not mixed; “deferred” actions occur during normal

’ Since processors cannot interrupt each other, the scheduling point is the next time that the process
scheduler on the target processor can gain control conveniently.

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

High-performance Operating System Primitives * 201

ASLEEP-WandT

ASLEEP-W

ASLEEPWorT

Fig. 3. The Asleep State lattice.

system operation, whereas “immediate” actions are used to handle exceptional
conditions.

The effect of multiple PutToSleep actions in the time between two scheduling
points of a single target process is an accumulation of the “State” and “Wake-
Time” parameter values stated in those actions. As with Wakeup operations,
actions are accumulated rather than discarded in order to eliminate inconsistent
state changes due to race conditions.

Currently the ASV application does not use the PutToSleep operation while
in normal operating modes. During testing however, the PutToSleep operation
is used to activate and deactivate particular subsystems for debugging.

Scheduling operations and state changes-Figure 3 shows the relationships
between the various Asleep states that form a Zattice.6 When combining the
current requested Asleep state of a process with a new Asleep state requested
via the PutToSleep operation, the resulting state is the join of the two states.
The resulting WakeTime is the maximum of the two original WakeTimes. The
result of this “join/maximum” accumulation of states is that the target process
always sleeps at least as long as has been requested by the callers of PutToSleep
(or GoToSleep).

For example, two “State” values Asleep-T (with WakeTime = 1000) and
Asleep-W specified in successive, “immediate” PutToSleeps on the same target
accumulate to Asleep-WandT (with WakeTime = 1000). However, “deferred”
and “immediate” PutToSleeps on the same target process are accumulated
separately, since those actions must become effective at different times. A
complete description of the effects of accumulated PutToSleep actions in con-
nection with the various states of target processes appears in Appendix II.

4.2 Microprocesses

Microprocess definition-Much as multiple operations can be defined and invoked
for single abstract objects [40], multiple streams of execution, called micropro-
cesses, can be defined and activated in a single GEM process.

’ A lattice is a set (e.g., set of states) with a partial ordering (shown by the arrows in Figure 3) which
has certain properties [65]. The join of two states is the unique element found by following the arrows
upward from the two states until they meet. For example, the join of Asleep-T and Asleep-W is
Asleep-WandT, while the join of Asleep-WorT and Asleep-T is Asleep-T.

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

202 l Karsten Schwan et al.

A GEM microprocess is small compared to concurrent objects in other systems
[40, 441. It consists of a sequence of instructions and associated data structures
and shares address space with other microprocesses in the same process. In
contrast to notions of lightweight processes now being developed for computer
workstations [7], a microprocess resembles an event-handler in that it is always
run to completion. As a result the microprocesses within a single process are
executed sequentially.

A microprocess is executed when the single microscheduler defined statically
as part of the process selects it for execution. Such selections (scheduling
decisions) are made using the following information:

Local variables

Inputs/Outputs

Scheduling information

Execution states

The current values of local variables main-
tained by the microscheduler.
The current values of inputs and outputs as-
sociated with each microprocess and known to
the microscheduler.
A Priority indication, a Deadline that is the
time interval within which the execution of the
microprocess should be completed and a Period
of execution.
Microprocesses may be marked ready to run if
they have been Poked, that is, if some external
indication of need for their activation has been
shown.

Microprocess scheduling operations.-Current implementations of abstract ob-
jects in computer networks [40,44] typically assume that the processes providing
an object’s operations are scheduled independently of the processes using these
operations. As a result, an invocation of an operation in an abstract object is
typically implemented as the deposit of an invocation message in a buffer
associated with the appropriate operation. This model of autonomously executing
processes and microprocesses can be implemented in GEM using appropriate
microschedulers and the data communication facilities described in Section 5.
However, for prompt real-time response to requests for services implemented by
microprocesses, GEM provides a simple, high-performance mechanism similar
to “blocking” mechanisms in other multicomputer operating systems [31].
Namely, the services of a microprocess can be requested by poking its unique
“control” input. Such “Poke” operations will wake up the microprocess’ micro-
scheduler if it is not currently running.

In contrast to invocations of abstract objects, the “control” action associated
with the poking of a microprocess is separated from the communication of data
values. This decoupling is intentional and increases the performance of the Poke
operation, allowing microprocesses to cause others to perform computations or
update output values with or without new input data values.

The control inputs and outputs of microprocesses are entities that contain
the values “on” or “off.” Each microprocess refers to its control and data (see
Section 5) inputs and outputs with local names for ports. The interconnections
of ports are specified separately so that they can be changed without changes to
ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

High-performance Operating System Primitives l 203

port names. As a result, microprocesses can be assembled into cooperating groups
and dissembled easily. Each output control port [84] of a microprocess can be
connected to multiple input control ports of other microprocesses, and a single
input control port can receive “Pokes” from any number of output control ports.
The operation

Poke (Pot-M)

updates a data structure in the target GEM process that keeps track of the
Poked control ports of its microprocesses. If the GEM processes containing the
microprocesses to whose control input ports the output control port “PortId” is
connected are not currently Ready or Running, then the Poke operation also
performs Wakeup operations on the target processes. As with the Wakeup
scheduling function for processes, multiple Poke operations on a single control
port are lost if they appear with a frequency higher than their frequency of
service. Only one Poke is remembered.

While the value in a control port is set to “on” with the Poke operation, the
port “PortId” is read and reset by the microscheduler with the nonblocking
operation

Value := Test-and-Reset (Portld)

When this operation completes, “Value” contains the current value in the port,
and the port has been reset to “off” if it was set to “on.”

If there is no work to be done by any of the microprocesses within a process,
then the process’ microscheduler may use the following operation to allow the
process to go to sleep until there is more work to be done:

Sleep-If-Not-Poked (State, WakeTime)

This operation checks to see if a Poke has occurred since the process was last
awakened. If so, it returns immediately, allowing the process’ microscheduler to
continue scheduling microprocesses. If no Poke has occurred, the operation
executes a GoToSleep using the State and WakeTime parameters.

Sample microscheduler with microprocesses-Consider a slightly revised ver-
sion of the LS process in Section 4.1. In this version LS has two data input ports:
the first input contains commands issued by LMP; the second input contains
commands issued by BS. If the leg is on the ground, then LS accepts commands
from BS. If the leg is in the air, then LS accepts commands from LMP. If neither
BS nor LMP have issued commands, then LS proceeds with its default action.
LS always issues output commands to its leg’s actuator.

The default subtask and the two subtasks in LS that interaction with LMP
and BS can be described as three microprocesses with a microscheduler. These
microprocesses are activated by the microscheduler. Specifically, the microsched-
uler makes scheduling decisions using the Period values of the microprocesses
and the “Poke” signals generated by LMP and BS each time a command is
issued. Upon selection of a microprocess using the algorithm shown below, the
microscheduler removes the Poked indication and runs the microprocess to
completion.

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

204 l Karsten Schwan et al.

Upon microprocess completion, control returns to the microscheduler which
continues operating until all Poked microprocesses have been run. Then the
microscheduler suspends its process for at most the interval of time indicated by
the value of Period in its process control block. This value may be set, for
example, to the minimum of the microprocesses’ Period [53] values, so the LS
process will issue commands to the leg actuators with the minimal frequency
required, even in the absence of commands from BS or LMP.

The use of Asleep-WorT as the “State” parameter in the SleepIfNotPoked
operation allows Micro-Process-l and Micro-Process-2 to be scheduled by Poke
operations and Micro-Process-3 to be scheduled periodically (in the absence of
Poke operations). “Port-i” is a boolean-valued variable set by the Poke operations
addressed to control port i; the variable “NextTime” is used for time maintenance:

LS Process:
(This process is scheduled at priority 6)
GetTime(NextTime);
while true do

begin
if test-and-reset (Port-l)

then Micro-Process-l
else if test-and-reset (Port-2)

then Micro-Process-2
else

Micro-Process-3;
NextTime := NextTime + Period;
Sleep-If-Not-Poked (Asleep-WorT, NextTime);

end

Micro-Process-l and Micro-Process-2 perform calculations and activate the
appropriate actuators (for brevity, the default actions taken by Micro-Process-3
are not shown below):

Micro-Process-l:
(leg is on the ground]
Get commanded actuator pressures from BS command data port and activate the
appropriate hydraulic actuators.

Micro-Process-2:
{leg is in the air)
Get commanded leg acceleration, velocity and position from LMP command data port.
Activate the appropriate hydraulic actuators using feedback from actual leg velocity,
position and actuator pressure sensors.

The performance of microprocesses and “Poke” operations are compared to
the performance of processes and “Wakeup” operations in Section 6.2.

5. TASK COMMUNICATION: THREE MODELS

Independent of task size, three different models of task interaction can be
identified in the ASV software and in other real-time software [41, 71, 74, 841.
The “control” interactions between tasks occurring in those models can be
implemented using GEM’s process-scheduling primitives described in Section
4.1. The “data” interactions required for each model are implemented using a
single message communication facility adaptable by parameterization. The three
models and GEM’s communication primitives are described next.
ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987

High-performance Operating System Primitives l 205

Model 1: Asynchronous execution with data loss-In this model, tasks execute
asynchronously with respect to each other. Tasks generate outputs continuously
based on their inputs, which are always assumed present. Communications
between tasks can occasionally be lost, but tasks operate correctly as long
as their inputs have not aged beyond statically defined tolerances known to
the application programmer. In the ASV software, this model of communica-
tion is used for the sharing of data between asynchronously executing control
tasks within subsystems, such as body and leg servo control (BS and LS), as
illustrated by the thick black arrows in Figure 2. In addition, the model is used
to decouple the operation of independent subsystems. Other researchers have
suggested the use of this model at a low level of control in real-time software
[8, 41, 841.

