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Abstract

The rise of socially targeted marketing suggests that decisions made by consumers
can be predicted not only from their personal tastes and characteristics, but also from
the decisions of people who are close to them in their networks. One obstacle to consider
is that there may be several different measures for “closeness” that are appropriate, ei-
ther through different types of friendships, or different functions of distance on one kind
of friendship, where only a subset of these networks may actually be relevant. Another
is that these decisions are often binary and more difficult to model with conventional ap-
proaches, both conceptually and computationally. To address these issues, we present a
hierarchical model for individual binary outcomes that uses and extends the machinery
of the auto-probit method for binary data. We demonstrate the behavior of the pa-
rameters estimated by the multiple network-regime auto-probit model (m-NAP) under
various sensitivity conditions, such as the impact of the prior distribution and the na-
ture of the structure of the network, and demonstrate on several examples of correlated
binary data in networks of interest to Information Systems, including the adoption of
Caller Ring-Back Tones, whose use is governed by direct connection but explained by
additional network topologies.

1 Introduction

The prevalence and widespread adoption of online social networks have made the analysis

of these networks, particularly the behaviors of individuals embedded within, an important

topic of study in information systems Agarwal et al. (2008); Oinas-Kukkonen et al. (2010),

building off previous work in the context of technology diffusion Brancheau and Wetherbe

(1990); Chatterjee and Eliashberg (1990); Premkumar et al. (1994). While past investiga-

tions into behavior in networks were typically limited to hundreds of people, contemporary

data collection and retrieval technologies enable easy access to network data on a much larger
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scale. Analyzing the behavior of these individuals, such as their purchasing or technology

adoption tendencies, requires statistical techniques that can handle both the scope and the

complexity of the data.

The social network aspect is one such complexity. Researchers once assumed that an

individual’s decision to purchase a product or adopt a technology is solely associated with

their personal attributes, such as age, education, and income Kamakura and Russell (1989);

Allenby and Rossi (1998), though this could be due both to a lack of social network data and

a mechanism for handling it; indeed, recent developments have shown that their decisions are

associated with the decisions of an individual’s neighbors in their social networks Bernheim

(1994); Manski (2000); Smith and LeSage (2004). This could be due to a “contagious” effect,

where someone imitates the behavior of their friends, or an indication of latent homophily,

in which some unobserved and shared trait drives both the tendency for two people to form

a friendship and for each to adopt (Aral et al., 2009; Shalizi and Thomas, 2011); either so-

cial property will increase the ability to predict a person’s adoption behavior beyond their

personal characteristics.

Each of these produces outcomes that are correlated between members of the network

who are connected. A popular approach to study this phenomenon is to use a model with

explicit autocorrelation between individual outcomes, defined with a single network structure

term. With the depth of data now available, an actor is very often observed to be a member

of multiple distinct but overlapping networks, such as a friend network, a work colleague net-

work, a family network, and so forth, and each of these networks may have some connection

to the outcome of interest, so a model that condenses all networks into one relation will be in-

sufficient. While models have been developed to include two or more network autocorrelation

terms, such as Doreian (1989), these do not allow for the immediate and principled inclusion

of binary outcomes; other methods to deal with binary outcomes on multiple networks, such

as Yang and Allenby (2003), instead take a weighted average of other networks in the system,

combining them into one, which has the side effect of constraining the sign of each network

autocorrelation component to be identical, which may be undesirable if there are multiple

effects thought to be in opposition to one another.

To deal with these issues, we construct a model for binary outcomes that uses the probit

framework, allowing us to represent these outcomes as if they are dichotomized outcomes

from a multivariate Gaussian random variable; this is then presented as in Doreian (1989) to

have multiple regimes of network autocorrelation. We first use the Expectation-Maximization
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algorithm (EM) to find a maximum likelihood estimator for the model parameters, then use

Markov Chain Monte Carlo, a method from Bayesian statistics, to develop an alternate es-

timate based on the posterior mean. We also study the sensitivity of both solutions to the

change of parameters’ prior distribution. Preliminary experiments show that the E-M solu-

tion to this model is degenerate, and cannot produce a usable variance-covariance matrix for

parameter estimates, and so the MCMC method is preferred. Our software is also validated

by using the posterior quantiles method of Cook et al. (2006). We ensure that the parameter

estimates from the model are correct by testing first on simulated data, before moving on to

real examples of network-correlated behavior.

The rest of the paper is organized as follows. We discuss the literature on the network

autocorrelation model in Section 2. Our two estimation algorithms for the multi-network

autoprobit, based on EM and MCMC, are presented in Section 3. In Section 4 we present the

results of experiments for software validation and parameter estimation behavior observation.

Conclusions and suggestions for future work complete the paper in Section 5.

