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One popular family of low discrepancy sets is the (t, m, s)-nets. Recently a randomization of
these nets that preserves their net property has been introduced. In this article a formula for
the mean square +2-discrepancy of (0, m, s)-nets in base b is derived. This formula has a
computational complexity of only O(s log(N) 1 s2) for large N or s, where N 5 bm is the
number of points. Moreover, the root mean square +2-discrepancy of (0, m, s)-nets is shown to
be O(N21[log(N)](s21)/ 2) as N tends to infinity, the same asymptotic order as the known lower
bound for the +2-discrepancy of an arbitrary set.

Categories and Subject Descriptors: G.1.4 [Numerical Analysis]: Quadrature and Numerical
Differentiation—error analysis; multiple quadrature; G.3 [Probability and Statistics]: Prob-
abilistic Algorithms (including Monte Carlo); I.6.8 [Simulation and Modeling]: Types of
Simulation—Monte Carlo
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1. INTRODUCTION

Multidimensional integrals over the s-dimensional unit cube Cs 5 [0, 1)s

may be approximated by the sample mean of the integrand evaluated on a
point set, P, with N points. (Here, in contrast to ordinary sets, P may have
multiple copies of the same point [Niederreiter 1992, p. 14].) The quadra-
ture error depends on how uniformly the points in P are distributed on the
unit cube and on how much the integrand varies from a constant. For
example, if D(P) is the +`-star discrepancy [Niederreiter 1992, Definition
2.1], and V( f ) is the variation of f on C# s 5 [0, 1]s in the sense of Hardy
and Krause, then the Koksma–Hlawka inequality [Niederreiter 1992,
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Theorem 2.11] is

Err~ f ! ; UE
Cs

f~ x!dx 2
1

N
O
z[P

f~ z!U # D~P!V~ f !. (1.1)

Error bounds of this form with other definitions of D(P) and V( f ) appear
in the literature as well. A good set P for quadrature is one that has a small
discrepancy, D(P). Several deterministic sets have been found that have
smaller discrepancies than simple random points. These sets are often
called quasi-random points.
Calculating the +`-star discrepancy of a particular set is impractical

unless both N and s are small because it requires O(Ns) operations. Much
effort has been directed towards finding quasi-random sequences that have
asymptotically small +`-star discrepancies as N tends to infinity. The
(t, m, s)-nets [Niederreiter 1992, chap. 4] are one example. By comparison,
the +2-star discrepancy is easier to compute, requiring only O(N2) opera-
tions using a naive algorithm, or O(N[log(N)]s) operations using the
algorithm of Heinrich [1996].
Owen [1995; 1997a; 1997b] has proposed a randomization of (t, m,

s)-nets that preserves their net properties. His aim is to obtain probabilis-
tic quadrature error estimates in a similar manner as one would for simple
Monte Carlo quadrature. In this article, a formula for the mean square
+2-discrepancy of randomized (0, m, s)-nets is derived that requires only
O(s log(N) 1 s2) mathematical operations to evaluate as N and/or s tend
to infinity. The +2-discrepancy for these randomized nets is shown to decay
like O(N21[log(N)](s21)/ 2) for large N—a result matching the asymptotic
lower bound obtained by Roth [1954].
In the remainder of this section we define (t, m, s)-nets and describe

Owen’s randomization. Also, a generalized +2-discrepancy that arises in
quadrature error bounds, recently derived by the author, is defined. In
Section 2 the mean square +2-discrepancy is computed for simple random
samples and randomized (0, m, s)-nets. The asymptotic behavior of the
+2-discrepancy is studied in Section 3. This article concludes with some
discussion.
Any point z 5 ( z1, . . . , zs) [ Cs may be written in base b as

z 5 ~0.z11z21z31 . . . , 0.z12z22z32 . . . , . . . . . . , 0.z1sz2sz3s . . . !,

where the b-nary digits zij range from 0 to b 2 1. Let Z1
s denote the space

of s-dimensional non-negative integer vectors. For any k 5 (k1, . . . , ks) [
Z1
s , let s(k) 5 k1 1 . . . 1 ks. There are b

k1 . . . bks 5 bs(k) different ways
to choose the first k b-nary digits of a point z:

z11, . . . , zk11, z12, . . . , zk22, . . . , z1s, . . . , zkss. (1.2)
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(If kj 5 0, then no digit zij is being specified.) A (t, m, s)-net contains at
least one point with every possible choice of the first k digits, provided that
s(k) is small enough.