Model 2: Synchronous execution without data loss--In this model, tasks execute
synchronously, where execution is driven by the acceptance of individual items
of input (e.g., a receipt of a service request and its parameters), which are not
always assumed present. Inputs and outputs cannot be lost without jeopardizing
the correctness of system operation. This model of communication is one of the
most frequently used models supported by the communication facilities of net-
work and multiprocessor operating systems [ll, 311. In the ASV software, it is
used to communicate commands and associated data to various processes, during
initialization or during execution when such commands should not be lost. In
Figure 2, the use of this communication model is indicated by the thin black
lines.

Model 3: Synchronous or asynchronous operation with possible loss of aged
data-A hybrid of models 1 and 2, this model of task interaction assumes that a
fixed-size set of recent output items of one task is available as input to other
tasks. This set of output items is explicitly ordered in time. Synchronous
operation permits prevention of loss of such aged data by disallowing outputs
issued by sending tasks, whereas asynchronous task execution results in loss of
aged data if instantaneous execution rates of communicating tasks differ too
much. In the ASV software, this model is used for data logging, as indicated by
the thick gray arrows in Figure 2.

5.1 The GEM Communication System

Basic facilities-In GEM the three models of communication are implemented
for processes and microprocesses using mailboxes and envelopes. A mailbox
consists of a pool of envelopes (in implementation, buffers of equal size), some
of which are free and some of which are in a queue of envelopes currently in use.
Envelopes are reusable containers for messages and are explicitly acquired and
returned as part of the message-passing paradigm. A letter is an envelope into
which a message has been written. Each envelope pool is associated with exactly
one mailbox for reasons of buffer addressing and performance in queue manage-
ment. Prior to sending a message, a process acquires an envelope from the
mailbox using the operation:

GetEnvelope (Mailboxld, Envelope, Status)

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 198’7.

206 l Karsten Schwan et al.

The “MailboxId” is a unique name for the mailbox. “Envelope” is the buffer
returned as a result of the call. “Status” reports the success or failure of envelope
acquisition.

Once an envelope is acquired, a user writes into it to construct a letter and
then sends the result to its mailbox:

SendLetter (Mailboxld, Envelope, Status)

“Status” returns error or completion codes regarding the successful deposit of
the “Envelope” in the mailbox “MailboxId”.

An envelope containing a letter is received from a mailbox with

Getletter (Mailboxld, Envelope, Status)

The letter’s envelope must be released explicitly after reading with the operation

DiscardEnvelope (Mailboxld, Envelope, Status)

The communication operations listed above copy references to envelopes
(sending “by reference”) rather than copying their letter contents. The operations
assume that the readers and writers can share memory. The operations are
therefore relatively fast and are particularly useful for transferring large mes-
sages.

For communication “by value,” the following composite operations assume
that writers possess “SourceEnvelope”s whose contents are first copied into
intermediate envelopes automatically acquired and released as part of the mailbox
operations and then copied into readers’ “DestinationEnvelope”s:

SendLetterCopy (Mailboxid, SourceEnvelope, Status)
GetLetterCopy (Mailboxld, DestinationEnvelope, Status)

These operations send (get) a single letter to (from) the mailbox “MailboxId”
from (into) the envelope “SourceEnvelope” (“DestinationEnvelope”) explicitly
acquired by the user. When readers and writers cannot share memory, these “by
value” operations must be used.

Implementation of the communication models-GEM provides three models of
communication by parameterizing the mailbox communication facility described
above. A parameterized GEM mailbox consists of two data structures with access
parameters that describe the actions taken when those data structures are
manipulated. The two data structures are

-Free Pool-a pool of envelopes not currently in use, and
-Letter Queue-a queue of tilled envelopes (letters) sent to this mailbox but not

yet received.

The mailbox parameters are as follows:

-Stic&--This parameter controls the action taken when an empty queue of
letters is read using the GetLetter operation; either the most recent letter
written with the SendLetter operation is returned, even if it has been read
before, or a failure status is issued. In other words this parameter controls
whether the most recently sent letter “sticks” to the mailbox regardless of the
.number of times the mailbox is read.

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

High-performance Operating System Primitives l 207

-QueueFuZZ-If the letter queue is full, then the writer of a letter is either issued
a failure status, or the oldest letter in the letter queue is discarded and replaced
with the new letter.

-PoolEmpty-If a new envelope is acquired using the operation GetEnvelope
when the pool of available envelopes is empty, then one of two actions can be
taken: either a failure status is returned, or the oldest letter in the letter queue
is discarded in order to reuse that envelope.

-MuximumQueueLength--The maximum length of the letter queue.
-EnvelopeSize-The size in bytes of each envelope in the pool.
-NumberOfEnvelopes-The total number of envelopes in the mailbox.

The three models of communication are implemented as follows:

---Model l-The queue is made “sticky” (controlled by the parameter Sticky),
so a reader always receives the most recent letter written. To ensure that
new information can always be entered into the mailbox, the oldest letter
is discarded if a writer cannot find an unfilled envelope (PoolEmpty) or
if the mailbox queue is full (QueueFull). MaximumQueueLength is set to 1.
Neither readers nor writers will ever be denied envelopes (letters) if
NumberOfEnvelopes is at least NumberOfReaders + NumberOf Writers + 1.

-Model 2-Failure status is returned in all “special” cases, namely, when an
empty queue is read or when GetEnvelope is performed on an empty pool, and
when writers find a full queue. MaximumQueueLength is generally set to
NumberOfEnvelopes.

-Model 3-Readers receive failure status when the queue is empty. In contrast
to Model 2, the mailbox can always be written by discarding the oldest letter
in the mailbox, both if the envelope pool is empty or if the letter queue is full.
MaximumQueueLength is set to the maximum number of most recent letters
to be saved. Typical interactions with a mailbox in this model consist of writers
continuously attempting to write into the mailbox while readers inhibit writes
by locking the mailbox occasionally (using operations not explained in this
paper) in order to retrieve a consecutive set of letters from the mailbox; such
a consecutive set of letters provides a history of the activities of writers within
a period of time.

5.2 Microprocess Communication

While communications between microprocesses can potentially follow any of the
models above, Model 1 has proven most useful because it approximates the
“analog” model of computation shown useful for low-level control [8]. In this
model, asynchronously executing microprocesses continuously use the current
values on their input “lines” to compute new values for their output “lines,” and
a changed signal on any “line” must be visible to all connected microprocesses.

The mailbox paradigm does not seem directly suitable for implementing “lines”
between microprocesses because the implementation of a microprocess should
not change when its interconnections with other microprocesses change. For this
reason data ports [75,78,80,84] are introduced. Data ports can connect multiple
microprocesses residing in the same or in different processes in the same fashion
as the control ports used by the Poke operation described in Section 4.2. This

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

208 l Karsten Schwan et al.

extension of the mailbox mechanisms automatically maps the local name of a
data port in a microprocess to the global names of mailboxes that represent this
port or the data ports connected to it. In the current implementation, a single
“sticky” mailbox is associated with each input data port of a microprocess.

The operations defined for port-based communication are Read and Write.
The operation

Read (Portld, Data)

reads the value in the data input port “PortId” into the variable called “Data”.
Since port-based communication uses Model 1, a data value is always assumed
present in the port and will not be destroyed as a result of the read operation.
Therefore, a data input port can be implemented using a “sticky” GEM mailbox,
regardless of the number of outputs to which this input is connected and
regardless of the number of microprocesses reading from this port.

The operation

Write (Portld, Data)

writes the value in the variable “Data” to the output data port “PortId”. As
required in Model 1, the operation uses the value in “Data” to overwrite the
contents of all input ports bound to this output. We are considering the optimi-
zation of port-based communication so that it performs better than mailbox-
based communication for small fan-outs for input ports.

5.3 Shared Memory

In addition to the mailbox and port communication mechanisms previously
discussed, GEM allows users to define and access areas of shared memory (where
the hardware topology permits). Such areas of shared memory are always created
as lockable objects and are addressed in the same fashion as mailboxes. Synchro-
nization of access may be done using the GEM operation:

TestAndSetFlag (SharedObjectName)

Alternatively and for improved performance, users can make direct use of
TestandSet operation available in assembly language. Shared memory is par-
ticularly useful when working with large arrays of data, for example, image data
from the terrain scanner in the ASV.

6. IMPLEMENTATION OF GEM

This section addresses implementation issues relating to the computer architec-
ture for which GEM is used and to GEM’s application domain, real-time control
programs.

6.1 Multiprocessing Hardware

The GEM operating system has been implemented on a hierarchical multi-
processor system. This hardware is typical of computers embedded in electro-
mechanical, real-time systems. Program development tools reside on a separate,
attached machine offering secondary storage and user interface facilities, and the
interconnection structure of the embedded system is inhomogeneous [67] and is
tailored to the specific application. In the current multiprocessor, processors are
ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

Hydraulic
Safety I/O

lnertlal
Reference
System 110

Leg #f6 l/O

Leg #5 I/O

Leg #4 I/O

Leg #3 l/O

Leg %2 l/O

Leg #l I/O

Cockpit I/O

High-performance Operating System Primitives l 209

I

r P9

r P0

+L-
+F P4

+t 2 Pl

PO +Q

Parallel

I

I

Parallel

Optical Radar
Terrain Scanner
I10

Graphics
Display
I/O

Fig. 4. The ASV Robot’s computer hardware.

partitioned into two clusters connected with at least one fully duplexed (&bits
each direction) parallel link. Within each cluster shared memory is accessed via
a Multibus (see Figure 4). Thus the interconnection topology has three levels:
local for processes on the same processor; intracluster for processes in the same
cluster (able to share memory); and intercluster for processes on different clusters
(unable to share memory).