2 Background

[[Previously: Literature]] Network models of behavior are developed to study the process of

social influence on the diffusion of a behavior, which is the process “by which an innovation

is communicated through certain channels over time among the members of a social system

... a special type of communication concerned with the spread of messages that are perceived

as new ideas” Rogers (1962). These models have been widely used to study diffusion since

the Bass (1969) model, a population-level approach that assumes that everyone in the social

network has the same probability of interacting. Such assumption is not realistic because

given a large social network, the probability of any random two nodes connecting to each other

is not the same; for example, people with closer physical distance communicate more and

are likely to exert greater influence on each other. A refinement to this approach is a model

where the outcomes of neighboring individuals are explicitly linked, such as the simultaneous

autoregressive model (SAR). The general method of SAR is described in Anselin (1988) and

Cressie (1993); it considers simultaneous autoregression on the residuals of the form

y = Xβ + θ, θ = ρWθ + ε

where y is a vector of observed outcomes, in this case consumer choice; X is a vector of

explanatory variables. Rather than an independent error term, θ represents error terms whose
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correlation is specified by W, the social network matrix of interest, and ρ, the corresponding

network autocorrelation, distributing a Gaussian error term εi.

Maximum likelihood estimate solutions are provided by Ord (1975), Doreian (1980, 1982),

and Smirnov (2005).

Standard network autocorrelation models can only accommodate one network, such as

those of Burt (1987) and Leenders (1997). However, an actor is very often under influence

of multiple networks, such as that of friends and that of colleagues. So if a research requires

investigation of which autocorrelation term out of multiple networks plays the most signifi-

cant role in consumers’ decision, none of these models are adequate, and a model that can

accommodate two or more networks is necessary.

Cohesion and structural equivalence are two competing social network models to explain

diffusion of innovation. In the cohesion model, a focal person’s adoption is influenced by

his/her neighbors in the network. In the structural equivalence model, a focal person’s

adoption is influenced by the people who have the same position in the social network,

such as sharing many common neighbors. While considerable work has been done on these

models on real data, the question of which network model best explains diffusion has not been

resolved. To approach this, Doreian (1989) introduced a model for “two regimes of network

effects autocorrelation”1 for continuous outcomes. The model is described as below:

y = Xβ + ρ1W1y + ρ2W2y + ε

where y is the dependent variable; X is a vector of explanatory variables; each W represents

a social structure underlying each autoregressive regime. This model takes both interde-

pendence of actors and their attributes, such as demographics, into consideration; these

interdependencies are each described by a weight matrix Wi. Doreian’s model can capture

both actor’s intrinsic opinion and influence from alters in his social network.

As this model takes a continuous dependent variable, Fujimoto and Valente (2011) present

a plausible solution for binary outcomes by directly inserting an autocorrelation term Wy

1The term “network effects” can refer to two directly related concepts: the autocorrelation between indi-
vidual behaviors on a network, and the increased impact of a technology to an individual when used by more
people within a network. Our meaning is the first, though we use the term partial network autocorrelation
to avoid ambiguity.
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into the right hand side of a logistic regression:

yi ∼ Be(pi)

log(
pi

1− pi
) = Xβ + ρ

∑
j

Wijyj

Due to its speed of implementation, this method is called “quick and dirty” (QAD) by Dor-

eian (1982). Although it may support a binary dependent variable and multiple network

terms, this model does not satisfy the assumption of logistic regression – the observations are

not conditionally independent, and the estimation results are biased. Thomas (2012) shows

that this method has more consequences than expected for the estimation procedure beyond

simple bias; for example, in cases where W is a directed graph, networks that are directional

cannot be distinguished from their reversed counterparts.

Yang and Allenby (2003) propose a hierarchical Bayesian autoregressive mixture model

to analyze the effect of multiple network autocorrelation terms on a binary outcome. Their

model can only technically accommodate one network effect, composed of several smaller

networks that are weighted and added together. This model therefore assumes that all

component network coefficients must have the same sign2, and also be statistically significant

or insignificant together. Such assumptions do not hold if the effect of any but not all of

the component networks is statistically insignificant, or of the opposite sign to the other

networks, so a method that estimates coefficients for each W separately is necessary for our

applications. We contrast our method with the Yang-Allenby grand W construction method,

a finite mixture of coefficient matrices, in Appendix A.5.

3 Method

We propose a variant of the auto-probit model that accommodates multiple regimes of net-

work autocorrelation terms for the same group of actors, which we call the multiple network

auto-probit model (m-NAP). We then provide two methods to obtain estimates for our model.

The first is the use of Expectation-Maximization, which employs a maximum likelihood ap-

proach, and the second one is a Markov Chain Monte Carlo routine that treats the model as

Bayesian. Detailed descriptions of both estimations are shown in Appendix A.1 and A.2.

2It is of course possible to specify terms in the W matrix as negative, to represent anticorrelation on a
tie, but this must be done a priori, and is redundant in our approach.
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3.1 Model Specification

The actors are assumed to have k different types of network connections between them, where

Wi is the ith network in question i ∈ {1, ..., k}. y is the vector of length n of observed binary

choices, and is an indicator function of the latent preference of consumers z. If z is larger

than a threshold 0, consumers choose y as 1; if z is smaller than 0, then consumers would

choose y as 0.

y = I(z > 0)

z = Xβ + θ + ε, ε ∼ Normaln(0, In)

θ =
k∑
i=1

ρiWiθ + u, u ∼ Normaln(0, σ2In)

z is a function of both exogenous covariates X, autocorrelation term θ, and individual error.

X is an n × m covariate matrixthat includes a constant as its first column; these covari-

ates could be the exogenous characteristics of consumers. β is an m × 1 coefficient vector

associated with X. θ is the autocorrelation term, which is responsible for those nonzero

covariances in the z. θ can be described as the aggregation of multiple network structure Wi

and coefficient ρi. Each Wi is a network structure describing connections and relationships

among consumers.

Our model explicitly allows multiple competing networks that can be defined by different

mechanisms on an existing basis of network ties; for example, W1 describes an effect acting

directly on a declared tie, such as homophily or social influence, whereas W2 describes the

structural equivalence due to those ties. It can also be that each Wi is defined by a different

type of network edge, such as friendship, colleagueship, or mutual group membership; note

that none of these relationships must be mutually exclusive. Each coefficient ρi describes

the effect size of its corresponding network Wi,so that we can compare the relative scales of

competing network structures for the same group of actors embedded in social networks.

The error term for the model is modeled as an augmented expression that consists of

two parts, ε and u. ε is the unobservable error term of z that describes individual-level

variation that is not shared on the network, and u is the error that is then distributed along

each network, accounting for the non-zero covariance between units. If we marginalize this

model by integrating out θ, all the unobserved interdependency will be isolated in a single

expression for the distribution of z, given parameters β, ρ and σ2, as multivariate with mean
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Xβ and variance Q.

z ∼ Normal (Xβ,Q)

where

Q = In + σ2

(
In −

k∑
i=1

ρiWi

)−1
(In − k∑

i=1

ρiWi

)−1
> .

The non-standard form of the covariance matrix can therefore pose a significant computa-

tional issue.

3.2 Expectation-Maximization Solution

We first develop an approach by maximizing the likelihood of the model using E-M. Since z

is latent, we treat it as unobservable data, for which the E-M algorithm is one of the most

used methods. Detailed description of our solution for k regimes of network autocorrelation

is in Appendix A.1.

The method consists of two steps: first, estimate the expected value of functions of the

unobserved z given the current parameter set φ, (φ = {β,ρ, σ2}). Second, use these esti-

mates to form a complete data set {y,X, z}, with which we estimate a new φ by maximizing

the expectation of the likelihood of the complete data.

We first initialize the parameters to be estimated,

βi ∼ Normal(νβ,Ωβ);

ρj ∼ Normal(νρ,Ωρ);

σ2 ∼ Gamma(a, b)

where i = 1, ...,m, and j = 1, ..., k. Let these values equal φ(0).

For the E-step, we calculate the conditional expectation of the log-likelihood, with respect
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to the augmented data,

G(φ | φ(t)) = Ez‖y,φ(t) [logL(φ | z,y)]

= −n
2

log 2π − n

2
log | Q | −1

2

n∑
i=1

n∑
j=1

q̌ij(E[zizj]− E[zi]Xjβ − E[zj]Xiβ +XiXjβ
2)

where t is the current step number and q̌ij is element (i, j) in the matrix Q−1.

In the M-step, we maximize G(φ | φ(t)) to get βt+1, ρt+1 and [σ2](t+1) for the next step.

β(t+1) = arg max
β

G(β | ρ(t), [σ2]
(t)

);

ρ(t+1) = arg max
ρ

G(ρ | β(t+1), [σ2]
(t)

);

[σ2]
(t+1)

= arg max
[σ2]

G([σ2] | β(t+1),ρ(t+1))

We replace φ(t) with φ(t+1) and repeat the E-step and M-step until all the parameters con-

verge. Parameter estimates from the E-M algorithm converge to the MLE estimates Wu

(1983).

It is worth noting that the analytical solution for all the parameters is not always possible.

Consider the maximization with respect to the autocorrelation variance parameter σ2:

[σ2](t+1) = arg max
[σ2]

G(φ | φ(t))

∂ logL

∂[σ2]
=

∂

∂[σ2]

(
−1

2
log | Q | −1

2
(z−Xβ)>Q−1(z−Xβ)

)
(1)

The first term at the the right hand side of Equation (1) is:

∂

∂[σ2]
log | Q | = ∂

∂[σ2]
log

∣∣∣∣∣∣∣In + [σ2]

(
In −

k∑
i=1

ρiWi

)−1
(In − k∑

i=1

ρiWi

)−1
>
∣∣∣∣∣∣∣
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The second term is:

∂

∂[σ2]
(z−Xβ)>Q−1(z−Xβ)

=
∂

∂[σ2]
(z−Xβ)>

In + [σ2]

(
In −

k∑
i=1

ρiWi

)−1
(In − k∑

i=1

ρiWi

)−1
>

−1

(z−Xβ)

This is not solvable analytically, and numerical methods are needed to get the estimators for

this parameter and for ρ.

As it happens, the E-M algorithm produces a degenerate solution. This is because it

estimates the mode of σ2, the error term of the autocorrelation term θ, which is at 0 (see

Figure 1), and produces a singular variance-covariance matrix estimate using the Hessian

approximation. Thus we have to find another solution.

