skip to main content
10.1145/2407783.2407795acmconferencesArticle/Chapter ViewAbstractPublication Pagessiggraph-asiaConference Proceedingsconference-collections
research-article

Recent advances in physically-based appearance modeling of cloth

Published:28 November 2012Publication History

ABSTRACT

This course is about recent advances in the challenging field of physically-based appearance modeling of cloth. Apart from geometrical complexity, optical complexity presents complications as highly anisotropic single and multiple scattering effects often dominate the appearance. Many types of fibers are highly translucent and multiple scattering significantly influences the observed color. Since a cloth model may potentially consist of billions of fibers, finding a viable level of geometrical abstraction is difficult. After explaining the general structure of several types of textiles, we give an overview of different approaches that have been proposed to render cloth. As the micro-geometry of cloth can be represented using an explicit representation of a fiber assembly, we continue by explaining optical properties of fibers; these can be derived from first principles of physics such as absorption or index of refraction. Understanding light scattering from fibers is essential, when a physically-based cloth renderer is designed. However, as storing these fibers explicitly is often too costly, more efficient statistical descriptions of cloth have also been proposed that can be used together with volumetric rendering techniques to allow for physically-based image synthesis, while retaining most of the flexibility of explicit methods. A major part of this course will focus on these approaches. We discuss the theory and practice of physically-based rendering of anisotropic media. The discussion begins with a review of linear transport theory, upon which current methods for rendering volumetric cloth are based. Relevant implementation details are discussed at each stage, and the final result will be the pseudocode of a Monte Carlo path tracer for volumetric cloth representations. Although rendering of cloth is a very specialized task, many of the concepts, developed in this field, can be used for rendering other materials with complex micro-geometry as well.