The processors are Intel 86/30 single-board computers, each containing an
Intel 8086 microprocessor (8 MHz clock, 750 ns Basic Instruction Cycle), an
8087 floating point coprocessor, and 128K-256K bytes of memory (750 ns cycle
time) partitioned into locally and globally accessible sections. Devices (displays,
sensors, actuators) are attached to individual computers.

A 6-processor cluster is dedicated to the terrain scanner, graphics display, and
vehicle guidance, and an 11-processor cluster runs vehicle control, leg control,
and inertial navigation. The sample devices shown in Figure 4 are the optical
radar terrain scanner, the graphics display, the inertial reference system, the
hydraulic safety system, and the cockpit displays and controls.

6.2 Operating System Implementation and Performance

Distribution of GEM-The GEM machine is defined by the operating system
operations accessible to application programs. It consists of a small, replicated
kernel implementing basic operations invoked synchronously, and shared oper-
ating system utilities invoked asynchronously and executed concurrently with

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

210 l Karsten Schwan et al.

the invoking processes [31]. The basic operations of GEM are the process and
microprocess scheduling and communication facilities described above and some
small, fast utilities such as GetTime. Including default-interrupt handlers, the
kernel occupies about 20K bytes of code and data.

The shared utilities include user interface, I/O, and monitoring facilities, which
are implemented as processes, instances of which may reside on one or more
processors. One important example of such shared utilities are the intercluster
communication servers which are attached to each end of the intercluster parallel
link(s). These servers act as surrogates for processes in each cluster wishing to
schedule, or communicate with, processes in the other cluster.

Processes and process scheduling-Process scheduling is done on a per processor
basis using priority levels. Specifically when a processor’s currently running
process executes a GoToSleep operation (or is PutToSleep), the next process to
be run is chosen by that processor’s scheduler from its own ReadyQueue. The
choice made depends on the scheduler’s mode, which is RoundRobin or Deadline.
In RoundRobin mode, the next process is the one with the highest priority; it is
run for an interval of size TimeSlice, as specified in its control block, and it is
placed at the end of the ReadyQueue (at its priority level) after its execution.
The running process is preempted only if a higher priority process arrives in the
ReadyQueue during its execution. The preempted process is placed back on the
ReadyQueue ahead of all other processes at its priority level. If preemption does
not occur and if at the end of its timeslice a running process remains the only
one at its priority in the ReadyQueue, then its execution is continued for another
TimeSlice interval.

A process scheduler operating in Deadline mode performs priority-based sched-
uling as well. However, in this mode all processes in each priority level are run
in “shortest deadline first” order, and they are run to completion (their TimeSlice
parameter, if any, is ignored).

The data structures used for process scheduling are designed to minimize the
execution times of commonly performed operations. For example, to minimize
search time within a processor’s ReadyQueue, it is implemented as an array of
circular queues-one for each priority level. This allows the queue operations
Insert, Delete, and RoundRobin to be done in constant time in RoundRobin
mode and in linear time in Deadline mode. The resulting low latency of
ReadyQueue operations is shown by measurement of the “Delete” operation,
cf. below. This measurement is taken (using a logic analyzer) in RoundRobin
mode on a single processor:7

Operation Local time

ReadyQueue dequeue 260 ps
Restore state 105 PLs

Total Ready -+ Running 365 ps

’ As with all other timings appearing in this paper, the granularity of the timings is 5 microseconds
for times less than a millisecond and 50 microseconds for longer times. Furthermore, timings were
performed under “low load” conditions. That is, no extraneous processing or I/O was being done. For
comparison, execution times for “typical” 8086 instructions (jmp, mov) are approximately 2 micro-
seconds; a procedure call without parameters requires 15 microseconds.

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

High-performance Operating System Primitives l 211

Table I. Cost of Process Switching

Operation Local time

EventTable/ReadyQueue 305 /.Ls
Restore State 105 ps

Asleep-W + Running

Save State
ReadyQueue dequeue

410 ps

140 /.ls
260 ps

Running + Asleep-W 400 ps

As with the ReadyQueue, each processor’s SleepQueue is organized such that
its latency of access is minimized too. Specifically, each SleepQueue is a heap,
with processes nearest their wake time at the root, that allows queue operations
to be done in logarithmic time. In addition, a link to the ReadyQueue and an
index into the SleepQueue maintained in each PCB permit rapid access to those
queues when processes are blocked or awakened.

The processing done for each scheduling call is distributed among the proces-
sors involved by use of an EventTable residing in each machine and recording
the scheduling actions to be taken for all processes on that machine. This table
consists of a queue and an array. When performing a scheduling action, the
(intracluster or local) process writes into the array indexed by ProcessId. If this
is the first event for the process since the last scheduling point, then the ProcessId
is also placed into the queue. At this point, the operation completes in the
originating process, which results in very low latencies for performing Wakeup
operations:

Operation Local Intracluster
Wakeup 165 j~s 180 /.ls

The remaining processing required for Wakeup operations is done by the
target processor’s kernel. At each scheduling point (when its clock interrupt
occurs or when one of its processes performs a GoToSleep operation), the kernel
checks the EventTable and updates the states of all processes whose ProcessId’s
are in the queue. As a result, the cost of a GoToSleep operation is higher than
that of a Wakeup, as demonstrated by the following measurement of a GoToSleep
attempted by a process when a Wakeup is pending:

Operation Local time

Attempted GoToSleep 580 ps

This time is a composite of the time required to save the state of the currently
running process (140 microseconds), process the local EventTable with a nonlocal
entry, and perform an aborted enqueue on the ReadyQueue (335 microseconds),
and restore process state (105 microseconds).

Similarly, overheads stemming from EventTable manipulation ensue for a
process’ state change from Asleep-W to Running, but not for a state change
from Running to Asleep-W: (see Table I).

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

212 l Karsten Schwan et al.

Table II. Process versus Microprocess Overheads

Process Microprocess

Scheduling and Descheduling
Respond to WakeUp\Poke

Execution
output

Data
Control

Total

580 ps (810 /AS)

-
Wakeup: 180 ps
760 /is (975 ps)

140 ps (950 ps)
-

-
Poke: 245 ps (425 PCS)
395 ps (1375 ps)

Note that a processor’s EventTable does not record the current states of its
processes. Instead, the table records the states in which the processes would be
if scheduling actions were performed immediately rather than at discrete sched-
uling points. As a result, the actual states of the processes will “catch up” with
the EventTable’s “requested states” only at those points in time.

Comparison of processes and microprocesses-To understand the trade-offs of
using processes versus microprocesses for representing real-time control tasks,
the differences in functionality and performance of process activation by use of
a Wakeup operation and microprocess activation by use of a Poke operation
have to be considered.

Assuming the existence of multiple microprocesses that interact with Poke
operations, the total time spent by a target microprocess when responding to
a Poke operation can be decomposed into the following components: (1) sched-
uling time-activation of the corresponding microprocess by the target’s micro-
scheduler in response to a Poke operation; (2) execution time of the target
microprocess; (3) output time-activation of the next microprocess (which may
include execution of a Wakeup operation on the process containing that micro-
process); and (4) descheduling time-deactivation of the target microprocess.

In GEM as in other process-based systems [ll], having ignored the fact that
Poke operations carry an indication of the type of service desired, such function-
ality can also be attained by (1) process activation in response to a Wakeup
performed by another process, (2) execution of the target process, (3) execution
of a Wakeup operation on the next process, followed by (4) deactivation of the
target process.

The following table presents the costs of Poke operations and microprocess
activation and deactivation overheads and contrasts them with the respective
costs incurred for processes. In the table, the cost of deactivation of the previous
activity is added to the cost of activation of the next activity, thereby combining
(1) and (4). The scheduling and output times each are listed for processes and
microprocesses. In the larger process scheduling time, the target process is not
currently running. Similarly, the larger microprocess scheduling time includes
the cost of waking the microprocess’ parent process. The larger Poke time
includes the cost of performing a Wakeup on the microprocess’ parent process.
In all cases the use of intracluster operations is assumed (see Table II).

As demonstrated by the measurements above, a Poke operation is more
expensive for the originating microprocess than a Wakeup. However, the total
ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

High-performance Operating System Primitives l 213

overheads associated with “poking” a microprocess in a Running process (395
microseconds) differ substantially compared to waking up a Running process
(760 microseconds). Thus the use of microprocesses has substantial benefits
when the programmer can determine a high likelihood of encountering a target
process in a Running state, as is the case with bursty task interaction or if the
start times and periods of interacting real-time tasks overlap due to the require-
ments of the sensors or actuators controlled by those tasks.

The following simple analysis derives “p,” the minimum probability of encoun-
tering a Running target process that is required to make the use of micro-
processes preferable to the use of processes. Again ignored is the fact that the
Poke operation has additional functionality compared to the Wakeup operation
such that it carries an indication of the type of service desired:

(1) Costs using processes:
180 + 580 x p + 810 x (1 - p)

(2) Costs using microprocesses:
245 x p + 395 + (1 - p) + 140 x p + 950 x (1 - p)

The solution to this equation is about p = 0.49. Therefore if there is at least
a 50 percent chance of finding the microprocess’ scheduler running, then a
microprocess implementation is faster on the average than an equivalent
process implementation.

Given this low required value of “p,” it appears that even programmers with only
scant knowledge of the application’s run-time characteristics should be able to
make good use of microprocesses.