Figure 1: An estimated probability distribution for σ2, variance of θ. Maximum likelihood
methods, such as the Expectation-Maximization method, will choose σ2 = 0, a degenerate
solution.

3.3 Full Bayesian Solution

We turn to Bayesian methods. Since the observed choice of consumer’s is decided by his/her

unobserved preference, this model has a hierarchical structure, so it is natural to think of
9



Table 1: Cyclical conditional sampling steps for Markov Chain Monte Carlo
Parameter Density Draw Type

z TrunNormaln(Xβ + θ, In) Parallel
β Normaln(νβ,Ωβ) Parallel
θ Normaln(νθ,Ωθ) Parallel
σ2 InvGamma(a, b) Single
ρi Metropolis step Sequential

using a hierarchical Bayesian method. In addition to the model specification above, prior

distributions for each of the highest-level parameters in the model are also required. As

before, y is the observed dichotomous choice and calculated by the latent preference z. With

Markov Chain Monte Carlo, we generate draws from a series of full conditional probability

distributions, derived from the joint distribution. We summarize the forms of the full con-

ditional distributions of all the parameters to estimate in Table 1, and in full in Appendix A.2.

Given the observed choice of consumer, the latent variable z is generated from a truncated

normal distribution with a mean of Xβ + θ with unit error. The prior distributions of the

parameters (shown in Table 1 are adapted from priors proposed by Smith and LeSage (2004):

• β follows a multivariate normal distribution with mean νβ and variance Ωβ.

• σ2 follows an inverse gamma distribution with parameters a and b.

• Each ρi follows a normal distribution with mean νρ and variance Ωρ.

The sampler algorithm was constructed in the R programming language, including a

mechanism to generate data from the model. Validation of the algorithm was conducted

using the method of posterior quantiles (Cook et al., 2006), ensuring the correctness of the

code for all analyses. Posterior quantiles is a simulation-based method that generates data

from the model and verifies that the software can generate parameter estimate randomly

around true parameter. For detailed description of the implementation, please see Appendix

A.3.

3.4 Sensitivity to Prior Specification

We test the performance of the sampler using prior distributions that are closer to our

chosen model than the trivial priors used to check the model code in order to assess the

behavior of the algorithm under non-ideal conditions. We demonstrate on data simulated
10



from the model, using two pre-existing network configurations, and specify different prior

distributions for each parameter. To demonstrate, we choose a prior distribution for ρ1 with

high variance, ρ ∼ Normal(0, 100), . As shown in Figure 2(a), the posterior draws of ρ1 have

high temporal autocorrelation. To compare, we choose a narrow prior distribution for ρ1, ρ1 ∼
Normal(0.05, 0.052); the posterior draws for ρ1 are shown in Figure 2(b), and the temporal

autocorrelation is considerably smaller. With the volume of data under consideration, it is

clear that the posterior distribution of ρ is sensitive to its prior distribution.

(a) ρ ∼ Normal(0, 100) (b) ρ ∼ Normal(0.05, 0.052)

Figure 2: Testing the sensitivity of the inference of an autocorrelation parameter ρ1 to the
prior distribution. (a) The Markov Chain for a weakly informative prior distribution is
consistent with the “oracle” value ρ1, but the chain has significant temporal autocorrelation.
(b) The Markov Chain with a strongly informative prior distribution has much less temporal
autocorrelation, but is beholden to its prior distribution more than the data.

In most of our examples, we do not have a great deal of prior information available on any

network parameters, suggesting that most of our analyses will be conducted with minimally

informative prior distributions. With such high autocorrelation between sequential draws,

the effective sample size is extremely small. We therefore use a high degree of thinning to

produce a series of uncorrelated draws from the posterior.
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4 Applications

4.1 Auto Purchase Data of Yang and Allenby (2003)

We use Yang and Allenby’s 2003 Japanese car data to compare the findings of our method

with those in the original study. The data consists of information on 857 purchase decisions

of mid-size cars; the dependent variable is whether the car purchased was Japanese (ym = 1)

or otherwise (ym = 0). All the car models in the data are substitutable and have roughly

similar prices.

An important question of interest is whether the preferences of Japanese car among

consumers are interdependent or not. The interdependence in the network is measured by

geographical location, where Wij = 1, if consumer i and j live in the same zip code, and

0, otherwise. Explanatory variables include actors’ demographic information such as age,

annual household income, ethnic group, education and other information such as the price of

the car, whether the optional accessories are purchased for the car, latitude and longitude of

the actor’s location. To construct a network, Yang and Allenby use whether the consumers’

home address in the same zip code as the indicator of a connection. Thus the network struc-

ture W, the cohesion, is the joint membership of same geographic area.

By comparing the parameters of Yang and Allenby’s model to those for m-NAP on the

same dataset, with the same underlying definition of network structure, we contrast our

approaches and demonstrate the value of separating the impact of various network auto-

correlations. The comparison of the coefficient estimates from Yang and Allenby and our

Bayesian solution is shown in Figure 3 , for both explanatory variables and for network auto-

correlations. We specify a second network term W2 to be the structural equivalence of two

consumers, calculated as the simple adjacency distance between the two vectors representing

individuals’ connections to other individuals in the network to measure structural equiva-

lence. In a undirected network with non-weighted edges the adjacency distance between

two nodes i and j is the number of individuals who have different relationships to i and j

respectively,

dij =

√√√√ N∑
k=1,k 6=i,j

(Aik − Ajk)2, (2)

where Aik = 1 if node i and k are neighbors, and 0 otherwise. The larger d between node
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i and j, the less structurally equivalent they are. We use the inverse of dij plus one in or-

der to construct a measure with a positive, finite relationship with role equivalence, so that

sij = 1
dij+1

. In our setting, a random element Aij in Equation (2) is from matrix W1, so dij

is the adjacency distance between any two vectors Ai and Aj, representing consumer i’s con-

nections, and consumer j’s connections to all the other consumers in the data, respectively.

The inverse of dij with an addition to 1 (to avoid zero as denominator), sij, becomes element

of structural equivalence matrix W2.

The comparison is shown in Figure 3. Each box contains the estimates of one parameter

from three methods: from left to right, Yang and Allenby, NAP with 1 network, and NAP

with 2 networks. All the coefficient estimates, β̂i, ρ̂2, and σ̂2 of the three methods have

similar mean, standard deviation and credible interval. One thing interesting here is the ef-

fect size of the second network, structural equivalence, has a significant negative effect. This

suggests a diminishing cluster effect; when the number of people in the cluster gets bigger,

the influence does not increase proportionally.

4.2 Caller Ring-Back Tone Usage In A Mobile Network

We use m-NAP to investigate the purchase of Caller Ring Back Tones (CRBT) within a cel-

lular phone network, a technology of increasing interest around the world. When someone

calls the subscriber of a CRBT, the caller does not hear the standard ring-back tone but

instead hears a song, joke or other message chosen by the subscriber until the subscriber

answers the phone or the mailbox takes over. As soon as a CRBT is downloaded, it is set

as the default ring back tone, and triggered automatically by all phone call. Our data were

obtained from a large Indian telecommunications company (source and raw data confiden-

tial). We have cellular phone call records and CRBT purchase records over a three-month

period, and phone account holders’ demographic information such as age and gender. We

extract a community of 597 users that are highly internally connected from a population

with approximately 26 million unique users using the Transitive Clustering and Pruning (T-

CLAP) algorithm (Zhang et al., 2011). Within this cluster, network edges are specified

between users who call each other during the period of observation, as mutual symmetric

connection implies equal and stable relationships (Hanneman and Riddle, 2005), rather than

weaker relationships or calls related to businesses (inquiries or telemarketers).

We include several explanatory variables in this model:

13



Figure 3: A comparison of coefficient estimates between the Yang-Allenby method and m-
NAP with 1 or 2 networks. The models give similar results, while noting that there is now a
negative and statistically significant effect on the network representing structural equivalence.
β0: coefficient of constant term, β1: coefficient of X1, car price; β2: coefficient of X2, car’s
optional accessory; β3: coefficient of X3, consumer’s age; β4: coefficient of X4, consumer’s
income; β5: coefficient of X5, consumer’s ethnicity; β6: coefficient of X6, residence longitude;
β7: coefficient of X7, residence latitude; ρ1: coefficient of first network autocorrelation term,
W1, cohesion; ρ2: coefficient of the second network autocorrelation term, W2, structural
equivalence; σ2: estimated variance of the error term in autocorrelation.

14



• The gender of the cellular phone account holder;

• The age of the account holder;

• The number of unique outbound connections from the user (known as the “outdegree”).

From our original network, we derive two matrices corresponding to cohesion and struc-

tural equivalence. Cohesion assumes callers who make phone calls to each other will hear

the called party’s CRBT thus more likely to buy that ring-back tone or get interested in

CRBT and eventually adopt the technology. Since the number of people a caller calls are

drastically different, we normalize the cohesion matrix by dividing each row by the total

number of adopters, to make the matrix element to be the percentage of adoption. Struc-

tural equivalence is once again defined as the adjacency distance between two callers. Here

it is less clear that there is an obvious mechanism for how structural equivalence can impact

adoption, as it relates to a relationship that does not expose the caller to the CRBT.

Figure 4: Trace plot of CRBT network parameters. Description of parameters: β0: coefficient
of constant term; β1: coefficient of consumer’s gender; β2: coefficient of consumer’s age; β3:
coefficient of number of called contacts; ρ1: coefficient of first network autocorrelation term,
W1, cohesion; ρ2: coefficient of the second network autocorrelation term, W2, structural
equivalence; σ2: estimated variance of the error term in autocorrelation; loglike: log-likelihood
of y.

We show estimates for each parameter of the model is shown in Figure 4.2. Again, we

observe a significant negative effect for structural equivalence. This new network autocorre-
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lation, with a coefficient of opposite sign from that of the first network autocorrelation W1,

cannot be identified by any earlier models.

5 Conclusion

We have introduced a new auto-probit model to study binary choice of a group of actors

that have multiple network relationships among them. We specified the fitting of the model

for both E-M and hierarchical Bayesian methods. We found that the E-M solution cannot

estimate the parameters for this particular model, thus only hierarchical Bayesian solution

can be used here. We also validated our Bayesian solution by using the posterior quantiles

method and the results show our software returns accurate estimates. Finally we compare

the estimates returned by Yang and Allenby, NAP with one network effect (cohesion), and

NAP with two network effects (cohesion and structural equivalence), by using real data.

We want to ensure that the approach can recover variability in the network effect size.

Assuming Wθ has strong effect, we will vary ρ’s true value from small number to large num-

ber, and observe whether our solution can capture the variation.

Finally we also want to study how multicollinearities between Xs, and between X and

Wθ affect estimated results.
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APPENDIX

A.1 E-M solution implementation

A.1.1 Deduction

First, get the distribution of θ.(
In −

k∑
i=1

ρiWi

)
θ = u

θ =

(
In −

k∑
i=1

ρiWi

)−1

u

θ ∼ Normal

0, σ2

(
In −

k∑
i=1

ρiWi

)−1
(In − k∑

i=1

ρiWi

)−1
>


Then get the distribution of z|β,ρ, σ2:

z ∼ Normal (Xβ,Q) , where Q = In + σ2

(
In −

k∑
i=1

ρiWi

)−1
(In − k∑

i=1

ρiWi

)−1
>

The joint distribution of y and z can transformed as:

p(y|z)p(z|β,ρ, σ2) = p(y, z|β,ρ, σ2)

= p(z|y;β,ρ, σ2)p(y) (3)

The right side of equation (3) are two distributions we already have, as shown below.

p(y) =

1√
2π

exp

(
−1

2
(z−Xβ)>(z−Xβ)

)
Φ(Xβ)

I(z > 0)

z|β,ρ, σ2 ∼ Normal(Xβ,Q)

z|y,X;β,ρ, σ2 ∼ TrunNormal(Xβ,Q)

Consider parameter β only,

p(β, z|y) = p(β|z,y)p(z|y)

z|y,X;β ∼ TrunNormal(Xβ,Q)
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Assume Var(z)=1,

L(β|z) =
1√
2π

n∑
i=1

exp

(
−1

2
(zi −Xiβ)2

)
β̂ = (X>X)−1X>R, where R = E[z|θ,y]

Then include parameters, ρ and σ2.

E[z](t+1) = E[z|y,β(t)] = f(β(t),y)

logL(β,ρ, σ2|z) = log p(z|β,ρ, σ2)

= log
n∏
i=1

p(zi|β,ρ, σ2)

=
n∑
i=1

log
1√

2π|Q|
− 1

2
(z−Xβ)>Q−1(z−Xβ)

=
n∑
i=1

log
1√

2π|Q|
−
(

1

2
z>Q−1z− z>Q−1Xβ −X>βQ−1z + X>βQ−1Xβ

)
(4)

If decompose the matrices above as vector product, then:

(4) =
n∑
i=1

log
1√

2π|Q|
− 1

2

n∑
i=1

n∑
j=1

(zi −Xiβ)q̌ij(zj −Xjβ)

=
n∑
i=1

log
1√

2π|Q|
− 1

2

n∑
i=1

n∑
j=1

q̌ij(zizj − ziXjβ − zjXiβ +XiXjβ
2)

where q̌ij is the element in Q̌, and Q̌ = Q−1.

A.1.2 Expectation step

In the expectation step, get the expected log-likelihood of parameters.

Q(φ|φ(t)) = Ez|y,φ(t) [logL(φ|z,y)]

= E

[
n∑
i=1

log
1√

2π|Q

]
− E

[
1

2
(z−Xβ)>Q−1(z−Xβ)

]
= −n

2
log 2π − n

2
log |Q| − 1

2

n∑
i=1

n∑
j=1

q̌ij(E[zizj]− E[zi]Xjβ − E[zj]Xiβ +XiXjβ
2)
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where φ is the parameter set, and t is the number of steps.

A.1.3 Maximization step

In the maximization step, get the parameter estimates maximizing the expected log-likelihood.

First, estimate β

β(t+1) = arg max
β

Q(φ|φ(t))

= arg max
β

n∑
i=1

log
1√

2π|Q|
− 1

2
(z−Xβ)>Q−1(z−Xβ) (5)

If directly apply analytical method to solve the Equation (5) above, then:

∂ logL

∂β
=

∂

∂β

(
−1

2
(z−Xβ)>Q−1(z−Xβ)

)
∂

∂β
(z−Xβ)>Q−1(z−Xβ) =

∂

∂β
(z>Q−1z− z>Q−1Xβ − β>X>Q−1z + β>X>Q−1Xβ)

= −z>Q−1X−X>Q−1z + X>Q−1Xβ (6)

Set Equation (6) as 0, then:

−z>Q−1X−X>Q−1z + X>Q−1Xβ = 0

β̂ =
(
X>Q−1X

)−1
X>Q−1R

Second, estimate parameter ρ:

ρ(t+1) = arg max
ρ

Q(φ|φ(t))

Assume ρ = {ρ1, ..., ρk}, without losing any generalizabiliy, ρ1 can be estimated as:

ρ
(t+1)
1 = arg max

ρ1

Q(φ|φ(t))

∂ logL

∂ρ1

=
∂

∂ρ1

(
−1

2
log |Q| − 1

2
(z−Xβ)>Q−1(z−Xβ)

)
∂

∂ρ1

log |Q| = − tr(W1Q
−1)

∂

∂ρ1

(z−Xβ)>Q−1(z−Xβ) =
∂

∂ρ1

(z>Q−1z− z>Q−1Xβ − β>X>Q−1z + β>X>Q−1Xβ)
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It is impossible to get the analytical solution for ρi.

Third, estimate parameter σ2. Let σ2 = [σ2]

[σ2](t+1) = arg max
[σ2]

Q(φ|φ(t))

∂ logL

∂[σ2]
=

∂

∂[σ2]

(
−1

2
log |Q| − 1

2
(z−Xβ)>Q−1(z−Xβ)

)
(7)

The first term at the the right hand side of equation above is:

∂

∂[σ2]
log |Q| = ∂

∂[σ2]
log

∣∣∣∣∣∣∣In + [σ2]

(
In −

k∑
i=1

ρiWi

)−1
(In − k∑

i=1

ρiWi

)−1
>
∣∣∣∣∣∣∣

The second term is:

∂

∂[σ2]
(z−Xβ)>Q−1(z−Xβ)

=
∂

∂[σ2]
(z−Xβ)>

In + [σ2]

(
In −

k∑
i=1

ρiWi

)−1
(In − k∑

i=1

ρiWi

)−1
>

−1

(z−Xβ)

This is again not solvable by using analytical method.

A.2 Markov Chain Monte Carlo estimation

The Markov Chain Monte Carlo method generates a sequence of draws that approaches the

posterior distribution of interest. Our solution consists of steps as follows.

Step 1. Generate z, z follows truncated normal distribution.

z ∼ TrunNormaln(Xβ + θ, In)

where In is the n× n identity matrix. If yi = 1, then zi ≥ 0, if yi = 0, then zi < 0

Step 2. Generate β, β ∼ Normal(νβ,Ωβ)
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1. define β0, where

β0 =


0

0
...

0


2. define D = hIn, D is a baseline variance matrix, corresponding to the prior p(β), where

h is a large constant, e.g. 400.

D−1 =


σ2

0 0 . . . 0

0 σ2
0 . . . 0

...
... . . .

...

0 0 . . . σ2
0


Set σ2

0 as
1

400
, a small number close to 0, compared with Normal(0, 1), where σ2

0 = 1

3. Ωβ =
(
D−1 + X>X

)−1

This is because:

z = Xβ + θ + ε

β = X−1(z− θ − ε)

∴ β ∼ Normal
(
X−1(z− θ), (X>X)−1

)
Based on law of initial values, Ωβ =

(
D−1 + X>X

)−1

4. Then νβ can be represented by νβ = Ωβ

(
X>(z− θ) + D−1

)
Step 3. Generate θ, θ ∼ Normal(νθ,Ωθ)

1. First, define B = In −
∑
i

ρiWi

θ =
∑
i

ρiWi + u

(In −
∑
i

ρiWi)θ = u

Bθ = u

θ = B−1u
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Let Var(u) = σ2In

Var(θ) = Var(B−1u)

= (B>B)−1σ2In

=

(
B>B

σ2

)−1

2. Then Ωθ =

(
In +

B>B

σ2

)−1

We then add an offset In to
B>B

σ2
. So Ωθ =

(
In +

B>B

σ2

)−1

3. νθ = Ωθ(z−Xβ), since θ = (z−Xβ)− ε

Step 4. Generate σ2, σ2 ∼ InvGamma(a, b)

a = s0 +
n

2

b =
2

θ>B>Bθ +
2

q0

where s0 and q0 are the parameters for the conjugate prior of σ2, and n is the size of data.

Step 5. Finally we generate coefficient for W, ρi, using Metropolis-Hasting sampling with

a random walk chain.

ρnewi = ρoldi + ∆i,

where the increment random variable ∆i ∼ Normal(ν∆,Ω∆).

The accepting probability α is obtained by:

min

 |Bnew| exp

(
− 1

2σ2
θ>B>newBnewθ

)
|Bold| exp

(
− 1

2σ2
θ>B>oldBoldθ

) , 1


A.3 Validation of Bayesian Software

One challenge of Bayesian methods is getting an error-free implementation. Bayesian solu-

tions often have high complexity, and a lack of software causes many researchers to develop

their own, greatly increasing the chance of software error; many models are not validated,
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and many of them have errors and do not return correct estimations. So it is very necessary

to confirm that the code returns correct results. The validation of Bayesian software imple-

mentations has a short history; we wrote a program using a standard method, the method

of posterior quantiles Cook et al. (2006), to validate our software. This method again is

a simulation-based method. The idea is to generate data from the model and verify that

the software will properly recover the underlying parameters in a principled way. First, we

draw the parameters θ from its prior distribution p(Θ), then generate data from distribution

p(y | θ). If the software is correctly coded, the quantiles of each true parameter should be

uniformly distributed with respect to the algorithm output. For example, the 95% credible

interval should contain the true parameter with probability 95%. Assume we want to es-

timate the parameter θ in Bayesian model p(θ | y) = p(y | θ)p(θ), where p(θ) is the prior

distribution of θ, p(y | θ) is the distribution of data, and p(θ | y) is the posterior distribution.

The estimated quantile can be defined as:

q̂(θ0) = P̂ (θ < θ0) =
1

N

N∑
i=1

I(θi < θ0)

where θ0 is the true value drawn from prior distribution; θ̂ is a series of draw from posterior

distribution generated by the software to-be-tested; N is the number of draws in MCMC. The

quantile is the probability of posterior sample smaller than the true value, and the estimated

quantile is the number of posterior draws generated by software smaller than the true value.

If the software is correctly coded, then the quantile distribution for parameter θ, q̂(θ0) should

approaches Uniform(0, 1), when N →∞ Cook et al. (2006). The whole process up to now is

defined as one replication. If run a number of replications, we expect to observe a uniformly

distribution q̂(θ0) around θ0, meaning posterior should be randomly distributed around the

true value.

We then demonstrate the simulations we ran. Assume the model we want to estimate is:

z = X1β1 + X2β2 + θ + ε;

θ = ρ1W1θ + ρ2W2θ + u

We then specified a prior distribution for each parameter, and use MCMC to simulate the
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posterior distributions.

β ∼ Normal(0, 1);

σ2 ∼ InvGamma(5, 10);

ρ ∼ Normal(0.05, 0.052)

We performed a simulation of 10 replications to validate our hierarchical Bayesian MCMC

software. The generated sample size for X is 50, so the size of the network structure W is

50 by 50. In each replication we generated 20000 draws from the posterior distribution of

all the parameters in φ (φ = {β1, β2, ρ1, ρ2, σ
2}), and kept one from every 20 draws, yielding

1000 draws for each parameter. We then count the number of draws larger than the true

parameters in each replication. If the software is correctly written, each estimated value

should be randomly distributed around the true value, so the number of estimates larger

than the true value should be uniformly distributed among the 10 replications. We pooled

all these quantiles for the five parameters, 50 in total, and the sorted results are shown in

Figure 5.

Figure 5: Distribution of sorted quantiles of parameters, β1, β2, ρ1, ρ2, σ
2, over 10 replications.

The roughly uniform distribution indicates that the algorithm code functions correctly for
data simulated from the model.
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A.4 Solution diagnostic

We run MCMC experiment to confirm there is no autocorrelation among draws of each

parameter. In this experiment, we set the length of MCMC chain as 30,000, burn-in as

10,000, and thinning as 20, which is used for removing the autocorrelations between draws.

The trace plots generated from our code for the 1000 draws after burn-in and thinning are

listed in the Figure 6 below.

Figure 6: Trace plot of a two-network auto-probit model. β0: coefficient of constant term,
β1: coefficient of car price; β2: coefficient of car’s optional accessory; β3: coefficient of
consumer’s age; β4: coefficient of consumer’s income; β5: coefficient of consumer’s ethnicity;
β6: coefficient of residence longitude; β7: coefficient of residence latitude; ρ1: coefficient
of first network autocorrelation term, W1, cohesion; ρ2: coefficient of the second network
autocorrelation term, W2, structural equivalence; σ2: estimated variance of the error term
in autocorrelation.

We have 12 plots total. Each plot depicts draws for a particular parameter estimation.

The first 9 plots, from left to right and top to bottom, are the trace for the βi, coefficient of

independent variables. Each point represents the value of estimated coefficient β̂i, and the

red line represents the mean. We observe all β̂is are randomly distributed around the mean,

and the mean is significant, showing the estimation results are valid. The 10th and 11th

plots are for the two estimated network effect coefficients ρ̂1 and ρ̂2. We found both ρ̂i are
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also significant, and randomly distributed around their means. The only coefficient showing

autocorrelation is σ2.

Note that not all values of ρ1 and ρ2 can make B (B = In−ρ1W1−ρ2W2) invertible. The

plot below shows the relationship between the values of ρ1 and ρ2, and the invertibility of B.

The green area is where B is invertible, and red area is otherwise. If limit draws to the green

area, we will have correlated ρ1 and ρ2. When we draw ρ1 and ρ2 using bivariate normal,

there is no apparent correlation between them (see Figure 7). We understand the correlation

between ρ1 and ρ2 comes from the definition of W1 and W2, not the prior non-correlation.

Figure 7: Regions of validity for ρ1 and ρ2 for which B is invertible (green) or not (red).
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A.5 W as a mixture of matrices

Yang and Allenby 2003) specified the autoregressive matrix W as a finite mixture of coefficient

matrices, each related to a specific covariate:

W =
n∑
i=1

φiWi

n∑
i=1

φi = 1

where i represents the indices of the covariates, i = 1... n. φi is the correspondent weight of

the component matrix Wi. Wi is associated with a covariate Xi.
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