Definition 1.1. Let t and m be non-negative integers with 0 # t # m,
and let s be a positive integer. A (t, m, s)-net in base b is a set, P,
containing N 5 bm points in Cs. For any possible choice of the first k
b-nary digits (1.2) there exist bm2s(k) points in P with these digits provided
that s(k) # m 2 t.
A smaller value of t tends to imply a net with better uniformity (smaller

discrepancy). Any (t1, m, s)-net is also a (t2, m, s)-net for t1 , t2, and any
set is an (m, m, s)-net. (For a fuller discussion of (t, m, s)-nets, see
Niederreiter [1992, chap. 4].)
Owen randomizes the digits of the points in a given (t, m, s)-net P0 to

obtain a new (t, m, s)-net P. For every digit index i 5 1, 2, . . . , every
coordinate index j 5 1, . . . , s, and every y [ P0, one obtains a random
digit zij that contributes to a random point z [ P. The randomized net, P,
satisfies the following assumptions:

Assumption 1.2
a. For any z [ P each digit zij is uniformly distributed on the set {0,

. . . , b 2 1}.
b. For any two points z, z9 [ P the random vectors ( z1, z91), . . . , ( zs,

z9s) are mutually independent.
c. For any two points y, y9 [ P0 let z, z9 [ P be the corresponding

points in the randomized net. Suppose that yj and y9j share the same
first kj digits, but that their kj 1 1st digits are different. Then
i. zij 5 z9ij for i 5 1, . . . , kj,
ii. the random vector ( zkj11, j, z9kj11, j) is uniformly distributed on the

set {(n, n9) ; n Þ n9; n, n9 5 0, . . . , b 2 1}, and
iii. zkj12, j, zkj13, j, . . . z9kj12, j, z9kj13, j, . . . are mutually independent.

Assumptions 1a and 1b imply that the marginal probability distribution of
any z 5 ( z1, . . . , zs) [ P is uniform on Cs and that the z1, . . . , zs are
mutually independent. Assumption 1c maintains the correlation between
different points in P that is necessary for retaining its net properties and
thus a low discrepancy. For a simple random sample, Assumptions 1a and
1b are also satisfied, but instead of Assumption 1c one has z1j, z2j, . . . ,
z91j, z92j, . . . mutually independent for z Þ z9.
Let S 5 {1, . . . , s} be the set of coordinate indices. For any u # S let uu u

denote the number of points in u. Let Cu 5 [0, 1)u denote the uu u-
dimensional unit cube involving the coordinates in u, and likewise, let Z1

u

be the uu u-dimensional non-negative integer vectors. This notation allows
us to distinguish spaces of the same dimension in different coordinate
directions.
The +p-star discrepancy is sometimes defined as the +p-norm of the
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difference between the empirical distribution associated with the sample P
and the uniform distribution on the unit cube:

D*p,S~P! ; I uP ù @0, x! u

N
2 Vol~@0, x!!I

p

, (1.3)

where u u denotes the number of points in a set, and i ip denotes the
+p-norm. Although this definition is appropriate for p 5 `, it does not
admit an error bound like (1.1) for other values of p. A more suitable
definition [Hickernell to appear] is

D*p~P! ; H O
À,u#S

I uPu ù @0, xu! u

N
2 Vol~@0, xu!!I p

p
J 1/p

~1 # p , `!,

D*̀~P! ; max
À,u#S

I uPu ù @0, xu! u

N
2 Vol~@0, xu!!I

`

5 I uP ù @0, x! u

N
2 Vol~@0, x!!I

`

,

where Pu denotes the projection of the sample P into the cube Cu. This
means that D*p,S(P) is only one term in the definition of D*p(P) for p , `.
An error bound of the form (1.1) based on this definition was derived by
Zaremba [1968] for p 5 2 and Sobol’ [1969, Ch. 8] for all p. The +p-star
discrepancy is in general difficult to compute, except in the case p 5 2
where it reduces to a double sum:

@D*2~P!#2 5 S43D
s

2
2

N
O
z[P

P
j51

s S3 2 zj
2

2 D 1
1

N2 O
z,z9[P

P
j51

s

@2 2 max~ zj, z9j!#.