7’aslz Communication-naming-Two naming problems arise for task commu-
nication in the multiprocessor architecture. First at the hardware level, no two
processors have the same “view” of the address space of the shared memory. As
a result, the shared memory on each board has two sets of addresses: one when
accessed by the local processor and another when accessed from other processors.
Second, the data ports and their interconnections used by microprocesses must
be mapped to GEM mailboxes, which are the underlying communication facility.
Both problems are handled in a similar fashion, by maintaining addressing and
connection tables in shared memory. For the first problem, the mailbox mecha-
nism maintains a MailboxAddressTable in each processor that contains the
appropriate addresses of all mailboxes accessible to processes on the processor.
For the second problem, the binding of each input port is recorded to a mailbox.
In addition, the port-addressing mechanism maintains a list of the input mailbox
addresses connected to each output port, so Write operations can be mapped
properly.

Task communication-comparison to shared memory-Mailbox-based com-
munication is not appropriate for sharing large amounts of information, as with
the terrain map shared by different processes in the Terrain Scanner subsystem
in the ASV.

The basic overheads for sharing information via shared data versus messages
are given by descriptions of the costs of (1) GEM’s lock and unlock operations

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

214 l Karsten Schwan et al.

Table III. Trade-offs in Mailbox Location-Intracluster

Operation Local

GetEnvelope 155 jls
Transfer of 87 bytes 260 ps
SendLetter 180 /.LS
Other processing 95 ps

SendLetterCopy (87 bytes) 690 ps

GetLetter 185 ps
Transfer of 87 bytes 260 PCS
DiscardEnvelope 160 ps
Other processing 80 ps

GetLetterCopy (87 bytes) 685 ps

Intracluster

160 ,us
335 ps
190 fis

95 j.ls

780 /LS

200 ps
335 ps
165 Ps

80 ps

780 ps

on shared memory with (2) the TestAndSet and Write operations available in
assembly language with (3) a single zero-length message:

Operation cost

TestAndSetFlag 80 ps
ResetFlag 80 ps
TestAndSet 10 ps
Write 5 PS
GetLetterCopy (0 bytes) 445 ps*

In the best case, the direct use of shared memory improves access to shared data
by a factor of thirty. Furthermore, in the ASV application, shared memory must
be used in some places due to restrictions in available memory that preclude the
copying of data.

Task communication-mailbox location-The trade-offs regarding the locations
of processes and mailboxes are demonstrated by the timings below, comparing
messages being sent (received) to (from) a local and an intracluster mailbox.
Bus contention9 and memory contention are not considered in these timings,
measured in microseconds (see Table III).

As evident from the measurements in Table III, mailbox locations within a
single cluster of the GEM hardware do not affect performance severely if
contention does not exist and message sizes are relatively small. But intercluster
operations across the parallel link connecting the two clusters carry significant
overheads due to the low speed of the parallel bus (0.1 Mbps) and the extra
processing and buffering overhead incurred by use of link server processes in
each cluster (times are in microseconds). (See Table IV.)

The comparatively good performance of the intercluster Wakeup operation is
due to the small amount of information sent across the link.

’ This number is computed by deducting from the total time for GetLetterCopy (780 ps) by the time
required to transfer its contents across the intracluster bus (335 rs).
9 Bus contention appears insignificant for the hardware and application programs described in this
paper.

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

High-performance Operating System Primitives

Table IV. Trade-offs in Mailbox Location-Intercluster

Operation Intracluster Intercluster

l 215

Wakeup 180 ps 1500 PCs
Link transfer (87 bytes) 335 ps 6500-7000~s
SendLetterCopy (87 bytes) 780 /.ls 8150 ps
GetLetterCopy (87 bytes) 780 ps 10550 ps

Portability of the GEM machine and of its programs-GEM and its applica-
tions can be fairly easily ported to multicomputer hardware with the following
characteristics:

-GEM and its applications can execute on multiple, linked, shared-memory
multiprocessors, where each multiprocessor must offer sufficient amounts of
global memory directly accessible to all of its processors (required for repre-
sentations of mailboxes and other data structures shared by the GEM kernels
on each processor), in addition to the private, local memory each processor
may possess.

-Machine code instructions equivalent to indivisible “TestAndSet” must be
available within each multiprocessor so that GEM’s synchronization constructs
can be implemented.

-Timing devices providing a somewhat accurate notion of global time must exist
within each multiprocessor (the current architecture uses a single global clock
signal).

-Processes executing under GEM on different multiprocessors can only assume
the availability of mailbox-based communications and process-to-process
scheduling primitives. Shared memory across multiprocessors is not supported.

GEM does not make any other hardware assumptions. In particular inter-
processor interrupts are not assumed to exist. When ported, the following
machine-dependent components of GEM have to be rewritten [lo]:

-Interrupt handling, including the access functions to the timing device.
-I/O instructions implemented as interrupt handlers for specific devices-

in GEM, byte-serial and block-serial interfaces exist for such I/O instruc-
tions, where the latter are implemented using GEM’s message communication
mechanism.

-The saving and restoring of process state.
-The invocation of operating system operations by application code. In the

current version of GEM, the operating system and all application code execute
in the same protection domain. As a result, all synchronous operating system
operations are invoked by simple procedure calls. Future versions of GEM may
be stored in ROM or PROM memory, thereby protecting the operating system
code.

7. SOFTWARE DEVELOPMENT SUPPORT FOR GEM

Operating software should be constructed from reusable “software piece-parts”
that can be “snapped together” to form more complex parts [84] and adapted to
fit the changing requirements of the parts being assembled [71]. While the

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

216 l Karsten Schwan et al.

potential benefits of this methodology have been recognized, their realization is
difficult due to a lack of computer-based programming tools that support software
assembly and adaptation.

Two specific characteristics of GEM’s application domain add to the need for
support tools. For one, programmers of robotics applications should not
be required to become expert users of parallel machines. They should instead be
given domain-specific tools that concentrate on the functional descriptions of
their programs and not on descriptions catering to the parallel hardware or its
operating system. At the same time, those software descriptions must result in
efficient, executable operating software. Therefore, hardware-specific implemen-
tation decisions and optimizations must be done-but with minimal programmer
interaction. Second, software adaptations [2, 371 must be supported because the
performance requirements of different versions of the operating software vary
and reconfigurations of the experimental hardware and the attached mechanical
or electronic systems occur. Categorized as dynamic and static, such program
changes include static changes in the allocation of hardware resources given a
fixed implementation of parallel operating software, and changes in implemen-
tation of operating software given a fixed-program specification. Examples of
dynamic changes in the ASV software are the adaptation of operating software
when operating modes are changed or when exceptional conditions occur.

The STILE graphical programming system [78, 841 and the ISSOS program-
ming environment [68] are being constructed to test hypotheses regarding the
utility of domain-specific programming tools and of support for program adap-
tation. At their lowest levels, both systems use the same basic model of concurrent
software. They assume that software is constructed from components called basic
objects that contain procedures and data structures written in a sequential
language [70] (currently Pascal and C). The systems diverge in their manipulation
of these components and in the user interfaces presented.

7.1 STILE-Domain-Specific Tools

The STILE system interacts with users graphically. In this case, basic objects
contain programmer-defined application code and generic communication code.
In terms of GEM, each basic object describes the set of microprocesses (see
Section 4.2) in a GEM process. These microprocesses communicate with other
basic objects using data and control ports.

Basic objects are separately compiled and placed into a library in object code
format. Separate testing of basic objects and their reusability when snapped
together to form complex parts are possible because their contents and their
communication are designed according to a precise methodology.” The interpre-
tation of port-to-port connections and the protocols for using them to those
defined by Model 1 in Section 5. All code within a basic object is written regardless
of that with which the object interacts, implying that all port identifiers are local
names, and the interconnection language is separate from the language used
within the basic object.

lo In this sense, STILE’s approach follows the spirit of UNIX-UNIX is a Trademark of AT&T Bell
Laboratories-pipes and filters.

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

High-performance Operating System Primitives * 217

The STILE graphical programming system is the basis for building a variety
of domain-dependent abstract concurrency and communication models on top of
the basic model provided by GEM (i.e., Model 1 of Section 5). The goal is that
systems-oriented programmers provide application-domain experts-in this case,
control engineers-with models that closely resemble familiar ones such as the
analog model mentioned in Section 5.2. The STILE system is designed to present
other models to application programmers such that they are unaware of some-
thing more basic as a foundation. In this way STILE provides true abstraction of
communication models, and not simply aggregation or hierarchy as available in
other superficially similar approaches [14, 47, 63, 64,871.

In sum, the graphical programming of application software for GEM proceeds
as follows:

-A graphical editor, used to design operating software components allows
traversal of the hierarchy of components and facilitates abstraction of the
communication protocols among them.

-Components are designed, tested individually, and finally compiled and placed
into a library. Each component also contains a microscheduler, the code for
which can be generated automatically, since the underlying abstract model of
a component is consistent.

-The interconnection information is augmented with run-time details such as
processor assignments for the processes and time-slices.

-Command files and initialization code are created and executed automatically
to link, load, and initialize the operating software built from the primitive
components.

-The program executes on the target machine.

The present status of STILE is this: two prototype graphical editing and
program development environments have been completed and a third is under-
way. The first was built before GEM and is no longer in use, but did provide
some insights into how the system should ultimately work. The second [80] was
integrated with GEM and used as outlined above, but does not support many of
the features needed for design of large systems.

The current effort seriously attempts to construct a practically useful environ-
ment. Its user interface is faithful to what we have termed the engineering design
metaphor [78]. A software system is composed from parts that are described by
catalog pages and blueprints. A catalog page contains specifications of the
external behavior of each part organized into catalogs for easy reference and use.
A blueprint (STILE graph) explains the implementation of the part by describing
the relationships among component parts.

STILE understands there are three kinds of parts. It does not know what they
mean, only about how they can interconnected; its understanding is purely
syntactic.

--Boxes represent the active agents in a program, in this case the GEM processes
or groups of them.

-Ports are the connection points on boxes for binding to other boxes, in this
case GEM’s control and data ports.

-Links are extension cords to connect pairs of ports together.

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

218 l Karsten Schwan et al.

Fig. 5. Blueprint for robot control. Input)- ; ;) Arm

No inherent meaning is assigned to blueprints, so the STILE environment can
be used to design software using a wide variety of methodologies and graphical
languages. What the parts mean and how they work when “compiled” into
executable code is up to a postprocessing program that takes the structural
description of the parts (blueprints) as input. When the blueprints describe
software for GEM, this postprocessor interprets interconnections among the data
and control ports of the basic building blocks as described in Section 5.2.

If communication models other than those provided by GEM are used in
blueprints, they may be constructed purely syntactically from basic objects using
the STILE editor. Any of the components, including ports and links, can be built
up from other parts using a variety of syntactic constructs, in which case the
translation to an executable GEM program can be performed with a generic
postprocessor that “expands” composite parts down to the level of basic objects.
But for efficiency it may be better to offer additional low-level communication
primitives in GEM and write a special-purpose graph compiler for blueprints
having interpretations other than GEM’s Model 1.

The simple problem described next [33,80] provides an introduction to STILE
and illustrates the potential value of STILE in building complex systems from
simpler partsll It has a hierarchy of components but does not show the abstrac-
tion of communication protocols.

Consider a robot arm with two degrees of freedom X and Y where stepper
motors control the motion along each axis. The arm is controlled by the user’s
input of absolute coordinates for the arm’s new position. The user must wait
until the arm is at that position before entering another destination.

Figure 5 shows the topmost level of the robot controller hierarchy. The system
contains two major subsystems, an input subsystem and a robot arm subsystem.
For brevity, this discussion focuses on details of the “Arm” box. Briefly, the
“Input” box allows a user to enter new absolute arm coordinates. When the box’s
input control port is poked, it prompts the user for new X and Y coordinates for
the arm. It has two data outputs, one for the X and one for the Y coordinate. In
addition, it has an output control line it pokes when the data ports have their
new values.

I1 We have used the methodology suggested by this example to design more complex real-time control
software, and have investigated at least a half-dozen other interpretations of STILE graphs ranging
from analog computation to queueing networks to module interconnection.

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

High-performance Operating System Primitives l 219

Fig. 6. Blueprint for arm.

The “Arm” box has an input control port and an output control port. When
“Arm’s” input control port has been poked, it reads the coordinate values on its
input data ports and positions the robot arm there, then pokes its output control
port.

“Input’s” data ports are connected to “Arm’s” data ports. Further, “Input’s”
output control port is connected to “Arm’s” input control port and vice versa.
Given this configuration (shown in Figure 5), the robot control system works as
follows. After its input control port is poked, “Input” fetches new arm coordinates
from the user. The coordinates are written to the output data ports and the
output control port is poked. Since these are connected to the input ports on
“Arm,” the robot arm will be moved to the requested position. Finally, “Arm”
pokes its output control port. Because this port is connected to “Input’s” input
control port, “Input” fetches a new position for the robot arm from the user and
the process repeats itself.

Figure 6 shows the blueprint of “Arm”; notice the ports along the box’s exterior
correspond to its icon in Figure 5. When its input control port is poked, “Delta”
converts the values on its input data ports from absolute coordinates to relative
coordinates, writes the relative coordinates to its output data ports, and pokes
its output control port. When “Motor’s” input control port is poked, it gets the
distances to move the arm from its input data ports, moves the arm to the
specified location, and pokes its output control port upon completion of the
move.

For brevity, the details of “Motor” (Figure 7) are not described. Figure 8 shows
a basic part, “Delta” that corresponds directly to a GEM process and is not
further decomposed into more primitive parts. It contains a single microprocess;
in general there is one for each input control port. The “init” code is executed
only once at system startup, and initializes the robot arm and the internal
variables x0 and ~0. l2 The “talc” microprocess performs the translation from
absolute coordinates to relative coordinates, writes the results to its output data
ports, and pokes its output control port.

The STILE graphical programming system is not a necessary part of the GEM
operating system. Its parts are built on top of GEM, and use GEM’s process

I2 This design is not the best strategy for initialization because “Delta” is not reusable. It has been
chosen for simplicity of explanation.

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

220 ’ Karsten Schwan et al.

Fig. 7. Blueprint for motor.

\/ \/
I X Y II

II int max = 1000, xa, ya, x0, y0;
init: (Write (dx, -max);

Write (dy, -max); II

talc:

Poke (done);
xO=yO=O;}
Read (x, xa);
Read (Y, ya);
Write (dx, xa - x0);
Write (dy, ya - ~0);
Poke (done);
xO=xa;yO=ya;)

Fig. 8. Blueprint for delta.

I dx dy
\/ \/

scheduling and port communication primitives. Therefore, modification and
augmentation of the programming support system can be done independently of
GEM. The implementation of the run-time system has been decoupled from that
of the programming support system, even though conceptually the two are highly
intertwined. Decoupling has been achieved by cooperative design of GEM, during
which attention was paid to the aims of the programming system as well as run-
time efficiency and the other traditional objectives.

7.2 ISSO-Tools for Program Adaptation

Static or dynamic program tuning for performance improvement has been ad-
dressed by other researchers in real-time or parallel systems, most notably by
past work regarding multicomputer program construction [6, 25, 721 and by
recent work regarding the dynamic reconfiguration of real-time systems [2, 371.
Furthermore, research concerning reusable software [27] and software transfor-
mation [60] are related to this topic.

Our research differs from such work in that we are assuming programmers are
explicitly involved in the process of program tuning [69] due to the complexity
of the tuning actions performed. Specifically, the support for program adaptations
offered by the ISSOS system consists of (1) language primitives with which
adaptations may be stated, (2) a descriptive model and database suitable for
representation of the program being adapted and the adaptations being per-
formed, and (3) compile-time and run-time support for making decisions regard-
ing adaptations and performing them [89].

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

High-performance Operating System Primitives l 221

Since static and dynamic adaptations of operating software can involve changes
to code, data, and resource allocation, the descriptive model and database must
contain (1) information about software structure and semantics typically main-
tained at compile-time, and (2) information regarding software execution
typically available at run-time. This requires the integration of programming
environment and operating system to a degree not present in current systems. A
novel software tool in the ISSOS system called an adaptation controller provides
such integration by defining and controlling the interface between operating
system and programming environment. The resulting system for program adap-
tation consists of three parts:

-A programming environment supporting the design and implementation of
adaptable operating software; this environment has knowledge of the parallel
structure and detailed syntax and semantics of the operating software.

-An adaptation controller able to cooperate with both the programming environ-
ment and the operating system to effect static or dynamic software adaptations.

-Run-time and monitoring system extensions of the operating system provid-
ing the basic information and mechanisms for static and dynamic software
adaptation.

As with STILE, multiple prototypes of the ISSOS system have been con-
structed. The initial prototype which predated GEM, was constructed using the
experimental syntax-directed editor generator systems developed as part of the
Gandalf project at Carnegie-Mellon University [56]. Its run-time system was
built for a network of UNIXTM machines [68]. A more sophisticated system is
now being constructed that will interface to both a redesigned network run-time
system and an extended version of GEM.

A subset of the new ISSOS system for use with GEM is now in the final stages
of construction [89]. Descriptions of the program components being adapted in
this subset are maintained in a database by the programming environment and
used by the adaptation controller. This database contains information about the
software and hardware entities (e.g., processes, microprocesses, mailboxes,
processors, memories and communication links) and about the relationships
between them (e.g., access of processes to mailboxes, mapping of processes to
processors, mapping of mailboxes to memories). It has been implemented in
LISP and runs on a SUNTM workstation attached to the GEM machine, the
multiprocessor.

Parallel, adaptable programs for GEM currently are written on the workstation.
Their construction involves the creation of modules of sequential code for the
process and mailbox entities and their placement into a library. In addition
entities and relationships describing the desired program configuration are en-
tered into the database, along with information about the current hardware
configuration.

The adaptation controller, also running on the workstation, takes this infor-
mation and generates commands to link the appropriate program components
into a set of loadable modules. The multiprocessor is then loaded and the program
is run.

While the program is running, data concerning its execution such as processor
loads, process execution-times, mailbox access frequencies are collected by the

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

222 ’ Karsten Schwan et al.

Memory1 Memory2

Processor1 Processor2

Fig. 9. A simple software/hardware configuration.

monitoring system embedded in GEM and are stored as entities/relationships in
the database. The adaptation controller first makes adaptation decisions based
on analyses of monitoring data, for example, recognition of unbalanced processor
loads and then enacts those decisions. Program adaptations may include changes
in the mapping of software components to hardware components and alterations
of the software structure itself (see the example below).

Adaptation enactment involves making changes to the entities and relation-
ships in the database. These changes activate action routines [56] attached to the
entities and relationships that perform the actual modifications to the software
components and interconnections described by the entities and relationships.

The adaptation controller has compile-time and run-time access to the entity/
relationship database and may execute complex queries on the data, producing
specific views [71] of the concurrent program. These views contain exactly the
information required for performing particular types of adaptations. For example,
Figure 9 shows a small software/hardware system. An adaptation of Mailbox1
that decides whether to move it from Memory1 to Memory2 may take the
information shown in Figure 10 and compile the views shown in Figure 11. The
first view shows the current loads on the links (with Mailbox1 and Memoryl).
The second view shows hypothetical loads assuming Mailbox1 is moved to
Memory2. From these views it can be seen that total data access time for Mailbox1
would be lower if it were moved to Memory2.

Entities may be classified by type. For example, BubbleSortType and Shell-
SortType may be subtypes of SortType. There may be multiple instances of a
type in the actual application program; ShellSort and ShellSort. may be two
processes of type ShellSortType. An entity may describe groups of components;
Figure 12 shows diagrams of an entity representing a process and of an entity
representing a triple-modular-redundant software subsystem providing the same
functionality. The adaptation controller may choose to replace a single copy of
the process with the TMR subsystem if higher reliability is needed.

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

High-performance Operating System Primitives l 223

I

PROCESS-MAILBOX Relationship

PROCESS

Process1
Process2
Process3

MAILBOX

Mailbox1
Mailbox1
Mailbox1

FREQUENCY

10 Hz
25 Hz
50 Hz

I I I

PROCESSOR-MEMORY-LINK Relationship

PROCESSOR

Processor1
Processor2

Processor1
Processor2

MEMORY LINK BDWDTH

Memory1 Llnkl 1.0 Mbyte/s
Memory1 Link2 0.5 Mbyte/s

Memory2 Link3 0.5 Mbyte/s
Memory2 Llnk4 1.0 Mbyte/s

Fig. 10. Sample entity and relationships.

I Link Loads

(with Mailbox1 on Memoryl) I

LINK

Link1
Link2
Link3
Link4

28000 byte/s
40000 byte/s

(with

LINK

c Link1
Link2
Llnk3
Link4

Link Loads

Mailbox1 on Memory?)

28000 byte/s
40000 byte/s

Fig. 11. Multiple views of mailboxl.

At the current time, the prototype system described here performs adaptations
directed toward two goals: fault-tolerance and real-time response, that is, meeting
deadlines. Application programmers may provide multiple versions of software
subsystems, as in the TMR example above, as well as reliability and deadline
constraints. Application-independent heuristics provided by the system choose
the appropriate versions for inclusion into the software configuration. The system
also provides heuristics to map the software components to the appropriate
hardware components. Provision has not yet been made for allowing application
programmers to specify application-dependent adaptations. That problem is
being studied with the extended system now being constructed [68].

As with the graphical tools, the ISSOS system is built on top of the basic GEM
primitives. Specifically, its monitoring and run-time system employs GEM’s
basic communication primitives and its code implementing dynamic program
adaptations resides in GEM processes. However, a few low-level monitoring and
load-balancing primitives had to be added to the GEM system. In addition GEM
has been extended to allow the direct, run-time representation of higher-level
entities in terms of objects [40, 671.

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

224 l Karsten Schwan et al.

:j:)
Process

Fig. 12. Single process and corresponding TMR subsystem.

8. CONCLUSIONS, STATUS OF RESEARCH, AND FUTURE RESEARCH

The GEM system described in this paper has been implemented and is being
used with the operating software of the ASV vehicle. Prototypes of both program-
ming environments described in Section 7 have been implemented. As with most
operating systems in active use, additions to GEM are being constructed, such
as enhanced monitoring facilities, new device drivers, and most important, more
direct support for the object model used in the ISSOS system [67, 681.

Interesting topics in operating systems research regarding GEM include:

-Determination of the different representations of objects useful in real-time
applications, including representations that use single versus multiple pro-
cesses or lightweight processes, and the semantics of object invocation required
for such applications [67].

-The appropriate use of the inhomogeneous communication links existing in
embedded computer systems, as exemplified by the multibus and parallel bus
connections coexisting in the ASV hardware. As shown by the high overheads
of the intercluster operations (see Section 6.2), it is doubtful that the network
server paradigm commonly used in inhomogeneous computer networks will
result in acceptable real-time performance.

-The support of inhomogeneous computer systems within real-time systems, as
exemplified by the LISP machines now being used for high-level planning
tasks in the ALV project [62] and by special vision-processing equipment now
being constructed for the ASV.

-The automation of task scheduling, both statically and dynamically. Algo-
rithms improving the results of Stankovic [76] are being developed.

Other research with GEM concerns its use for additional real-time applications,
such as hand control, now being investigated jointly with the Department of

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

High-performance Operating System Primitives * 225

Electrical Engineering at The Ohio State University, and its use for nonreal-
time applications, such as computer graphics. We are currently implementing a
parallel scanline conversion algorithm on GEM’s multiprocessor to which a
framebuffer has been connected. We intend to investigate the changes in GEM’s
operating system primitives that might be required for such applications.

Future research concerning STILE and ISSOS mainly concerns the investi-
gation of a common metaphor for graphical and adaptable programs. Toward
that end we are experimenting with the graphical display of alternative or
multiple program views.

Current experimentation with GEM and with operating software is being
conducted in the Parallel Real-Time Systems Laboratory (PARTS) at The Ohio
State University. This laboratory consists of several SUNTM workstations con-
nected via an EtherNet network, an eight- and a six-node multiprocessor running
GEM, and an Intel iPSC hypercube [73]. The real-time equipment in this
laboratory now includes a robot arm, a conveyor, and a vision system. To
investigate the use of parallelism in Artificial Intelligence applications, we are
now adding a BBN Butterfly shared memory multiprocessor to the laboratory.

APPENDIX

Process State Transitions

The GEM process scheduling mechanism is implemented as an event-driven
finite state machine. Each process is in one of several states (shown below).
Events cause a process state to change. Since processes may change state only
at specific scheduling points (See Section 4.1), the “current state” mentioned
below is actually an idealized state. The actual states of all processes are updated
to their idealized states at scheduling points.

A process may be in any one of the following states:
1. Running
2. Running And Wakeup Pending
3. Ready
4. Ready And Wakeup Pending
5. Asleep-T
6. Asleep-T And Wakeup Pending
7. Asleep-W
8. Asleep-WorT
9. Asleep-WandT

The “Wakeup Pending” states correspond to the “remembered” Wakeup
described in Section 4.1.

The events recognized by GEM are

1. WakeTime Reached-The time a sleeping process is waiting for has
arrived.

2. WakeUp(ProcessId)
3. GoToSleep(Asleep-T, WakeTime)
4. GoToSleep(Asleep-W, -)
5. GoToSleep(Asleep-WorT, WakeTime)

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

226 l Karsten Schwan et al.

Table V. Process State Transitions

EVENT

WakeTime Reached

WakeUp(...) RUP

GTS(. . . . :.sLep-T I...)

GTS(. . . . Asleep-W I...)

GTS(. . . . Asleep-I+‘orT I...)

GTS(. . . . Asleep-WandT ,...)

PTS(. . . . Asleep-T ,...)

PTS(. . . . Asleep-W ,._.)

PTS(. . . . Asleep-WorT ,...)

PTS(. . . . Asleep-WandT ,...)

Context Switch From CPU

Context Switch To CPU

TP

FU

RU

T

TP

RU

RU

T

ReP

Re Re W ReP

ReP RuP ReP TP Re Re T TP

T

W

WoT

WaT

TP T T T WaT T WaT TP

Re W W WaT W W WaT T

Re WoT WoT T W WoT WaT TP

T WaT WaT WaT WaT WaT WaT T

Re

RuP RU

NOTE: PTS - PutToSleep. GTS - GoToSleep
Blanks represent transitions that cannot occur.

6. GoToSleep(Asleep-W and T, WakeTime)
7. PutToSleep(ProcessId, Mode, AsleepT, WakeTime)
8. PutToSleep(ProcessId, Mode, Asleep-W, -)
9. PutToSleep(ProcessId, Mode, Asleep-WorT, WakeTime)

10. PutToSleep(ProcessId, Mode, Asleep-WandT, WakeTime)
11. Swap Process Out Of CPU-A running process is made ready (e.g., when

a time-slice is up).
12. Swap Process Into CPU-A ready process is made running (when some

other process has been swapped out).

The actions taken when servicing an event are shown in Table V. A new state
is determined from the current state of the process and the event. In cases where
there are two WakeTimes (e.g., if the current state is “Asleep-T until Tl” and
the event is “PutToSleep(. . . , Asleep-WandT, T2)“), the resulting WakeTime
is the maximum of Tl and T2. Immediate and Deferred PutToSleeps are

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

High-performance Operating System Primitives l 227

accumulated separately, as described in Section 4.1. When a process executes a
GoToSleep, the single accumulated Deferred PutToSleep is executed.

ACKNOWLEDGMENTS

When GEM was being constructed, the ASV robotics project was led by Professor
Robert McGhee in the Department of Electrical Engineering at The Ohio State
University. The robot’s computer hardware and application software were and
are being implemented by Dennis Pugh, Eric Ribble, and Mark Patterson of
Adaptive Machine Technologies Inc., to whom we are thankful for many inform-
ative discussions regarding robotics software. D. Orin in the Department
of Electrical Engineering and his graduate students have been helpful to us
regarding the development of our notions concerning operating software and its
use in robotics. Many graduate student members of the ISSOS research group
in Computer and Information Science helped in the design and implemen-
tation of the GEM operating system, including Prabha Gopinath, Ben Blake,
Win Bo, Sharad Rastogi, Sanjiv Taneja, Jim Matthews, R. Subramanian, and
V. Jawantheeswaran.

REFERENCES

1. AHMAD, S. Real-time multiprocessor based robot control. In Proceedings of the IEEE Znterna-
tional Conference on Robotics and Automation (San Francisco, Calif., Apr. 1986). IEEE, New
York, pp. 858-863.

2. BARHEN, J. Hypercube concurrent computation and virtual time architecture for robotic appli-
cations. In Workshop on Special Computer Architectures for Robot Control, Proceedings of the
IEEE International Conference on Robotics and Automation (San Francisco, Calif., Apr. 1986).
IEEE, New York, Extended abstract.

3. BARHEN, J. Robot inverse dynamics on a concurrent computation ensemble. In Proceedings of
the ASME Computers in Engineering (Boston, Mass., Aug. 1985). ASME, pp. 415-429.

4. BHATT, D. Bus performance experiments on a real-time distributed computer system. In
Proceedings of the Real-Time Systems Symposium (Arlington, Va., Dec. 1983). IEEE, New York,
pp. 41-50.

5. BIRREL, A. D., AND NELSON. B. J. Implementing remote procedure calls. ACM Trans. Comput.
Syst. 2, 1 (Feb. 1984), 39-59.

6. BLOOM, T. Dynamic module replacement in a distributed programming system. PhD thesis,
MIT/LCS/TR-303. Laboratory for Computer Science, Massachusetts Institute of Technology.
Mar. 1983.

7. BROOKS, E. D. A multitasking kernel for the C and Fortran programming languages. Tech.
Rep. UCID-20167, Lawrence Livermore National Laboratory, Sept. 1984.

8. BROWN, M. E., AND WEIDE, B. W. Automating process-to-processor mapping under real-time
constraints. In Proceedings of the 1984 Real Time Systems Symposium (Austin, Tex., Dec. 1984).
IEEE, New York, 1984, pp. 145-150.

9. CARLOW, G. D. Architecture of the space shuttle primary avionics software system. Commun.
ACM 27, 9 (Sept. 1984), 926-936.

10. CHERITON, D. R., MALCOLM, M. A., MELEN, L. S., AND SAGER, G. R. Thoth, a portable real-
time operating system. Commun. ACM 22, 2 (Feb. 1979), 105-115.

11. CHERITON, D. R., AND ZWAENEPOL, W. The distributed V kernel and its performance for
diskless workstations. In Proceedings of the 9th Symposium on Operating System Principles
(Bretton Woods, N. H., Oct. 1983). ACM SIGOPS, 1983, pp. 128-139.

12. CHOU, T. C. K., AND ABRAHAM, J. A. Load balancing in distributed systems. IEEE Trans.
Softw. Eng. SE-f?, 4 (July 1982), 401-412.

13. CHU, W. W., HOLLOWAY, L. J., LAN, M.-T., AND EFE, K. Task allocation in distributed data
processing. Computer Magazine 13, 11 (Nov. 1980), 57-70.

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

228 l Karsten Schwan et al.

14. CONCEPCION, A. I., AND ZEIGLER, B. P. Distributed simulation of distributed system
models. Tech. Rep. CSC-82-016, Wayne State Univ., Dept. of Computer Science, Detroit, Mich.,
Dec. 1982.

15. Cox, G., CORWIN, W. M., LAI, K. K., AND POLLACK, F. J. A unified model and implementation
for interprocess communication in a multiprocessor environment. In Proceedings of the 8th
Symposium on Operating System Principles (Asilomar, Calif., Dec. 1981). ACM, New York, 1981,
pp. 44-53.

16. CROW, F. C. A more flexible image generation system. Computer Graphics 16, 3 (July 1982),
9-18.

17. CROWTHER, W. ET AL. The butterfly parallel processor. IEEE Computer Architecture Technical
Committee Newsletter (Dec. 1985), 18-45.

18. DONNER, M. D. The design of Owl: a language for walking. In Proceedings of the SZGPLAN
Symposium on Programming Language Issues in Software Systems (June 1983). ACM, New York,
1983, pp. 158-165.

19. DONNER, M. D. Control of walking: local control and real-time systems. PhD thesis, CMU-CS-
84-121, Dept. of Computer Science, Carnegie-Mellon Univ., Pittsburgh, Pa., May 1984.

20. DRUMMOND, M., MCMULLEN, C., AND VASUDEVAN, R. Packrat-a real time kernel for distrib-
uted systems. In Proceedings of the 2nd Real-Time Systems Symposium (Dec. 1982). IEEE, New
York, 1982, pp. 151-154.

21. DUPOURQUE, V., GUIOT, H., AND ISHACIAN, 0. Towards multiprocessor and multi-robot con-
trollers. In Proceedings of the IEEE International Conference on Robotics and Automation (San
Francisco, Calif., Apr. 1986). IEEE, New York, 1986, pp. 864-870.

22. FAVERJON, B. Object-level programming of industrial robots. In Proceedings of the IEEE
International Conference on Robotics and Automation (San Francisco, Calif., Apr. 1986). IEEE,
New York, 1986, pp. 140661411.

23. Fox, G. C., AND KOLAWA, A. Implementation of the high performance crystalline operating
system in Intel IPSC hypercube. Tech. Rep. Hm247, Caltech Concurrent Computational Program
and Physics Dept., Jan. 1986.

24. GAGLIANELLO, R. D., AND KATSEFF, H. P. A distributed computing environment for robotics.
In Proceedings of the IEEE International Conference on Robotics and Automation (San Francisco,
Calif., Apr. 1986). IEEE, New York, 1986, pp. 1890-1896.

25. GEHRINGER, E. F., JONES, A. K., AND SEGALL, Z. Z. The Cm* testbed. IEEE Computer Magazine
25, 10 (Oct. 1982), 40-53.

26. GIFFORD, D., AND SPECTOR, A. EDS. The space shuttle primary computer system. Commun.
ACM 27, 9 (Sept. 1984), 874-900.

27. GOGUEN, J. A. Parameterized programming. IEEE Trans. Softw. Eng. SE-IO, 5 (Sept. 1984),
528-543.

28. GROSS, T., KUNG, H. T., LAM, M., AND WEBB, J. WARP as a machine for low-level vision. In
Proceedings of the IEEE International Conference on Robotics and Automation (St. Louis, MO.,
Mar. 1985). IEEE, New York, 1985, pp. 790-800.

29. HOPCROFT, J. E. The impact of robotics on computer science. Commun. ACM 29, 6 (June
1986), 487-498.

30. JEFFERSON, D. R. Synchronization in distributed simulation. In Proceedings of the ASME
Computers in Engineering (Boston, Mass., Aug. 1985). ASME, 1985, pp. 407-413.

31. JONES, A. K., CHANSLER, R. J., DURHAM, I., MOHAN, J., SCHWAN, K., AND VEGDAHL, S.
StarOS, a multiprocessor operating system. In Proceedings of the 7th Symposium on Operating
System Principles (Asilomar, Calif., Dec. 10-12, 1979). ACM, 1979, pp. 117-127.

32. JONES, A. K., AND SCHWARZ, P. Experience using multiprocessor systems: a status report.
ACM Comput. Sure. Z2,2 (June 1980), 121-166.

33. KERRIDGE, J. M., AND SIMPSON, D. Three solutions for a robot arm controller using Pascal-
Plus, Occam, and Edison. Softw. Pratt. Elcper. 14, 1 (Jan. 1984), 3-15.

34. KLEIN, C. A., AND WAHAWISAN, W. Use of a multiprocessor for control of a robotic system.
Znt. J. Robot. Res. 1, 2 (Summer 1982), 45-59.

35. KLOTZ, T. H., PHILLIPS, R. G., SPRATTLING, R. L., AND SUTHERLAND, H. A. Real-time
performance evaluation of local area networks used in automated manufacturing systems. In
Proceedings of the IEEE International Conference on Robotics and Automation (San Francisco,
Calif., Apr. 1986). IEEE, New York, 1986, pp. 1723-1730.

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

High-performance Operating System Primitives l 229

36. KOREIN, J. U., MAIER, G. E., TAYLOR, R. H., AND DURFEE, L. F. A configurable system
for automation programming and control. In Proceedings of the IEEE International Con-
ference on Robotics and Automation (San Francisco, Calif., Apr. 1986). IEEE, New York, 1986,
pp. 1871-1877.

37. KRAMER, J., AND MAGEE, J. Dynamic configuration for distributed systems. IEEE Trans.
Softw. Eng. SE-II, 4 (Apr. 1985) 424-436.

38. KRIECMAN, D. J. ET AL. Computational architecture for the Utah/MIT hand. In Proceedings of
the IEEE International Conference on Robotics and Automation (St. Louis, MO., Mar. 1985).
IEEE, New York, 1985, pp. 918-924.

39. LATHROP, R. H. Parallelism in manipulator dynamics. Znt. J. Robot. Res. 4, 2 (Summer 1985),
80-102.

40. LAZOWSKA, E. D., LEVY, H. M., ALMES, G. T., FISHER, M. J., FOWLER, R. J., AND VESTAL,
S. C. The architecture of the Eden system. In Proceedings of the 8th Symposium on Operating
System Principles (Dec. 1981). ACM, 1981, pp. 148-159.

41. LEE, I., AND GEHLOT, V. Language constructs for distributed real-time programming. In
Proceedings of the 6th Real-Time Systems Symposium (San Diego, Calif., Dec. 1985). IEEE, New
York, 1985, pp. 57-66.

42. LEVIN, R., COHEN, E., CORWIN, W., POLLACK, F., AND WULF, W. Policy/mechanism separation
in Hydra. In Proceedings of the 5th Symposium on Operating System Principles. (Austin, Tex.,
Nov. 1975). ACM, New York, 1975.

43. LILLY, K. W., AND ORIN, D. E. Multiprocessor implementation of dynamic control schemes for
robot manipulators. In Proceedings of the ASME Computers in Engineering Conference (Chicago,
Ill, July, 1986).

44. LISKOV, B., AND SCHEIFLER, R. Guardians and actions: linguistic support for robust, distributed
programs. ACM Trans. Program. Lang. Syst. 5, 3 (July 1983) 381-404.

45. Lru, C.-H., AND CHEN, Y.-M. Multi-microprocessor-based Cartesian space control techniques
for a mechanical manipulator. In Proceedings of the IEEE International Conference on Robotics
and Automation (San Francisco, Calif., Apr. 1986). IEEE, 1986, pp. 823-827.

46. LO, V. M. Task assignment to minimize completion time. In Proceedings of the 5th International
Conference on Distributed Computing Systems (Denver, Cola., May 1985). IEEE, New York, 1985,
pp. 329-336.

47. MACQUEEN, D. B. Models for distributed computing. Tech. Rep. 351, IRIA, Apr. 1979.
48. MCCAIN, H. G. A hierarchically controlled, sensory interactive robot in the automated manu-

facturing research facility. In Proceedings of the IEEE International Conference on Robotics and
Automation (St. Louis, MO., Mar. 1986). IEEE, New York, 1986, pp. 931-940.

49. MCDONALD, W. C., AND SMITH, R. W. A flexible distributed testbed for real-time applications.
IEEE Computer Magazine 15, 10 (Oct. 1982), 25-39.

50. MCGHEE, R. B., AND ISWANDHI, G. I. Adaptive locomotion of a multilegged robot over rough
terrain. IEEE Trans. Syst. Man Cyber. SMC-9, 4 (Apr. 1979), 176-182.

51. MCGHEE, R. B., ORIN, D. E., PUGH, D. R., AND PATTERSON, M. R. A hierarchically-structured
system for computer control of a hexapod walking machine. In Proceedings of the 5th IFTOMM
Symposium on Robots and Manipulator Systems, (Udine, Italy, June 1984). IFTOMM, 1984.

52. MCGHEE, R. B. Vehicular legged locomotion. In Aduances in Automation and Robotics. Jai Press
Ltd., New York, 1985, pp. 259-284.

53. MOK, A. K.-L. The decomposition of real-time system requirements into process models. In
Proceedings of the 5th Real-Time Systems Symposium (Austin, Tex., Dec. 1984), IEEE, New
York, pp. 125-134.

54. MONTEMERLO, M. D. NASA’s automation and robotics technology development program. In
Proceedings of the IEEE International Conference on Robotics and Automation (San Francisco,
Calif. Apr. 1986). IEEE, New York, 1986, pp. 977-986.

55. NARASIMHAN, S., SIEGEL, D., HOLLERBACH, J. M., BIGGERS, K., AND GERPHEIDE,
G. Implementation of control methodologies on the computational architecture of the Utah/
MIT hand. In Proceedings of the IEEE International Conference on Robotics and Automation
(San Francisco, Calif. Apr. 1986). IEEE, New York, 1986, pp. 1884-1889.

56. NOTKIN, D. The GANDALF project. J. Syst. Softw. 5,2 (May 1985), 91-106.
57. ORIN, D. E., AND SCHRADER, W. W. Efficient computation of the jacobian for robot manipu-

lators. Znt. J. Robot. Res. 4, 1 (Spring 1985), 2-15.

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

230 l Karsten Schwan et al.

58. OUSTERHOUT, J. K., SCELZA, D. A., AND SINDHU, P. Medusa: an experiment in distributed
operating system structure. Commun. ACM 23, 2 (Feb. 1980), 92-104.

59. OZGUNER, F., AND KAO, M. L. A recontigurable multiprocessor architecture for reliable control
of robotic systems. In Proceedings of the IEEE International Conference on Robotics and Auto-
mation (St. Louis, MO., Mar. 1985). IEEE, New York, 1985, pp. 802-806.

60. PARTSCH, H., AND STEINBRUEGGEN, R. Program transformation systems. ACM Comput. Suru.

15,3 (Sept. 1983), 199-236.
61. PAUL, R. P., ZHANG, H. Design of a robot force motion server. In Proceedings of the ZEEE

International Conference on Robotics and Automation (San Francisco, Calif., Apr. 1986). IEEE,
New York, 1986, pp. 1878-1883.

62. PAYTON, D. W. An architecture for reflexive autonomous vehicle control. In Proceedings of the
IEEE International Conference on Robotics and Automation (San Francisco, Calif., Apr. 1986).
IEEE, New York, 1986, pp. 1838-1845.

63. PONG, M.-C., AND NG, N. PIGS-a system for programming with interactive graphical support.
Softw. Pratt. Exper. 13, 9 (Sept. 1983), 847-856.

64. PONG, M.-C. A graphical language for concurrent programming. In Proceedings of the 1986
IEEE Computer Society Workshop on Visual Languages (Dallas, Tex., June 1986) IEEE, New
York, 1986, pp. 25-33.

65. PREPARATA, F. P., AND YEH, R. T. Introduction to Discrete Structures. Addison-Wesley,
Reading, Mass., 1973.

66. RAIBERT, M. H. Legged robots. Commun. ACM 29,6 (June, 1986), 499-514.
67. SCHWAN, K., GOPINATH, P., AND Bo, W. CHAOS-Kernel support for objects in the real-time

domain. To appear in IEEE Trans. Comput. (July 1987).
68. SCHWAN, K., RAMNATH, R., VASUDEVAN, S., AND OGLE, I. A system for parallel programming.

In Proceedings of the 9th International Conference on Software Engineering (Monterey, Calif.,
Mar. 1987), IEEE, New York, 1987, pp. 270-282.

69. SCHWAN, K., AND JONES, A. K. Specifying resource allocation for the Cm* multiprocessor.
IEEE Softw. 3, 3 (May 1984), 60-70.

70. SCHWAN, K., AND JONES, A. K. Flexible software development for multiple computer systems.
IEEE Trans. Softw. Eng. SE-12,3 (Mar. 1986), 385-401.

71. SCHWAN, K., AND RAMNATH, R. Adaptable operating software for manufacturing systems and
robots: a computer science research agenda. In Proceedings of the 5th Real-Time Systems
Symposium (Austin, Tex., Dec. 1984). IEEE, New York, 1984, pp. 255-262.

72, SEGALL, Z., AND RUDOLPH, L. PIE: a programming and instrumentation environment for
parallel processing. IEEE Softw. 2,6 (Nov. 1985), 22-37.

73. SEITZ, C. L. The cosmic cube. Commun. ACM 28, 1 (Jan. 1985), 22-33.
74. SHIN, K. G., AND EPSTEIN, M. E. Communication primitives for a distributed multi-robot

system. In Proceedings of the IEEE International Conference on Robotics and Automation
(St. Louis, MO., Mar. 1986). IEEE, New York, 1986, pp. 910-917.

75. SOLOMON, M. H., AND FINKEL, R. A. The Roscoe distributed operating system. In Proceedings
of the 7th Symposium on Operating System Principles (Asilomar, Calif., Dec. lo-12,1979). ACM,
New York, 1979, pp. 108-114.

76. STANKOVIC, J. A., AND SIDHU, I. S. An adaptive bidding algorithm for processes, clusters and
distributed groups. In Proceedings of the 4th International Conference on Distributed Computing
Systems (San Francisco, Calif., May 1984). IEEE, New York, 1984, pp. 49-59.

77. STEUSLOFF, H. U. Advanced real-time languages for distributed industrial process control.
IEEE Comput. Mag. 17,2 (Feb. 1984), 37-47.

78. STOVSKY, M. P., WEIDE, B. W., AND HARMS, D. STILE: a graphical design and development
environment. Tech. Rep. OSU-CISRC, Dept. of Computer and Information Science, Ohio State
Univ., Columbus, Aug. 1986. Submitted for publication.

79. RAIBERT, M. H., AND SUTHERLAND, I. E. Machines that walk. Sci. Am. 248 (Jan. 1983), 44-53.
80. TANEJA, S., AND WEIDE, B. W. Graphical description and run-time environments for real-time

software. In Proceedings of the 14th Annual Computer Science Conference (Cincinnati, Oh.,
Feb. 1986). ACM, New York, 1986, pp. 205-211.

81. WALTER, C. J., KIECKHAFER, R. M., AND FINN, A. M. MAFT: a multicomputer architecture
for fault-tolerance in real-time control systems. In Proceedings of the 6th Real-Time Systems
Symposium (San Diego, Calif., Dec. 1985). IEEE, New York, 1985, pp. 133-140.

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

High-performance Operating System Primitives l 231

82. WAMPLER, C. Multiprocessor control of a telemanipulator with optical proximity sensors.
Int. J. Robot. Res. 3, 1 (Spring 1984), 52-61.

83. WEIDE, B. W. Design and specification of abstract data types using OWL. Tech. Rep. OSU-
CISRC-TR-86-1, Dept. of Computer and Information Science, Ohio State Univ., Columbus,
Jan. 1986.

84. WEIDE, B. W., BROWN, M. E., ALEGRIA, J. A. S., AND MEYER, G. R. A graphical interconnection
language and its application to concurrent and real-time programming. In Proceedings of the 20th
Annual Allerton Conference on Communication Control, and Computing (Univ. of Illinois,
Oct. 1982). IEEE, New York, 1982, pp. 567-576.

85. WENSLEY, J. H., LAMPORT, L., GOLDBERG, J., GREEN, M. W., LEVITT, K. N., MELLIARD~MITH,
P. M., SHOSTAK, R. E., AND WEINSTOCK, C. B. SIFT: design and analysis of a fault-tolerant
computer for aircraft control. Proc. IEEE 66, 10 (Oct. 1978), 1240-1268.

86. WULF, W. A., LEVIN, R., AND HARBISON, S. R. HydralC.mmp: An Experimental Computer
System. McGraw-Hill Advanced Computer Science Series, McGraw-Hill, New York, 1981.

87. ZEIGLER, B. P. Theory of Modelling and Simulation. Wiley, New York, 1976.
88. ZHENG, Y. F., AND CHEN, B. R. A multiprocessor for dynamic control of multilink systems. In

Proceedings of the IEEE International Conference on Robotics and Automation (St. Louis, MO.,
Mar. 1985). IEEE, New York, 1985, pp. 295-300.

Received August 1985; revised July 1986; accepted January 1987

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987.