References

  1. Adabala, N., Magnenat-Thalmann, N., and Fei, G. 2003. Real-time visualization of woven textiles. In Publication of EUROSIS, 502--508.Google ScholarGoogle Scholar
  2. Adler, C. L., Lock, J. A., Stone, B. R., and Garcia, C. J. 1996. High-order interior caustics produced in scattering of a diagonally incident plane wave by a circular cylinder. Optical Society of America 14.Google ScholarGoogle Scholar
  3. Adler, C. L., Lock, J. A., and Stone, B. R. 1998. Rainbow scattering by a cylinder with a nearly elliptical cross section. Optical Society of America.Google ScholarGoogle Scholar
  4. Adler, C. L., Phipps, D., Saunders, K. W., Nash, J. K., and Lock, J. A. 2001. Supernumerary spacing of rainbows produced by an elliptical-cross-section cylinder. Optical Society of America.Google ScholarGoogle Scholar
  5. Arbree, A., Walter, B., and Bala, K. 2009. Heterogeneous subsurface scattering using the finite element method. To appear in IEEE Transactions on Visualization and Computer Graphics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Ashikhmin, M., Premoze, S., and Shirley, P. S. 2000. A microfacet-based BRDF generator. In Proceedings of ACM SIGGRAPH 2000, 65--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Case, K., and Zweifel, P. 1967. Linear transport theory, vol. 29. Addison-Wesley Reading, Mass.Google ScholarGoogle Scholar
  8. Cerezo, E., Pérez, F., Pueyo, X., Seron, F. J., and Sillion, F. X. 2005. A survey on participating media rendering techniques. The Visual Computer 21, 5, 303--328.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Cline, D., Talbot, J., and Egbert, P. 2005. Energy redistribution path tracing. In ACM Transactions on Graphics (TOG), vol. 24, ACM, 1186--1195. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Crassin, C., Neyret, F., Lefebvre, S., and Eisemann, E. 2009. Gigavoxels: Ray-guided streaming for efficient and detailed voxel rendering. In ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D). Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Dana, K., Van Ginneken, B., Nayar, S., and Koenderink, J. 1999. Reflectance and texture of real-world surfaces. ACM Transactions on Graphics (TOG) 18, 1, 1--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Daubert, K., Lensch, H., and Heidrich, W. 2001. Efficient cloth modeling and rendering. In Rendering techniques 2001, United Kingdom, June 25--27, 2001, 63. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Donner, C., and Jensen, H. W. 2005. Light diffusion in multi-layered translucent materials. In SIGGRAPH '05: ACM SIGGRAPH 2005 Papers, ACM, New York, NY, USA, 1032--1039. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Drebin, R. A., Carpenter, L., and Hanrahan, P. 1988. Volume rendering. In Computer Graphics (Proceedings of SIGGRAPH 88), 65--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Groller, E., Rau, R. T., and Strasser, W. 1995. Modeling and visualization of knitwear. IEEE Transaction on Visualization and Computer Graphics 1, 4, 302--310. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hachisuka, T., Ogaki, S., and Jensen, H. 2008. Progressive photon mapping. In ACM Transactions on Graphics (TOG), vol. 27, ACM, 130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Haindl, M., and Filip, J. 2011. Advanced textural representation of materials appearance. In SIGGRAPH Asia 2011 Courses, ACM, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Heino, J., Arridge, S., Sikora, J., and Somersalo, E. 2003. Anisotropic effects in highly scattering media. Phys. Rev. E 68, 3.Google ScholarGoogle ScholarCross RefCross Ref
  19. Irawan, P., and Marschner, S. 2006. A simple, accurate texture model for woven cotton cloth. Tech. rep., Tech. Rep. PCG-06-01, Cornell University, Department of Computer Science.Google ScholarGoogle Scholar
  20. Irawan, P. 2007. Appearance of Woven Cloth. PhD thesis, Cornell University. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Ishimaru, A. 1978. Wave Propagation and Scattering in Random Media. Academic Press, New York, USA.Google ScholarGoogle Scholar
  22. Jakob, W., Arbree, A., Moon, J. T., Bala, K., and Marschner, S. 2010. A radiative transfer framework for rendering materials with anisotropic structure. ACM TOG 29 (July), 53:1--53:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Jakob, W., Arbree, A., Moon, J. T., Bala, K., and Marschner, S. 2010. A radiative transfer framework for rendering materials with anisotropic structure. Tech. rep., Cornell University. (Expanded version), http://hdl.handle.net/1813/14982. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. In Proceedings of SIGGRAPH 2001, 511--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. In Proceedings of SIGGRAPH 01, 511--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Jensen, H. 1996. Global illumination using photon maps. Rendering Techniques 96, 21--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Johnson, P. M., and Lagendijk, A. 2009. Optical anisotropic diffusion: new model systems and theoretical modeling. Journal of Biomedical Optics 14, 5.Google ScholarGoogle ScholarCross RefCross Ref