Hickernell [to appear] has derived a family of quadrature error bounds of
form (1.1) and +p-discrepancies, Dp(P), that include the star discrepancy
as a special case. The +2-discrepancy is the simplest to compute. Let b be
an arbitrary positive constant and m be an arbitrary function on [0, 1)
whose first derivative is essentially bounded and that satisfies *0

1 m(xj)dxj 5 0.
Furthermore, let

M# 5 E
0

1Sdm

dx D
2

dx, M 5 1 1 b2M# .
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The generalized +2-discrepancy defined in Hickernell [to appear] is

@D2~P!#2 5 Ms 2
2

N
O
z[P

P
j51

s

@M 1 b2m~ zj!# 1
1

N2 O
z,z9[P

P
j51

s

z HM 1 b2Fm~ zj! 1 m~ z9j! 1
1

2
B2~ zj! 1

1

2
B2~ z9j! 1

1

6
2
1

2
U zj 2 z9jU G J , (1.4)

where B2 denotes the quadratic Bernoulli polynomial [Abramowitz and
Stegun 1964, chap. 23]. The star discrepancy is obtained by choosing

m~ x! 5
1

6
2
x2

2
, b 5 1, M# 5

1

3
, M 5

4

3
. (1.5)

Another choice of m and b yields a discrepancy derived by Hickernell [1996]
that is similar to the figure of merit, Pa, used in the study of lattice rules
[Sloan and Joe 1994, Eq. (4.8)]. Several different choices of m and b are
discussed by Hickernell [to appear].
The +2-discrepancy defined in (1.4) can also be written as

@D2~P!#2 5 O
À,u#S

b2uuu@D2,u~P!#2 (1.6)

where

@D2,u~P!#2 5 M# uuu 2
2

N
O
z[P

P
j[u

@M# 1 m~zj!#

1
1

N2 O
z,z9[P

P
j[u

FM# 1 m~zj! 1 m~z9j! 1
1

2
B2~zj! 1

1

2
B2~z9j! 1

1

6
2
1

2
Uzj 2 z9jUG. (1.7)

Choosing m and b according to (1.5) and setting u 5 S in the above
equation yields a formula for D*2,S of (1.3) originally derived by Warnock
[1972]:

@D*2,S~P!#2 5 S13D
s

2
2

N
O
z[P

P
j51

s S1 2 zj
2

2 D 1
1

N2 O
z,z9[P

P
j51

s

@1 2 max~ zj, z9j!,#.

Not only does the +2-discrepancy appear in worst-case quadrature error
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bounds, such as (1.1), it also arises in average-case quadrature error
analysis. Let Ef denote the expected value over some space of integrands.
Then

Ef @Err~ f !#2 5 @D2~P!#2,

where the choice of the space of integrands determines the specific form of
the discrepancy [Sacks and Ylvisacker 1970; Ritter 1995]. The case of the
star discrepancy has been studied by Woźniakowski [1991] and Morokoff
and Caflisch [1994].

2. COMPUTING THE MEAN SQUARE +2-DISCREPANCY

Let E denote the expected value over a space of random sets P. In this
section we compute E{[D2(P)]

2} for simple random samples and for ran-
domized (0, m, s)-nets. Both kinds of samples satisfy Assumptions 1a and
1b. This allows a simple treatment of terms in (1.4) involving only zj or only
z9j. The difficult term is uzj 2 z9ju since its expected value depends on the
correlation of z and z9.

LEMMA 2.1. If P is a random set satisfying Assumptions 1a and 1b, then

E$@D2~P!#2%

5 SM 1
b2

6 D s

O
À,u#S

S 2b2

6M 1 b2D uuuH21 1
1

N2 O
z,z9[P

P
j[u

@3E uzj 2 z9ju#J . (2.1)

PROOF. By Assumption 1.2(a), each zj is uniformly distributed on [0, 1),
so

E@B2~ zj!# 5 E
0

1

B2~ xj!dxj 5 0, E@m~ zj!# 5 E
0

1

m~ xj!dxj 5 0.

By Assumption 1.2(b), the components ( z1, z91), . . . , ( zs, z9s) are mutually
independent so that the expectation of the product over j is the product of
the expectations. Combining these two results implies that (1.4) can be
written as

E$@D2~P!#2% 5 2Ms 1
1

N2 O
z,z9[P

P
j51

s H SM 1
b2

6 D 2
b2

2
EU zj 2 z9jU J .

Using the binomial theorem to rewrite the product completes the proof of
this lemma. e

To simplify (2.1) further one must calculate 3E uzj 2 z9ju. In the case
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where P is a simple random sample, it is straightforward to show that

3E uzj 2 z9ju 5 H01, z 5 z9,
z Þ z9.

(2.2)

Substituting this expression into (2.1) calculation leads to

E$@D2~P!#2% 5 SM 1
b2

6 D s

O
À,u#S

S 2b2

6M 1 b2D uuuH21 1
N2 2 N

N2 J ,
which after further simplification gives the following theorem:

THEOREM 2.2. If P is a simple random sample, then

E$@D2~P!#2% 5
1

NF SM 1
b2

6 D s

2 MsG . (2.3)

This formula serves as a benchmark for other (presumably superior)
quasi-random sets, P. Since the mean square generalized +2-discrepancy is
O(N21), the generalized +2-discrepancy itself is typically O(N21/ 2) for a
simple random sample.
The mean square discrepancy of a randomized (0, m, s)-net is given by

the following theorem. Two major steps in the calculation are contained in
Lemmas 2.4 and 2.5 below.

THEOREM 2.3. Let P be a (0, m, s)-net randomized according to Assump-
tion 1.2. Let R(l, t) be defined as the partial binomial sum:

R~l, t! ; ~1 2 b21!12lO
r50

t21S l 2 1
r D ~2b21!r. (2.4)

The mean square discrepancy of P is

E$@D2~P!#2% 5 SM 1
b2

6 D s

O
l51

s H S slD S 2b2

6M 1 b2D l

3 F21 1 ~1 2 b22! l O
t50

m21S l 1 t 2 1
l 2 1 Db22tR~l, m 2 t!G J .

(2.5)

The first step in the proof of this theorem is to calculate 3E uzj 2 z9ju for a
randomized net and obtain a formula analogous to (2.2).

LEMMA 2.4. Suppose that P is a randomized (t, m, s)-net satisfying
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Assumption 1.2, and that z and z9 are two points in P, such that the
components zj and z9j share the same first kj digits, but no more. It follows
that

3E uzj 2 z9ju 5 ~1 1 b21!b2kj, P
j[u

@3E uzj 2 z9ju# 5 ~1 1 b21! uuub2s~ku!.

PROOF. The jth components zj and z9j share the same first kj digits, but
have different kj 1 1st digits, if and only if the original yj and y9j from
which they came have the same first kj digits but different kj 1 1st digits.
In this case, Assumption 1.2(c) implies that

uzj 2 z9ju 5 @ uzkj11,j 2 z9kj11, ju 1 ~d 2 d9!#b2kj21,

where ( zkj11, j, z9kj11, j) is distributed according to Assumption 1.2(c)(ii),
and where d and d9 are uniformly distributed on [0, 1). Then

3E uzj 2 z9ju 5
6b2kj21

N2 2 N
O
n51

b21 O
n950

n21

~n 2 n9! 5 ~1 1 b21!b2kj. e

To compute the mean square +2-discrepancy for a randomized net one
must count how many points share exactly the same first kj digits for all
possible ku [ Z1

u . The result for (0, m, s)-nets is contained in the lemma
below. It seems impossible to extend this calculation to (t, m, s)-nets for
t . 0 because a (t, m, s)-net is not defined precisely enough. For example,
a (1, m, s)-net may also be a (0, m, s)-net.

LEMMA 2.5. Suppose that P is any (0, m, s)-net (randomized or not). For
any fixed z let l(ku) denote the number of points z9 [ P such that zj and z9j
share exactly the same kj digits (but no more) for j [ u. Then, for finite ku

l~ku! 5 l uuu,s~ku! , (2.6a)

where

l l,t ; bm2t~1 2 b21! O
r50

m2t21S l 2 1
r D ~2b21!r 5 bm2t~1 2 b21! lR~l, m 2 t!.

(2.6b)

PROOF. As a consequence of Definition 1.1 there are no points (other
than z itself) that have the same ku digits as z for s(ku) . m, and formula
(2.6) holds in this case. Now assume that (2.6) holds for all ku with s(ku)
strictly greater than some t9 # m. This is shown to imply that (2.6) holds
for s(ku) 5 t9, and therefore (2.6) holds for all s(ku) by induction.
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For any k9u [ Z1
u with s(k9u) 5 t9, Definition 1.1 implies that there are

bm2t9 points z9 [ P which have the same first k9u (or more) digits as z. This
can be written as

bm2t9 5 1 1 O
ku$k9u

l~ku!,

or

l~k9u! 5 bm2t9 2 1 2 O
ku.k9u

l~ku!, (2.7)

where ku . k9u means that kj $ k9j for all j [ u and s(ku) . s(k9u). The
term 1 above represents z9 5 z. Since (2.6) is assumed to be true for all
s(ku) . s(k9u) 5 t9 and since there are ( t2t9

uu u1t2t921) different ku . k9u with
s(ku) 5 t, the sum over ku . k9u may be rewritten as

O
ku.k9u

l~ku! 5 O
t5t911

m21 S uu u 1 t 2 t9 2 1
t 2 t9 Dl uuu,t 5 O

t51

m2t921S uu u 1 t 2 1
t

Dl uuu,t1t9

5 ~1 2 b21! O
t51

m2t921 O
r50

m2t21S uu u 1 t 2 1
t

D S uu u 2 1
r D ~21!rbm2t2t92r.

To simplify this double sum, the index r is replaced by r9 5 r 1 t and the
order of summation is reversed:

O
ku.k9u

l~ku! 5 ~1 2 b21! O
r951

m2t21

~21!r9bm2t92r9O
t51

r9 S uu u 1 t 2 1
t

D S uu u 2 1
r9 2 t

D ~21!t9.

An identity for binomial coefficients [Prudnikov et al. 1986, sec. 4.2.5, eq.
47] simplifies the inner sum:

O
ku.k9u

l~ku! 5 ~1 2 b21! O
r951

m2t21

~21!r9bm2t92r9F ~21!r9 2 S uu u 2 1
r9 D G

5 ~1 2 b21!bm2t9 O
r950

m2t21Fb2r9 2 S uu u 2 1
r9 D ~2b!2r9G

5 1 2 bm2t9 2 l uuu,t9 .

Substituting this formula for the sum back into (2.7) gives l(k9u) 5 l uu u,t9,
which completes the proof of (2.6). e
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PROOF OF THEOREM 2.3. Combining the results of Lemmas 2.4 and 2.5,
the sum over z, z9 [ P in (2.1) can be written as:

1

N2 O
z,z9[P

P
j[u

@3E uzj 2 z9ju# 5 b2m~1 1 b21! uuu O
ku[Z1

u

b2s~ku!l uuu,s~ku!

5 ~1 2 b22! uuu O
ku[Z1

u

b22s~ku!R~ uu u, m 2 s~ku!!.

For every t 5 0, . . . , m 2 1, there are ( uu u21
uu u1t21) distinct ku [ Z1

u with
s(ku) 5 t, so

1

N2 O
z,z9[P

P
j[u

@3E uzj 2 z9ju# 5 ~1 2 b22! uuu O
t50

m21S uu u 1 t 2 1
uu u 2 1 Db22tR~ uu u, m 2 t!

Also, for any positive integer l, there are ( l
s) distinct u # S with uu u 5 l,

which allows (2.1) to be written as:

E$@D2~P!#2% 5 SM 1
b2

6 D s

O
l51

s H S slD S 2b2

6M 1 b2D l

3 F21 1 ~1 2 b22! l O
t50

m21S l 1 t 2 1
l 2 1 Db22tR~l, m 2 t!G J ,

thereby completing the proof. e

From (2.4), it follows that

R~l, t! 5 H01 t # 0,
t $ l.

(2.8)

Therefore, only O(s2) operations are required to calculate the O(s2) non-
trivial values of R(l, m 2 t) for 1 # m 2 t , l # s. The sums over l and
t in (2.5) involve a total of O(ms) terms, so the mean square +2-discrepancy
of randomized (0, m, s)-nets can be calculated in O(s log(N) 1 s2)
operations as N and/or s tend to infinity. This order is much smaller than
that required to compute the +2-discrepancy of an arbitrary set P.
Formula (1.4) for D2(P) and formula (1.7) for D2,u(P) are quite similar.

Thus, the root mean square of D2,u(P) can be calculated using the same
arguments as for Theorems 2.2 and 2.3.

THEOREM 2.6. If P is a simple random sample, then

E$@D2,u~P!#2% 5
1

NF SM# 1
b2

6 D uuu

2 M# uuuG .
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THEOREM 2.7. Let P be a (0, m, s)-net randomized according to Assump-
tion 1 and u be some non-empty subset of S. Then

E$@D2,u~P!#2% 5 SM# 1
1

6D
uuu

O
l51

uuu HSuuu
l DS 21

6M# 1 1
Dl

3 F21 1 ~1 2 b22!l O
t50

m21Sl 1 t 2 1
l 2 1 Db22tR~l, m 2 t!GJ. (2.9)

3. ASYMPTOTICS

As N (or equivalently m) approaches infinity, one would like to know how
quickly the mean squared +2-discrepancy tends to zero. This can be
calculated by an asymptotic analysis of the formulas in Theorems 2.3 and
2.7.

THEOREM 3.1. Let P be a (0, m, s)-net randomized according to Assump-
tion 1.2. Then

E$@D2~P!#2% ,
b2s~b 2 b21!s21

6s~s 2 1!!@log~b!#s21
N22@log~N!#s21 as N3 `, (3.1)

E$@D2,u~P!#2% ,
~b 2 b21! uuu21

6 uuu~ uu u 2 1!!@log~b!# uuu21
N22@log~N!# uuu21 as N3 `. (3.2)

PROOF. The dependence on m in (2.5) and (2.9) lies in the term in square
brackets, which we call T(l ). Its asymptotic form can be obtained by
rewriting the sum over t as an infinite sum. Since

21 5 2~1 2 b22! lO
t50

` S l 1 t 2 1
l 2 1 Db22t,

it follows by (2.8) that

T~l ! ; 21 1 ~1 2 b22! l O
t50

m21S l 1 t 2 1
l 2 1 Db22tR~l, m 2 t!

5 ~1 2 b22! lO
t50

` S l 1 t 2 1
l 2 1 Db22t@R~l, m 2 t! 2 1#

5 ~1 2 b22! lb2~l212m! O
t5max~0,l212m!

` Sm 1 t

l 2 1 Db22t@R~l, l 2 1 2 t! 2 1#.
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The definition of R(l, t) in (2.4) can be used to simplify this expression
further:

R~l, l 2 1 2 t! 2 1 5 2~1 2 b21!12l O
r5l21

l212tS l 2 1
r D ~2b21!r

5 2~1 2 b21!12l~2b21! l21O
r50

t S l 2 1
r D ~2b21!2r,

which implies

T~l ! 5 ~21! l~1 1 b21! l~1 2 b21!21bl2122m

3 O
t5max~0,l212m!

` O
r50

t Sm 1 t

l 2 1 D S l 2 1
r D ~21!rb22t1r.

For large m the binomial coefficient ( l21
m1t) is asymptotic to ml21/(l 2 1)!

and max(0, l 2 1 2 m) 5 0. By reversing the order of the summation
above one can compute an asymptotic form for T(l ):

T~l ! , ~21! l~1 1 b21! l~1 2 b21!21bl2122m
ml21

~l 2 1!!
O
t50

` O
r50

t S l 2 1
r D ~21!rb22t1r

5 ~21! l~1 1 b21! l~1 2 b21!21bl2122m
ml21

~l 2 1!!
O
r50

` S l 2 1
r D ~2b!rO

t5r

`

b22t

5 ~21! l~1 1 b21! l~1 2 b21!21bl2122m
ml21

~l 2 1!!
O
r50

` S l 2 1
r D ~2b!r

b22r

1 2 b22

5 ~21! l~b 2 b21! l21b22m
ml21

~l 2 1!!

The asymptotic expected mean square discrepancy involves the sum of
T(l ) over l. Because of the factor ml21 above, the most significant term
occurs when l 5 s. Therefore,

EH @D2~P!#2 , SM 1
b2

6 D sS 2b2

6M 1 b2D s

T~s! ,
b2s~b 2 b21!s21

6s~s 2 1!!
ms21b22m

5
b2s~b 2 b21!s21

6s~s 2 1!!@log~b!#s21
N22@log~N!#s21,
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which completes the proof of (3.1). A similar argument is used to prove
(3.2). e

Note that the asymptotic behavior of E{[D2(P)]
2} is independent of the

function m and the constant M; the asymptotic behavior of E{[D2,u(P)]
2} is

independent of the constant b as well. For prime power dimensions s there
exist (0, m, s)-nets with base b 5 s [Faure 1982; Niederreiter 1992, th.
4.54]. For this case, we have

E$@D2~P!#2% , b2s@A~s!#2N22[log~N!] ~s21! as N3 `,

E$@D2,S~P!#2% , @A~s!#2N22@log~N!#~s21! as N3 `,

where

A~s! ; F ~s 2 s21!s21

6s~s 2 1!!@log~s!#~s21!G 1/ 2

.

For large s the coefficient A(s) tends to zero faster than exponentially. By
Stirling’s formula

A~s! , F es

Î2ps6s@log~s!#~s21!G 1/ 2

as s3 `.

4. DISCUSSION

The mean of the square of a random variable is equal to the square of its
mean plus the square of its standard deviation. In particular,

E$@D2~P!#2% 5 $E@D2~P!#%2 1 $Std@D2~P!#%2,

so =E{[D2(P)]
2} is an upper bound on both the mean and the standard

deviation of D2(P). Thus, by Theorem 3.1

E@D2~P!# 5 O~N21~log~N!!~s21!/ 2!,

which is the same asymptotic order as a lower bound on D*2S(P) derived by
Roth [1954]. Kuipers and Niederreiter [1974, p. 102] refined this lower
bound to give an explicit constant (see also Niederreiter [1978, eq. (3.10)
and p. 972]):

D*2,S~P! $ B~s!N21@log~N!#~s21!/ 2,

where

B~s! 5 H1221/ 2

$16s@~s 2 1!log~2!#~s21!/ 2%21

for s 5 1
for s $ 2.
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A lower bound on D*2(P) follows:

D*2~P! $ H O
l51

s S slD @B~l !#2@log~N!# l21J 1/ 2

N21. (4.1)

To compare the lower bound on the +2-star discrepancy for all P and the
asymptotic behavior for randomized (0, m, s)-nets, the coefficients A(s)
and B(s) are plotted in Figure 1. It is clear that B(s) tends to zero much
faster than A(s) as the dimension increases. The reason could be that (i)
the lower bound is not tight, (ii) the average discrepancy of (0, m, s)-nets is
much worse than the discrepancies of some especially good (0, m, s)-nets,
or (iii) the optimal discrepancy is obtained only by some other kind of point
set P. It is not clear to the author which reason is more likely.
Given a lower bound, L, on D2(P), such as zero or that above, one can

derive an upper bound on the likelihood that a randomized (0, m, s)-net
has a large discrepancy. For any non-negative y $ L

E$@D2~P!#2% $ L2 Prob$D2~P! # y% 1 y2 Pr$D2~P! . y%,

Fig. 1. A comparison of A(s) (solid) and B(s) (dashed).
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that is,

Pr$D2~P! . y% $
E$@D2~P!#2% 2 L2

y2 2 L2
.

Replacing y by a new constant a2 equal to the right hand side of this
equation gives

PrHD2~P! .
ÎE$@D2~P!#2% 2 ~1 2 a2!L2

a
J # a2.

In particular, no more than 1% of randomized (0, m, s)-nets can have an
+2-discrepancy greater than 10=E{[D2(P)]2} 2 0.99L2}.
Figure 2 shows the root mean square +2-star discrepancy for randomized

(0, m, s)-nets in base s plotted versus N from formula (2.5). The values of
M and b are given in (1.5). The dimensions considered are the prime
numbers 2 through 13, and N runs up to 1010. For comparison, the root
mean square asymptotic +2-discrepancy, (3.1), the root mean square +2-
star discrepancy of a simple random sample, (2.3), and the lower bound on
the +2-star discrepancy, (4.1), are also shown.
Figure 3 is similar to Figure 2 except that it shows the +2-symmetric

discrepancy defined in Hickernell [to appear]. In contrast to (1.5), the
symmetric discrepancy is defined by

m~ x! 5
1

24
2

~ x 2 1/ 2!2

2
, b 5 2, M# 5

1

3
, M 5

4

3
.

Because m( x) is invariant when x is replaced by 1 2 x, the symmetric
discrepancy does not change when the P is reflected about any plane xj 5
1/ 2. Like the star discrepancy, the symmetric discrepancy has a geometric
interpretation. For any subset of coordinate indices u, the planes passing
through a point xu parallel to the faces of the cube C

u divide this cube into
2 uu u intervals (rectangular solids). Each interval consists of the points
between a vertex of the cube and the point xu. These intervals can be
denoted as odd or even depending on the sum of the coordinates of the
corresponding vertex. For example, [(0, . . . , 0), xu) is an even interval,
and [ xu, (1, . . . , 1)) is even or odd according to whether uu u is even or odd.
Let Je( xu) denote the union of the even intervals. The +2-symmetric
discrepancy is defined as

@D2~P!#2 5 2 O
À,u#S

U uPu ù Je~ xu! u

N
2 Vol~ Je~ xu!!U 2.

In both Figures 2 and 3, the root mean square +2-discrepancies of the
nets approach their asymptotic behaviors more quickly for lower dimen-
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Fig. 2(a). Root mean square +2-star discrepancy for randomized (0, m, s)-nets base s versus
N (+), asymptotic behavior (1), root mean square +2-star discrepancy of simple random sample
(solid), and lower bound on +2-star discrepancy (dashed). s 5 2. 2b. s 5 3. 2c. s 5 5. 2d. s 5
7. 2e. s 5 11. 2f. s 5 13.
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Fig. 2.—continued
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Fig. 2.—continued
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Fig. 3(a). Root mean square +2-symmetric discrepancy of randomized (0, m, s)-nets base s
versus N (+), asymptotic behavior (1), and root mean square +2-symmetric discrepancy of simple
random sample (solid). s 5 2. 3(b). s 5 3. 3(c). s 5 5. 3(d). s 5 7. 3(e). s 5 11. 3(f). s 5 13.
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Fig. 3.—continued
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Fig. 3.—continued
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sions. The asymptotic values of the discrepancies increase with N initially
because the term N21[log(N)](s21)/ 2 is increasing for N , e (s21)/ 2.
The discrepancies of the nets decay to zero faster with increasing sample

size than the discrepancies of the simple random samples. The number of
log(N) factors in the asymptotic behavior of the discrepancy for nets
increases with dimension (th. 3.1), thus reducing their advantage over
simple random samples. This effect is more pronounced for the symmetric
discrepancy than the star discrepancy because of the larger value of b in
the former. Formula (1.6) shows how [D2(P)]

2 is a sum of the [D2,u(P)]
2

with weights b2 uu u. A larger value of b accentuates the importance of terms
with large uu u, that is, those terms that decay to zero more slowly according
to Theorem 3.1. A large or small value of b is not inherently better, but
rather reflects a personal choice. Although decreasing b decreases the
+2-discrepancy, it increases the variation (or norm) of the integrand in the
corresponding quadrature error bound. Thus, there is a trade-off. The effect
of varying b is discussed further in Hickernell [to appear]. Our numerical
experiments indicate that the root mean square discrepancy of a random-
ized (0, m, s)-net base s is never greater than that of a simple random
sample, regardless of the choice of m and b. However, this conjecture has
not yet been proven.
Equations (1.1) and (3.1) imply that for randomized (0, m, s)-nets

E$ sup
V~ f !51

@Err~ f !#2% 5 E$@D2~P!#2% 5 O~N22@log~N!#~s21!! as N3 `,

where the variation of the integrand, V( f ), is defined in Hickernell [to
appear]. For a fixed integrand f under similar smoothness conditions, Owen
[1997b] showed that

E$@Err~ f !#2% 5 O~N23@log~N!#~s21! as N3 `

for randomized (0, m, s)-nets. The additional power of N21 in the latter
result is due to the integrand being fixed in advance of choosing a
randomized net for quadrature. In the former result, the integrand is
chosen pessimistically after picking a specific randomized net.
One may wonder why we have computed the mean square +2-discrepancy

and not the mean +2-discrepancy itself or the mean +p-discrepancy in
general. The answer is convenience. Only the square +2-discrepancy ap-
pears to have a simple enough form to allow its mean value to be computed.
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WOŹNIAKOWSKI, H. 1991. Average case complexity of multivariate integration. Bull. Amer.
Math. Soc. 24, 185–194.

ZAREMBA, S. K. 1968. Some applications of multidimensional integration by parts. Ann.
Polon. Math. 21, 85–96.

Received April 1996; revised August 1996; accepted August 1996

296 • Fred J. Hickernell

ACM Transactions on Modeling and Computer Simulation, Vol. 6, No. 4, October 1996.