  28. Kajiya, J. T., and Herzen, B. P. V. 1984. Ray tracing volume densities. In Computer Graphics (Proceedings of SIGGRAPH 84), 165--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Kajiya, J. T., and Kay, T. L. 1989. Rendering fur with three dimensional textures. In Computer Graphics (Proceedings of SIGGRAPH 89), 271--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Kaldor, J., James, D., and Marschner, S. 2008. Simulating knitted cloth at the yarn level. In ACM Transactions on Graphics (TOG), vol. 27, ACM, 65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Keller, A. 1997. Instant radiosity. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., 49--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Kistler, R. 2011 (accessed February 2, 2012). Kleines Zwirn Lexikon.Google ScholarGoogle Scholar
  33. Levoy, M. 1988. Display of surfaces from volume data. IEEE Computer Graphics & Applications 8, 3 (May), 29--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Magnenat-Thalmann, N., Cordier, F., Keckeisen, M., Kimmerle, S., Klein, R., and Meseth, J. 2004. Simulation of clothes for real-time applications. In Eurographics 2004, Tutorials, INRIA and the Eurographics Association.Google ScholarGoogle Scholar
  35. Malzbender, T., Gelb, D., and Wolters, H. 2001. Polynomial texture maps. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, ACM, 519--528. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Marschner, S. R., Jensen, H. W., Cammarano, M., Worley, S., and Hanrahan, P. 2003. Light scattering from human hair fibers. ACM TOG 22, 3, 780--791. SIGGRAPH 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Marschner, S. R., Westin, S. H., Arbree, A., and Moon, J. T. 2005. Measuring and modeling the appearance of finished wood. ACM Trans. Graph. 24 (July), 727--734. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Max, N. L. 1994. Efficient light propagation for multiple anisotropic volume scattering. In Fifth Eurographics Workshop on Rendering, 87--104.Google ScholarGoogle Scholar
  39. Mees, L., Ren, K. F., Grehan, G., and Gouesbet, G. 1998. Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation: numerical results. Optical Society of America.Google ScholarGoogle Scholar
  40. Meseth, J., Müller, G., Sattler, M., and Klein, R. 2003. Btf rendering for virtual environments. In Virtual Concepts 2003, 356--363.Google ScholarGoogle Scholar
  41. Moon, J. T., and Marschner, S. R. 2006. Simulating multiple scattering in hair using a photon mapping approach. ACM TOG 25, 3, 1067--1074. SIGGRAPH 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Moon, J. T., Walter, B., and Marschner, S. 2008. Efficient multiple scattering in hair using spherical harmonics. ACM TOG 27, 3. SIGGRAPH 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Morton, W. E., and Hearle, J. W. S. 1962. Physical properties of textile fibres / W. E. Morton and J. W. S. Hearle. Textile Institute, Manchester, England.Google ScholarGoogle Scholar
  44. Mount, C. M., Thiessen, D. B., and Marston, P. L. 1998. Scattering observations for tilted transparent fibers: evolution of airy caustics with cylinder tilt and the caustic merging transition. Applied Optics 37, 9, 243--249.Google ScholarGoogle ScholarCross RefCross Ref
  45. Müller, G., Meseth, J., Sattler, M., Sarlette, R., and Klein, R. 2005. Acquisition, synthesis, and rendering of bidirectional texture functions. In Computer Graphics Forum, vol. 24, Wiley Online Library, 83--109.Google ScholarGoogle Scholar
  46. Pauly, M., Kollig, T., and Keller, A. 2000. Metropolis light transport for participating media. Fachbereich Informatik, Univ.Google ScholarGoogle Scholar
  47. Perlin, K., and Hoffert, E. M. 1989. Hypertexture. In Computer Graphics (Proceedings of SIGGRAPH 89), 253--262. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Premoze, S., Ashikhmin, M., Tessendorf, J., Ramamoorthi, R., and Nayar, S. 2004. Practical rendering of multiple scattering effects in participating media. In Rendering Techniques 2004: 15th Eurographics Workshop on Rendering, 363--374. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Robbins, C. 1994. Chemical and physical behavior of human hair. third ed. Springer-Verlag, New York.Google ScholarGoogle Scholar
  50. Sadeghi, I. 2011. Controlling the Appearance of Specular Microstructures. Jacobs School of Engineering, UC San Diego.Google ScholarGoogle Scholar
  51. Sattler, M., Sarlette, R., and Klein, R. 2003. Efficient and realistic visualization of cloth. In Proceedings of the 14th Eurographics workshop on Rendering, Eurographics Association Aire-la-Ville, Switzerland, Switzerland, 167--177. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Schröder, K., Möller, D., Klein, R., and Zinke, A. 2011. Non-local image reconstruction for efficient btf synthesis. In SIGGRAPH Asia 2011 Sketches, ACM, 30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Schröder, K., Klein, R., and Zinke, A. 2011. A volumetric approach to predictive rendering of fabrics. Computer Graphics Forum (Proceedings of EGSR 2011) 30, 4 (July), 1277--1286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Schuh, R., and Wriedt, T. 2003. Light scattering from bent cylindrical fibers for fiber length and diameter characterization. Particle & Particle Systems Characterization 20, 243--249.Google ScholarGoogle ScholarCross RefCross Ref
  55. Schwartz, C., Ruiters, R., Weinmann, M., and Klein, R. 2011. Webgl-based streaming and presentation framework for bidirectional texture functions. In The 12th International Symposium on Virtual Reality, Archeology and Cultural Heritage VAST 2011, Eurographics Association, Eurographics Association, 113--120. Best Paper Award. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Shinohara, T., Takayama, J., Ohyama, S., and Kobayashi, A. 2010. Extraction of yarn positional information from a three-dimensional CT image of textile fabric using yarn tracing with a filament model for structure analysis. Textile Research Journal 80, 7, 623--630.Google ScholarGoogle ScholarCross RefCross Ref
  57. Sreprateep, K., and Bohez, E. 2006. Computer Aided Modelling of Fiber Assemblies. Comput. Aided Des. Appl 3, 1--4, 367--376.Google ScholarGoogle ScholarCross RefCross Ref
  58. USDA E.R.S., 2004. http://www.ers.usda.gov/briefing/cotton/.Google ScholarGoogle Scholar
  59. Veach, E., and Guibas, L. 1994. Bidirectional estimators for light transport. surfaces 18, 19, 20.Google ScholarGoogle Scholar
  60. Veach, E., and Guibas, L. 1997. Metropolis light transport. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., 65--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Volevich, V. L., Kopylov, E. A., Khodulev, A. B., and Karpenko, O. A. 1997. An approach to cloth synthesis and visualization. In The 7-th International Conference on Computer Graphics and Visualization.Google ScholarGoogle Scholar
  62. Walter, B., Fernandez, S., Arbree, A., Bala, K., Donikian, M., and Greenberg, D. 2005. Lightcuts: a scalable approach to illumination. In ACM Transactions on Graphics (TOG), vol. 24, ACM, 1098--1107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Walter, B., Marschner, S. R., Li, H., and Torrance, K. E. 2007. Microfacet models for refraction through rough surfaces. In Eurographics Workshop on Rendering 2007, 195--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Walter, B., Khungurn, P., and Bala, K. 2012. Bidirectional lightcuts. ACM Transactions on Graphics (TOG) 31, 4, 59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Walter, B. 2005. Notes on the Ward BRDF. Tech. Rep. PCG-05-06, Program of Computer Graphics, Cornell University.Google ScholarGoogle Scholar
  66. Wang, J., Zhao, S., Tong, X., Snyder, J., and Guo, B. 2008. Modeling anisotropic surface reflectance with example-based microfacet synthesis. ACM Trans. Graph. (to appear in SIGGRAPH 2008) 27, 3, 41:1--41:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Westermann, R., and Ertl, T. 1998. Efficiently using graphics hardware in volume rendering applications. In Proceedings of SIGGRAPH 98, 169--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Westin, S. H., Arvo, J. R., and Torrance, K. E. 1992. Predicting reflectance functions from complex surfaces. SIGGRAPH Comput. Graph. 26, 2, 255--264. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Woodcock, E., Murphy, T., Hemmings, P., and Longworth, S. 1965. Techniques used in the gem code for monte carlo neutronics calculations in reactors and other systems of complex geometry. In Proc. Conf. Applications of Computing Methods to Reactor Problems, 557.Google ScholarGoogle Scholar
  70. Xu, Y.-Q., Chen, Y., Lin, S., Zhong, H., Wu, E., Guo, B., and Shum, H.-Y. 2001. Photorealistic rendering of knitwear using the lumislice. In SIGGRAPH '01, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 391--398. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Yasuda, T., Yokoi, S., Toriwaki, J., and Inagaki, K. 1992. A shading model for cloth objects. Computer Graphics and Applications, IEEE 12, 6 (nov.), 15--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. 2011. An evaluation on woven cloth rendering techniques. 7--12.Google ScholarGoogle Scholar
  73. Zhao, S., Jakob, W., Marschner, S., and Bala, K. 2011. Building volumetric appearance models of fabric using micro CT imaging. ACM Trans. Graph. 30 (Aug.), 44:1--44:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Zhao, S., Jakob, W., Marschner, S., and Bala, K. 2012. Structure-aware synthesis for predictive woven fabric appearance. ACM Trans. Graph. 31 (Aug.), XX:1--XX:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Zinke, A., and Weber, A. 2007. Light scattering from filaments. IEEE TVCG 13, 2, 342--356. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Zinke, A., Sobottka, G., and Weber, A. 2004. Photo-realistic rendering of blond hair. In VMV 2004, 191--198.Google ScholarGoogle Scholar
  77. Zinke, A., Yuksel, C., Weber, A., and Keyser, J. 2008. Dual scattering approximation for fast multiple scattering in hair. ACM TOG 27, 3. SIGGRAPH 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Zinke, A., Lay Herrrera, T., Andriyenko, A., Rump, M., Weber, A., and Klein, R. 2009. A practical approach for photometric acquisition of hair color.Google ScholarGoogle Scholar

Index Terms

  1. Recent advances in physically-based appearance modeling of cloth
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Published in

              cover image ACM Conferences
              SA '12: SIGGRAPH Asia 2012 Courses
              November 2012
              754 pages
              ISBN:9781450319133
              DOI:10.1145/2407783

              Copyright © 2012 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 28 November 2012

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article

              Acceptance Rates

              Overall Acceptance Rate178of869submissions,20%

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader