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Abstract

Online variants of the Expectation Maximization (EM) algorithm have
recently been proposed to perform parameter inference with large data
sets or data streams, in independent latent models and in hidden Markov
models. Nevertheless, the convergence properties of these algorithms re-
main an open problem at least in the hidden Markov case. This contribu-
tion deals with a new online EM algorithm which updates the parameter
at some deterministic times. Some convergence results have been de-
rived even in general latent models such as hidden Markov models. These
properties rely on the assumption that some intermediate quantities are
available in closed form or can be approximated by Monte Carlo meth-
ods when the Monte Carlo error vanishes rapidly enough. In this paper,
we propose an algorithm which approximates these quantities using Se-
quential Monte Carlo methods. The convergence of this algorithm and
of an averaged version is established and their performance is illustrated
through Monte Carlo experiments.

This extended version of the paper “Convergence of a Particle-based Ap-
proximation of the Block Online Expectation Maximization Algorithm“, by S.
Le Corff and G. Fort, provides detailed proofs which have been omitted in the
submitted paper since they are very close to existing results. These additional
proofs are postponed to Appendix B.
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1 Introduction
The Expectation Maximization (EM) algorithm is a well-known iterative algo-
rithm to solve maximum likelihood estimation in incomplete data models, see
[14]. Each iteration is decomposed into two steps: in the E-step the conditional
expectation of the complete log-likelihood (log of the joint distribution of the
hidden states and the observations) given the observations is computed; and the
M-step updates the parameter estimate. The EM algorithm is mostly practica-
ble if the model belongs to the curved exponential family, see [29, Section 1.5]
and [6, Section 10.1], so that we assume below that our model belongs to this
family. Under mild regularity conditions, this algorithm is known to converge
to the stationary points of the log-likelihood of the observations, see [36]. How-
ever, the original EM algorithm cannot be used to perform online estimation
or when the inference task relies on large data sets. Each iteration requires the
whole data set and each piece of data needs to be stored and scanned to pro-
duce a new parameter estimate. Online variants of the EM algorithm were first
proposed for independent and identically distributed (i.i.d.) observations: [5]
proposed to replace the original E-step by a stochastic approximation using the
new observation. Solutions have also been proposed in hidden Markov models
(HMM): [4] provides an algorithm for finite state-space HMM which relies on
recursive computations of the filtering distributions combined with a stochas-
tic approximation step. Note that, since the state-space is finite, deterministic
approximations of these distributions are available. This algorithm has been
extended to the case of general state-space models, the approximations of the
filtering distributions being handled with Sequential Monte Carlo (SMC) algo-
rithms, see [3], [10] and [25]. Unfortunately, it is quite challenging to address
the asymptotic behavior of these algorithms (in the HMM case) since the recur-
sive computation of the filtering distributions relies on approximations which
are really difficult to control.

In [23], another online variant of the EM algorithm in HMM is proposed,
called the Block Online EM (BOEM) algorithm. In this case, the data stream
is decomposed into blocks of increasing sizes. Within each block, the parameter
estimate is kept fixed and the update occurs at the end of the block. This
update is based on a single scan of the observations, so that it is not required to
store any block of observations. [23] provides results on the convergence and on
the convergence rates of the BOEM algorithms. These analyses are established
when the E-step (computed on each block) is available in closed form and when
it can be approximated using Monte Carlo methods, under an assumption on
the Lp-error of the Monte Carlo approximation.

In this paper, we consider the case when the E-step of the BOEM algorithm
is computed with SMC approximations: the filtering distributions are approxi-
mated using a set of random weighted particles, see [6] and [8]. The Monte Carlo
approximation is based on an online variant of the Forward Filtering Backward
Smoothing algorithm (FFBS) proposed in [4] and [10]. This method is appeal-
ing for two reasons: first, it can be implemented forwards in time i.e. within a
block, each observation is scanned once and never stored and the approximation
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computed on each block does not require a backward step - this is crucial in our
online estimation framework. Secondly, recent work on SMC approximations
provides Lp-mean control of the Monte Carlo error, see e.g. [19] and [9]. This
control, combined with the results in [23], sparks off the convergence results and
the convergence rates provided in this contribution.

The paper is organized as follows: our new algorithm called the Particle
Block Online EM algorithm (P-BOEM) is derived in Section 2 together with an
averaged version. Section 3 is devoted to practical applications: the P-BOEM
algorithm is used to perform parameter inference in stochastic volatility models
and in the more challenging framework of the Simultaneous Localization And
Mapping problem (SLAM). The convergence properties and the convergence
rates of the P-BOEM algorithms are given in Section 4.

2 The Particle Block Online EM algorithms
In Section 2.1, we fix notation that will be used throughout this paper. We
then derive our online algorithms in Sections 2.2 and 2.3. We finally detail,
in Section 2.4, the SMC procedure that makes our algorithm a true online
algorithm.

2.1 Notations and Model assumptions
A hidden Markov model on X×Y is defined by an initial distribution χ on (X,X )
and two families of transition kernels. In this paper, the transition kernels are
parametrized by θ ∈ Θ, where Θ ⊆ Rdθ is a compact set. In the sequel, the ini-
tial distribution χ on (X,X ) is assumed to be known and fixed. The parameter
is estimated online in the maximum likelihood sense using a sequence of ob-
servations Y. Online maximum likelihood parameter inference algorithms were
proposed either with a gradient approach or an EM approach. In the case of
finite state-spaces HMM, [26] proposed a recursive maximum likelihood proce-
dure. The asymptotic properties of this algorithm have recently been addressed
in [34]. This algorithm has been adapted to general state-spaces HMM with
SMC methods (see [18]). The main drawback of gradient methods is the neces-
sity to scale the gradient components. As an alternative to performing online
inference in HMM, online EM based algorithms have been proposed for finite
state-spaces (see [4]) or general state-spaces HMM (see [3], [10] and [23]). [10]
proposed a SMC method giving encouraging experimental results. Nevertheless,
it relies on a combination of stochastic approximations and SMC computations
so that its analysis is quite challenging. In [23], the convergence of an online
EM based algorithm is established. This algorithm requires either the exact
computation of intermediate quantities (available explicitly only in finite state-
spaces HMM or in linear Gaussian models) or the use of Monte Carlo methods
to approximate these quantities. We propose to apply this algorithm to general
models where these quantities are replaced by SMC approximations. We prove
that the Monte Carlo error is controlled in such a way that the convergence
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properties of [23] hold for the P-BOEM algorithms.
We now detail the model assumptions. Consider a family of transition kernels

{mθ(x, x
′)dλ(x′)}θ∈Θ on X×X , where X is a general state-space equipped with

a countably generated σ-field X , and λ is a finite measure on (X,X ). Let
{gθ(x, y)dν(y)}θ∈Θ be a family of transition kernels on X × Y, where Y is a
general space endowed with a countably generated σ-field Y and ν is a measure
on (Y,Y). Let Y = {Yt}t∈Z be the observation process defined on (Ω,P,F) and
taking values in YZ. The batch EM algorithm is an offline maximum likelihood
procedure which iteratively produces parameter estimates using the complete
data log-likelihood (log of the joint distribution of the observations and the
states) and a fixed set of observations, see [14]. In the HMM context presented
above, given T observations Y1:T , the missing data x0:T and a parameter θ, the
complete data log-likelihood may be written as (up to the initial distribution χ
which is assumed to be known)

`θ(x0:T ,Y1:T )
def
=

T∑
t=1

{logmθ(xt−1, xt) + log gθ(xt,Yt)} , (1)

where we use xr:t as a shorthand notation for the sequence (xr, . . . , xt), r ≤ t.
Each iteration of the batch EM algorithm is decomposed into two steps. The E-
step computes, for all θ ∈ Θ, an expectation of the complete data log-likelihood
under the conditional probability of the hidden states given the observations
and the current parameter estimate θ̂. In the HMM context, due to the additive
form of the complete data log-likelihood (1), the E-step is decomposed into T
expectations under the conditional probabilities Φχ,0

θ̂,t,T
(·,y) where

Φχ,rθ,s,t(h,y)
def
=

∫
χ(dxr){

∏t−1
i=r mθ(xi, xi+1)gθ(xi+1,yi+1)}h(xs−1, xs,ys) dλ(xr+1:t)∫

χ(dxr){
∏t−1
i=r mθ(xi, xi+1)gθ(xi+1,yi+1)} dλ(xr+1:t)

,

(2)
for any bounded function h, any θ ∈ Θ, any r < s ≤ t and any sequence
y ∈ YZ. Then, given the current value of the parameter θ̂, the E-step amounts
to computing the quantity

QT (θ, θ̂)
def
=

1

T

T∑
t=1

Φχ,0
θ̂,t,T

(logmθ + log gθ,Y) , (3)

for any θ ∈ Θ. The M-step sets the new parameter estimate as a maximum of
this expectation over θ.

The computation of θ 7→ QT (θ, θ̂) for any θ ∈ Θ is usually intractable except
in the case of complete data likelihood belonging to the curved exponential
family, see [29, Section 1.5] and [6, Section 10.1]. Therefore, in the sequel, the
following assumption is assumed to hold:

A1 (a) There exist continuous functions φ : Θ → R, ψ : Θ → Rd and
S : X× X× Y→ Rd s.t.

logmθ(x, x
′) + log gθ(x

′, y) = φ(θ) + 〈S(x, x,′ , y), ψ(θ)〉 ,
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where 〈·, ·〉 denotes the scalar product on Rd.
(b) There exists an open subset S of Rd that contains the convex hull of

S(X× X× Y).
(c) There exists a continuous function θ̄ : S → Θ s.t. for any s ∈ S,

θ̄(s) = argmaxθ∈Θ {φ(θ) + 〈s, ψ(θ)〉} .

Under A1, the quantity QT (θ, θ̂) defined by (3) becomes

QT (θ, θ̂) = φ(θ) +

〈
1

T

T∑
t=1

Φχ,0
θ̂,t,T

(S,Y) , ψ(θ)

〉
, (4)

so that the definition of the function θ 7→ QT (θ, θ̂) requires the computation of
an expectation 1

T

∑T
t=1 Φχ,0

θ̂,t,T
(S,Y) independently of θ.

The M-step of the batch EM iteration amounts to computing

θ̄

(
1

T

T∑
t=1

Φχ,0
θ̂,t,T

(S,Y)

)
.

This batch EM algorithm is designed for a fixed set of observations. A
natural extension of this algorithm to the online context is to define a sequence
of parameter estimates by

θt+1 = argmaxθ Qt+1(θ, θt) .

Unfortunately, the computation of Qt+1(θ, θt) requires the whole set of obser-
vations to be stored and scanned for each estimation. For large data sets the
computation cost of the E-step makes it intractable in this case. To overcome
this difficulty, several online variants of the batch EM algorithm have been pro-
posed, based on a recursive approximation of the function θ 7→ Qt+1(·, θt) (see
[3], [10] and [23]). In this paper, we focus on the Block Online EM (BOEM)
algorithm, see [23].

2.2 Particle Block Online EM (P-BOEM)
The BOEM algorithm, introduced in [23], is an online variant of the EM algo-
rithm. The observations are processed sequentially per block and the parameter
estimate is updated at the end of each block. Let {τk}k≥1 be a sequence of pos-
itive integers denoting the length of the blocks and set

Tn
def
=

n∑
k=1

τk and T0
def
= 0 ; (5)

{Tk}k≥1 are the deterministic times at which the parameter updates occur.
Define, for all integers τ > 0 and T ≥ 0 and all θ ∈ Θ,

S̄χ,Tτ (θ,Y)
def
=

1

τ

T+τ∑
t=T+1

Φχ,Tθ,t,T+τ (S,Y) . (6)
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The quantity S̄χ,Tτ (θ,Y) corresponds to the intermediate quantity in (4) with
the observations YT+1:T+τ .

The BOEM algorithm iteratively defines a sequence of parameter estimates
{θn}n≥0 as follows: given the current parameter estimate θn,

(i) compute the quantity S̄χ,Tnτn+1
(θn,Y),

(ii) compute a candidate for the new value of the parameter: θn+1 = θ̄
(
S̄χ,Tnτn+1

(θn,Y)
)
,

To make the exposition easier, we assume that the initial distribution χ is the
same on each block. The dependence of S̄χ,Tτ (θ,Y) on χ is thus dropped from
the notation for better clarity.

The quantity S̄Tnτn+1
(θn,Y) is available in closed form only in the case of

linear Gaussian models and HMM with finite state-spaces. In HMM with gen-
eral state-spaces S̄Tnτn+1

(θn,Y) cannot be computed explicitly and we propose to
compute an approximation of S̄Tnτn+1

(θn,Y) using SMC algorithms thus yielding
the Particle-BOEM (P-BOEM) algorithm. Different methods can be used to
compute these approximations (see e.g. [9], [10] and [16]). We will discuss in
Section 2.4 below some SMC approximations that use the data sequentially.

Denote by S̃n(θ,Y) the SMC approximation of S̄Tnτn+1
(θ,Y) computed with

Nn+1 particles. The P-BOEM algorithm iteratively defines a sequence
of parameter estimates {θn}n≥0 as follows: given the current parameter
estimate θn,

(i) compute the quantity S̃n(θn,Y),

(ii) compute a candidate for the new value of the parameter:

θn+1 = θ̄
(
S̃n(θn,Y)

)
.

We give in Algorithm 1 lines 1 to 9 an algorithmic description of the P-BOEM
algorithm. Note that the idea of processing the observations by blocks is pro-
posed in [30] to fit a normal mixture model. The incremental EM algorithm
discussed in [30] is an alternative to the batch EM algorithm for very large data
sets. Contrary to our framework, in the algorithm proposed by [30], the number
of observations is fixed and the same observations are scanned several times.

2.3 Averaged Particle Block Online EM
Following the same lines as in [23], we propose to replace the P-BOEM se-
quence {θn}n≥0 by an averaged sequence. This new sequence can be computed
recursively, simultaneously with the P-BOEM sequence, and does not require
additional storage of the data. The proposed averaged P-BOEM algorithm is
defined as follows (see also lines 5 and 6 of Algorithm 1): the step (ii) of the
P-BOEM algorithm presented above is followed by
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(iv) compute the quantity

Σ̃n+1 =
Tn
Tn+1

Σ̃n +
τn+1

Tn+1
S̃n(θn,Y) , (7)

(v) define
θ̃n+1

def
= θ̄

(
Σ̃n+1

)
. (8)

We set Σ̃0 = 0 so that

Σ̃n =
1

Tn

n∑
j=1

τj S̃j−1(θj−1,Y) ; (9)

we will prove in Section 4.4 that the rate of convergence of the averaged sequence
{θ̃n}n≥0, computed from the averaged statistics {Σ̃n}n≥0, is better than the non-
averaged one. We will also observe this property in Section 3 by comparing the
variability of the P-BOEM and the averaged P-BOEM sequences in numerical
applications.

Algorithm 1 P-BOEM and averaged P-BOEM

Require: θ0, {τn}n≥1, {Nn}n≥1, {Yt}t≥0 .

Ensure: {θn}n≥0 and {θ̃n}n≥0 .

Set Σ̃0 = 0.
for all i ≥ 0 do
Compute sequentially S̃i(θi,Y) .

Set θi+1 = θ̄
(
S̃i(θi,Y)

)
.

Set
Σ̃i+1 =

Ti
Ti+1

Σ̃i +
τi+1

Ti+1
S̃i(θi,Y) .

Set θ̃i+1 = θ̄
(

Σ̃i+1

)
.

end for

2.4 The SMC approximation step
As the P-BOEM algorithm is an online algorithm, the SMC algorithm should
use the data sequentially: no backward pass is allowed to browse all the data at
the end of the block. Hence, the approximation is computed recursively within
each block, each observation being used once and never stored. These SMC
algorithms will be referred to as forward only SMC. We detail below a forward
only SMC algorithm for the computation of S̃n(θn,Y) which has been proposed
by [4] (see also [10]).

For notational convenience, the dependence on n is omitted. For block n,
the algorithm below has to be applied with (τ,N) ← (τn+1, Nn+1), Y1:τ ←
YTn+1,Tn+τn+1

and θ ← θn.
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The key property is to observe that

S̄0
τ (θ,Y) = φθτ (Rθ,τ ) (10)

where φθt is the filtering distribution at time t, and the functions Rt,θ : X→ S,
1 ≤ t ≤ τ , satisfy the equations

Rt,θ(x) =
1

t
Bθt (x, S(·, x, Yt)) +

t− 1

t
Bθt (x,Rt−1,θ) , (11)

where Bθt denotes the backward smoothing kernel at time t

Bθt (x, dx
′) =

mθ(x
′, x)∫

mθ(u, x)φθt−1(du)
φθt−1(dx′) . (12)

By convention, R0,θ(x) = 0 and φθ0 = χ. A proof of the equalities (10) to (12)
can be found in [4] and [10]. Therefore, a careful reading of Eqs (10) to (12)
shows that, for an iterative particle approximation of S̄0

τ (θ,Y), it is sufficient
to update from time t− 1 to t

(i) N weighted samples
{(
ξ`t , ω

`
t

)
; ` ∈ {1, . . . , N}

}
used to approximate the

filtering distribution φθt .

(ii) the intermediate quantities {R`t,θ}N`=1, approximating the function Rt,θ at
point x = ξ`t , ` ∈ {1, · · · , N}.

We describe below such an algorithm. An algorithmic description is also pro-
vided in Appendix A, Algorithm 2.

Given instrumental Markov transition kernels {qt(x, x′), t ≤ τ} on X × X
and adjustment multipliers {υt, t ≤ τ}, the procedure goes as follows:

(i) line 1 in Algorithm 2: sample independently N particles {ξ`0}N`=1 with the
same distribution χ.

(ii) line 6 in Algorithm 2: at each time step t ∈ {1, . . . , τ}, pairs {(J`t , ξ`t )}N`=1

of indices and particles are sampled independently (conditionally to Y1:t,
θ and {(J`t−1, ξ

`
t−1)}N`=1) from the instrumental distribution:

πt(i,dx) ∝ ωit−1υt(ξ
i
t−1)qt(ξ

i
t−1, x)λ(dx) , (13)

on the product space {1, . . . , N} × X. For any t ∈ {1, . . . , τ} and any
` ∈ {1, . . . , N}, J`t denotes the index of the selected particle at time t− 1
used to produce ξ`t .

(iii) line 7 in Algorithm 2: once the new particles {ξ`t}N`=1 have been sampled,
their importance weights {ω`t}N`=1 are computed.

(iv) lines 8 in Algorithm 2: update the intermediate quantities {R`t,θ}N`=1.

If, for all x ∈ X, υt(x) = 1 and if the kernels qt are chosen such that qt = mθ,
lines 6-7 in Algorithm 2 are known as the Bootstrap filter. Other choices of qt
and υt can be made, see e.g. [6].
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3 Applications to Bayesian inverse problems in
Hidden Markov Models

3.1 Stochastic volatility model
Consider the following stochastic volatility model:

Xt+1 = φXt + σUt , Yt = βe
Xt
2 Vt ,

where X0 ∼ N
(
0, (1− φ2)−1σ2

)
and {Ut}t≥0 and {Vt}t≥0 are two sequences of

i.i.d. standard Gaussian r.v., independent from X0.
We illustrate the convergence of the P-BOEM algorithms and discuss the

choice of some design parameters such as the pair (τn, Nn). Data are sampled
using φ = 0.95, σ2 = 0.1 and β2 = 0.6; we estimate θ = (φ, σ2, β2) by applying
the P-BOEM algorithm and its averaged version. All runs are started from
φ = 0.1, σ2 = 0.6 and β2 = 2.

Figure 1 displays the estimation of the three parameters as a function of the
number of observations, over 50 independent Monte Carlo runs. The block-size
sequence is of the form τn ∝ n1.2. For the SMC step, we choose Nn = 0.25 · τn;
particles are sampled as described in Algorithm 2 (see Appendix A) with the
bootstrap filter. For each parameter, Figure 1 displays the empirical median
(bold line) and upper and lower quartiles (dotted line). The averaging procedure
is started after 1500 observations. Both algorithms converge to the true values
of the parameters and, once the averaging procedure is started, the variance
of the estimation decreases (estimation of φ and β2). The estimation of σ2

shows that, if the averaging procedure is started with too few observations, the
estimation can be slowed down.

We now discuss the role of the pairs (τn, Nn). Roughly speaking (see section 4
for a rigorous decomposition), τ controls the rate of convergence of S̄Tτ (θ,Y)
to limτ→∞ S̄Tτ (θ,Y); and N controls the error between S̄Tτ (θ,Y) and its SMC
approximation. We will show in Section 4 that limn τn = limnNn = +∞
are part of some sufficient conditions for the P-BOEM algorithms to converge.
We thus choose increasing sequences {τn, Nn}n≥1. The role of τn has been
illustrated in [23, Section 3]. Hence, in this illustration, we fix τn and discuss
the role of Nn. Figure 2 compares the algorithms when applied with τn ∝ n1.1

and Nn =
√
τn or Nn = τn. The empirical variance (over 50 independent

Monte Carlo runs) of the estimation of β2 is displayed, as a function of the
number of blocks. First, Figure 2 illustrates the variance decrease provided by
the averaged procedure, whatever the block size sequence. Moreover, increasing
the number of particles per block improves the variance of the estimation given
by the P-BOEM algorithm while the impact on the variance of the averaged
estimation is less important. On average, the variance is reduced by a factor of
3.0 for the P-BOEM algorithm and by a factor of 1.8 for its averaged version
when the number of particles goes from Nn =

√
τn to Nn = τn. These practical

considerations illustrate the theoretical results derived in Section 4.4.
Finally, we discuss the role of the initial distribution χ. In all the applications
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(c) Estimation of σ2.
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(d) Estimation of σ2.
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(e) Estimation of β2.
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(f) Estimation of β2.

Figure 1: Estimation of φ, σ2 and β2 without (left) and with (right) averaging.
Each graph represents the empirical median (bold line) and upper and lower
quartiles (dotted line) over 50 independent Monte Carlo runs. The averaging
procedure is started after 1500 observations. The first 1000 observations are not
displayed for better clarity.

above, we have the same distribution χ ≡ N
(
0, (1− φ2)−1σ2

)
at the beginning

of each block. We could choose a different distribution χn for each block such
as, e.g., the filtering distribution at the end of the previous block. We have
observed that this particular choice of χn leads to the same behavior for both
algorithms.

To end this section, the P-BOEM algorithm is compared to the Online EM
algorithm outlined in [4] and [10]. These algorithms rely on a combination of
stochastic approximation and SMC methods. According to classical results on
stochastic approximation, it is expected that the rate of convergence of the
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(a) P-BOEM: empirical variance of the estimation of β2 with Nn =√
τn (dashed line) and Nn = τn (bold line).
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(b) Averaged P-BOEM: empirical variance of the estimation of β2

with Nn =
√
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Figure 2: Empirical variance of the estimation of β2 with the P-BOEM al-
gorithm (top) and its averaged version (bottom). The averaging procedure is
started after the 25-th block and the variance is displayed after a burn-in time
of 35 blocks.

Online EM algorithm behaves like γ1/2
n , where {γn}n≥0 is the so called step-size

sequence. Hence, γn in the Online EM algorithm is chosen such that γn ∝ n−0.55

and the block-size sequence in the P-BOEM algorithm such that τn ∝ n1.2.
The number of particles used in the Online EM algorithm is fixed and chosen
so that the computational costs of both algorithms are similar. Provided that
Nn ∝ τn in the P-BOEM algorithm, this leads to a choice of 70 particles for the
Online EM algorithm. We report in Figure 3, the estimation of φ and σ2 for
a Polyak-Ruppert averaged Online EM algorithm (see [33]) and the averaged
P-BOEM algorithm as a function of the number of observations. The averaging
procedure is started after about 1500 observations. As noted in [23, Section 3]
for a constant sequence {Nn}n≥0 this figure shows that both algorithms behave

11



similarly. For the estimation of φ and β2, the variance is smaller for the P-
BOEM algorithm and the convergence is faster for the P-BOEM algorithm in
the case of β2. Conclusions are different for the estimation of σ2: the variance
is smaller for the P-BOEM algorithm but the Online EM algorithm converges
a bit faster. The main advantage of the P-BOEM algorithm is that it relies on
approximations which can be controlled in such a way that we are able to show
that the limiting points of the P-BOEM algorithms are the stationary points of
the limiting normalized log-likelihood of the observations.

3.2 Simultaneous Localization And Mapping
The Simultaneous Localization And Mapping (SLAM) problem arises when a
mobile device wants to build a map of an unknown environment and, at the same
time, has to estimate its position in this map. The common statistical approach
for the SLAM problem is to introduce a state-space model. Many solutions
have been proposed depending on the assumptions made on the transition and
observation models, and on the map (see e.g. [2], [28] and [32]). In [28] and [25],
it is proposed to see the SLAM as an inference problem in HMM: the localization
of the robot is the hidden state with Markovian dynamic, and the map is seen as
an unknown parameter. Therefore, the mapping problem is answered by solving
the inference task, and the localization problem is answered by approximating
the conditional distribution of the hidden states given the observations.

In this application, we consider a statistical model for a landmark-based
SLAM problem for a bicycle manoeuvring on a plane surface.

Let xt
def
= {xt,i}3i=1 be the robot position, where xt,1 and xt,2 are the robot’s

cartesian coordinates and xt,3 its orientation. At each time step, deterministic
controls are sent to the robot so that it explores a given part of the environment.
Controls are denoted by (vt, ψt) where ψt stands for the robot’s heading direction
and vt its velocity. The robot position at time t, given its previous position at
time t− 1 and the noisy controls (v̂t, ψ̂t), can be written as

xt = f(xt−1, v̂t, ψ̂t) , (14)

where (v̂t, ψ̂t) is a 2-dimensional Gaussian distribution with mean (vt, ψt) and
known covariance matrix Q. In this contribution we use the kinematic model of
the front wheel of a bicycle (see e.g. [1]) where the function f in (14) is given
by

f(xt−1, v̂t, ψ̂t) = xt−1 +

 v̂tdt cos(xt−1,3 + ψ̂t)

v̂tdt sin(xt−1,3 + ψ̂t)

v̂tdtB
−1 sin(ψ̂t)

 ,

where dt is the time period between two successive positions and B is the robot
wheelbase.

The 2-dimensional environment is represented by a set of landmarks θ def
=

{θj}1≤j≤q, θj ∈ C being the position of the j−th landmark. The total number
of landmarks q and the association between observations and landmarks are
assumed to be known.
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(a) Estimation of φ.
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(b) Estimation of σ2.
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(c) Estimation of β2.

Figure 3: Estimation of φ, σ2 and β2 with the averaged P-BOEM algorithm
(left) and a Polyak-Ruppert averaged version of the Online EM algorithm (right)
after 300, 1500, 5000, 10000, 20000 and 45000 observations. The averaging pro-
cedure is started after about 1000 observations (which corresponds to the 25-th
block for the P-BOEM algorithm).

At time t, the robot observes the distance and the angular position of all
landmarks in its neighborhood; let ct ⊆ {1, · · · , q} be the set of observed land-
marks at time t. It is assumed that the observations {yt,i}i∈ct are independent
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and satisfy
yt,i = h(xt, θi) + δt,i ,

where h is defined by

h(x,κ)
def
=

(√
(κ1 − x1)2 + (κ2 − x2)2

arctan κ2−x2

κ1−x1
− x3

)
,

and the noise vectors {δt,i}t,i are i.i.d Gaussian N (0, R). R is assumed to be
known.

The model presented in this Section does not take into account all the issues
arising in the SLAM problem (such as the association process which is assumed
to be known and the known covariance matrices). The aim is to prove that
the BOEM algorithm and its averaged version have satisfying behavior even
in the challenging framework described above. The observation and motion
models are highly nonlinear and we show that the BOEM algorithm remains
stable in this experiment. Several solutions have been proposed to solve the
association problem (see e.g. [2] for a solution based on the likelihood of the
observations) and could be adapted to our case. We want to estimate θ =
{θj}qj=1 by applying the P-BOEM algorithms. In this paper, we use simulated
data. q = 15 landmarks are drawn in a square of size 45mx45m. The robot
path is sampled with a given set of controls. Using the true positions of all
landmarks in the map and the true path of the robot (see the dots and the

bold line on Figure 4), observations are sampled by setting: R =

(
σ2
r ρ
ρ σ2

b

)
,

where σr = 0.5m, σb = π
60 rad and ρ = 0.01. We choose Q = diag(σ2

v , σ
2
φ) where

σv = 0.5m.s−1, σψ = π
60 rad and B = 1.5m.

In this model, the transition denoted by mθ does not depend on the map θ
(see (14)) and the marginal likelihood gθ is such that the complete data likeli-
hood does not belong to the curved exponential family:∑

i∈ct

ln gθ(xt, yt,i) ∝
∑
i∈ct

[yt,i − h(xt, θi)]
?
R−1 [yt,i − h(xt, θi)] . (15)

Hence, in order to apply Algorithm 1, at the beginning of each block, gθ is
approximated by a function depending on the current parameter estimate so
that the resulting approximated model belongs to the curved exponential family
(see [25]). As can be seen from (15), approximating the function κ 7→ h(x,κ) by
its first-order Taylor expansion at θi leads to a quadratic approximation of gθ.
This approach is commonly used in the SLAM framework to use the properties
of linear Gaussian models (see e.g. [2]).

As the landmarks are not observed all the time, we choose a slowly increasing
sequence {τn ∝ n1.1}n≥1 so that the number of updates is not too small (in this
experiment, we have 60 updates for a total number of observations of 2000). As
the total number of observations is not so large (the largest block is of length
60), the number of particles is chosen to be constant on each block: for all n ≥ 1,
Nn = 50. For the SMC step, we apply Algorithm 2 with the bootstrap filter.
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For each run the estimated path (equal to the weighted mean of the particles)
and the estimated map at the end of the loop (T = 2000) are stored. Figure 4
represents the mean estimated path and the mean map over 50 independent
Monte Carlo runs. It highlights the good performance of the P-BOEM algorithm
in a more complex framework.

Figure 4: True trajectory (bold line) and true landmark positions (balls) with
the estimated path (dotted line) and the landmarks’ estimated positions (stars)
at the end of the run (T = 2000).

We also compare our algorithm to the marginal SLAM algorithm proposed
by [28]. In this algorithm, the map is also modeled as a parameter to learn in
a HMM model; SMC methods are used to estimate the map in the maximum
likelihood sense. The Marginal SLAM algorithm is a gradient-based approach
for solving the recursive maximum likelihood procedure. Note that, in the case
of i.i.d. observations, [35] proposed to update the parameter estimate each time
a new observation is available using a stochastic gradient approach. Figure 5
illustrates the estimation of the position of each landmark. The P-BOEM algo-
rithm is applied using the same parameters as above and the marginal SLAM
algorithm uses a sequence of step-size {γn ∝ n−0.6}n≥1. We use the averaged
version of the P-BOEM algorithm and a Polyak-Ruppert based averaging pro-
cedure for the marginal SLAM algorithm (see [33]). For each landmark the last
estimation (at the end of the loop) of the position is stored for each of the 50
independent Monte Carlo runs. Figure 5 displays the distance between the esti-
mated position and the true position for each landmark. In this experiment, the
P-BOEM based SLAM algorithm outperforms the marginal SLAM algorithm.

4 Convergence of the Particle Block Online EM
algorithms

In this section, we analyze the limiting points of the P-BOEM algorithm. We
prove in Theorem 4.3 that the P-BOEM algorithm has the same limit points
as a so-called limiting EM algorithm, which defines a sequence {θn}n≥0 by
θn+1 = θ̄

[
S̄(θn)

]
where S̄(θ) is the a.s. limit limτ→+∞ S̄Tτ (θ,Y) (defined by

(6)). As discussed in [23, Section 4.3.], the set of limit points of the limiting EM

15
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Figure 5: Distance between the final estimation and the true position for each
of the 15 landmarks with the averaged marginal SLAM algorithm (left) and the
averaged P-BOEM algorithm (right).

algorithm is the set of stationary points of the contrast function `(θ), defined
as the a.s. limit of the normalized log-likelihood of the observations, when
T → +∞. The convergence result below on the P-BOEM algorithm requires
two sets of assumptions: conditions A2 to A5 are the same as in [23] and imply
the convergence of the BOEM algorithm; assumptions A6 and A7 are introduced
to control the Monte Carlo error.

4.1 Assumptions
Consider the following assumptions

A2 There exist σ− and σ+ s.t. for any (x, x′) ∈ X2 and any θ ∈ Θ, 0 < σ− ≤
mθ(x, x

′) ≤ σ+. Set ρ
def
= 1− (σ−/σ+) .

Define, for all y ∈ Y,

b−(y)
def
= inf

θ∈Θ

∫
gθ(x, y)λ(dx) and b+(y)

def
= sup

θ∈Θ

∫
gθ(x, y)λ(dx) . (16)

For any sequence of r.v. Z def
= {Zt}t∈Z on (Ω, P̃,F), let

FZk
def
= σ ({Zu}u≤k) and GZk

def
= σ ({Zu}u≥k) (17)

be σ-fields associated to Z. We also define the mixing coefficients by, see [7],

βZ(n)
def
= sup

u∈Z
β(GZu+n,FZu ) ,∀ n ≥ 0 , (18)

where for any σ-algebras F and G,

β(G,F)
def
= sup

B∈G
|P̃(B|F)− P̃(B)| . (19)
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For p > 0 and Z a Rd-valued random variable measurable w.r.t. the σ-algebra
F , set

‖Z‖p
def
= (E [|Z|p])1/p

.

A3-(p)
∥∥supx,x′∈X2 |S(x, x′,Y0)|

∥∥
p
< +∞ .

A4 (a) Y is a stationary sequence such that there exist C ∈ [0, 1) and β ∈
(0, 1) satisfying, for any n ≥ 0, βY(n) ≤ Cβn, where βY is defined
in (18).

(b) E [| log b−(Y0)|+ | log b+(Y0)|] < +∞.

A5 There exist c > 0 and a > 1 such that for all n ≥ 1, τn = bcnac.

Assumptions A2 to A5 are the same as in [23]. A2, referred to as the strong
mixing condition, is used to prove the uniform forgetting property of the initial
condition of the filter, see e.g. [11] and [12]. This assumption is easy to check
in finite state-space HMM or when the state-space is compact when the Markov
kernel mθ is sufficiently regular. As noted in [23], it can fail to hold in quite
general situations. Nevertheless, the exponential forgetting property needed
to ensure the convergence results could be checked under weaker assumptions
(see [15] for a Doeblin assumption). However, it would imply quite technical
supplementary results out of the scope of this paper. Examples of observation
sequences satisfying A4 include, for example, stationary ψ-irreducible and pos-
itive recurrent Markov chains which are geometrically ergodic (see e.g. [31] for
Markov chains theory).

We need to control the Lp-mean error on each block between S̄Tnτn+1
(θn,Y)

and its SMC approximation. This control is discussed in Section 4.2 below when
the SMC approximation is computed as described in Section 2.4.

4.2 Lp-error of the SMC approximation
For each block n, denote by {υt,n}t≤τn+1

and {qt,n}t≤τn+1
respectively the ad-

justment multipliers and the instrumental kernels in the SMC propagation step
(see (13)). For all y ∈ Y, define

ω+(y) = sup
θ∈Θ

sup
(x,x

′
)∈X×X

t≥0,n≥0

mθ(x, x
′)gθ(x

′, y)

υt,n(x)qt,n(x, x′)
.

Consider the following assumptions.

A6 |υ|∞
def
= supt,n |υt,n|∞ <∞.

A7-(p)
∥∥∥ω+(Y0)

b−(Y0)

∥∥∥
p
< +∞ .
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In the case of the Bootstrap filter, A6 holds (since vt,n = 1) and ω+(y) =
sup
θ∈Θ

sup
x∈X

gθ(x, y).

Proposition 4.1. Let S : X2 × Y −→ Rd be a measurable function s.t. A3-(p̄)
holds for some p̄ > 2. Assume A2, A4, A6. Define ∆p

def
= 2p̄p/(p̄ − p) and

assume A7-(∆p) holds for some p ∈ (2, p̄). Then, there exists a constant C s.t.
for all n ≥ 0,∥∥∥S̃n(θn,Y)− S̄Tnτn+1

(θn,Y)
∥∥∥
p
≤ C

(
1

Nn+1
+

1

τ
1/2
n+1N

1/2
n+1

)
,

where S̃n(θn,Y) is computed with the algorithm described in Section 2.4.

4.3 Asymptotic behavior of the Particle Block Online EM
algorithms

Following [23], we address the convergence of the P-BOEM algorithm as the
convergence of a perturbed version of the limiting EM recursion. The following
result, which is proved in [23, Theorem 4.1.], shows that when τ is large, the
BOEM statistic S̄Tτ (θ,Y) is an approximation of a deterministic quantity S̄(θ);
the limiting EM algorithm is the iterative procedure defined by θn+1 = R(θn)
where

R(θ)
def
= θ̄(S̄(θ)) ,∀θ ∈ Θ ; (20)

the mapping θ̄ is given by A1.

Theorem 4.2. Let S : X2 × Y −→ Rd be a measurable function s.t. A3-(1)
holds. Assume A2 and A4(a). For any θ ∈ Θ, there exists a P-integrable r.v.
Eθ [S(X−1, X0,Y0)|Y] s.t. for any T > 0,

S̄Tτ (θ,Y) −→
τ→+∞

S̄(θ)
def
= E [Eθ [S(X−1, X0,Y0)|Y]] , P− a.s. (21)

Moreover, θ 7→ S̄(θ) is continuous on Θ.

The asymptotic behavior of the limiting EM algorithm is addressed in [23,
Section 4.2]: the main ingredient is that the map R admits a positive and
continuous Lyapunov function W w.r.t. the set

L def
= {θ ∈ Θ; R(θ) = θ} , (22)

i.e. (i) W ◦ R(θ) ≥ W(θ) for any θ ∈ Θ and, (ii) for any compact subset K of
Θ\L, infθ∈KW◦R(θ)−W(θ) > 0. This Lyapunov function is equal to exp(`(θ)),
where the contrast function `(θ) is the (deterministic) limit of the normalized
log-likelihood of the observations when T → +∞ (see [24, Theorem 4.9]).

Theorem 4.3 establishes the convergence of the P-BOEM algorithm to the
set L defined by (22). The proof of Theorem 4.3 is an application of [23, The-
orem 4.4]. An additional assumption on the number of particles per block is
required to check [23, A6] (note indeed that A8 below and Proposition 4.1 imply
the condition in [23] about the Lp-control of the error).
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A8 There exist c > 0 and d ≥ (a+ 1)/2a (where a is given by A5) such that,
for all n ≥ 1, Nn = bcτdnc.

Theorem 4.3. Assume A1-2, A3-(p̄), A4-6 and A8 for some p̄ > 2. Define
∆p

def
= 2p̄p/(p̄−p) and assume A7-(∆p) holds for some p ∈ (2, p̄). Assume in ad-

dition that W(L) has an empty interior. Then, there exists w? s.t. {W(θn)}n≥0

converges almost surely to w? and {θn}n≥0 converges to {θ ∈ L; W(θ) = w?}.

The assumption on W(L) made in Theorem 4.3 is in common use to prove the
convergence of EM based procedures or stochastic approximation algorithms. It
is used in [36] to find the limit points of the classical EM algorithm. See also [13]
and [20] for the stability of the Monte Carlo EM algorithm and of a stochastic
approximation of the EM algorithm. If W is sufficiently regular, Sard’s theorem
states that W(L) has Lebesgue measure 0 and hence has an empty interior.

Under the assumptions of Theorem 4.3, it can be proved that, along any
converging P-BOEM sequence {θn}n≥0 to θ? in L, the averaged P-BOEM statis-
tics {Σ̃n}n defined by (7) (see also (9)) converge to S̄(θ?), see Proposition 5.2.
Since θ̄ is continuous, the averaged P-BOEM sequence {θ̃n}n≥0 converges to
θ̄(S̄(θ?)) = R(θ?). Since θ? ∈ L, R(θ?) = θ?, showing that the averaged P-
BOEM algorithm has the same limit points as the P-BOEM algorithm.

4.4 Rate of convergence of the Particle Block Online EM
algorithms

In this section, we consider a converging P-BOEM sequence {θn}n≥0 with lim-
iting point θ? ∈ L. It can be shown, as in [24, Proposition 3.1], that the
convergence of the sequence {θn}n≥0 is equivalent to the convergence of the suf-
ficient statistics {S̃n(θn,Y)}n≥0: along any P-BOEM sequence converging to
θ?, this sequence of sufficient statistics converges to s? = S̄(θ?). Let G : S → S
be the limiting EM map defined on the space of sufficient statistics by

G(s)
def
= S̄(θ̄(s)) , ∀s ∈ S . (23)

To that goal consider the following assumption.

A9 (a) S̄ and θ̄ are twice continuously differentiable on Θ and S.
(b) sp(∇sG(s?)) ∈ (0, 1) where sp denotes the spectral radius.

We will use the following notation: for any sequence of random variables
{Zn}n≥0, write Zn = OLp(1) if lim supn ‖Zn‖p < ∞; and Zn = Oa.s(1) if
supn |Zn| < +∞ P− a.s.

Theorem 4.4. Assume A1-2, A3-(p̄), A4-6 and A8-9 for some p̄ > 2. Define
∆p

def
= 2p̄p/(p̄− p) and assume A7-(∆p) holds for some p ∈ (2, p̄). Then,

[θn − θ?]1limk θk=θ? = OLp/2

(
1

τ
1/2
n

)
Oa.s (1) . (24)
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On the other hand, for the averaged sequence,[
θ̃n − θ?

]
1limk θk=θ? = OLp/2

(
1

T
1/2
n

)
Oa.s (1) . (25)

The proof of Theorem 4.4 is obtained by checking the assumptions of [23,
Theorem 5.1 and Theorem 5.2].

Eq. (24) shows that the error θn − θ? has a Lp/2-norm decreasing as τ−1/2
n .

This result is obtained by assuming Nn ∼ τdn , with d ≥ (a+1)/2a, which implies
that the SMC error and the BOEM error are balanced. Unfortunately, such a
rate is obtained after a total number of observations Tn; therefore, as discussed
in [23], it is quite sub-optimal. Eq (25) shows that the rate of convergence equal
to the square root of the total number of observations up to block n, can be
reached by using the averaged P-BOEM algorithm: the Lp/2-norm of the error
θ̃n − θ? has a rate of convergence proportional to T−1/2

n . Here again, note that
since Nn is chosen as in A8 the SMC error and the BOEM error are balanced.

5 Proofs
For a function h, define osc(h)

def
= supz,z′ |h(z)− h(z′)|.

5.1 Proof of Proposition 4.1

For any t ∈ {0, . . . , τn+1}, define the σ-algebra FNn+1

n,t by

FNn+1

n,t
def
= σ

{
θn,YTn+1:Tn+t+1,

(
ξ`s, ω

`
s

)
; ` ∈ {1, . . . , Nn+1}; 0 ≤ s ≤ t

}
. (26)

We use Ss(x, x′) as a shorthand notation for S(x, x′,Ys). Under A2 and A6,
Propositions B.5., B.8. and B.9. in Appendix B of [22] can be applied so that

E
[∣∣∣S̃n(θn,Y)− S̄Tnτn+1

(θn,Y)
∣∣∣p] ≤ C (I1,n + I2,n) , (27)

where

I1,n
def
=

1

τ
p
2 +1
n+1 N

p
2
n+1

×
τn+1∑
t=0

E

[∣∣∣∣∣ω+(Yt+Tn)

b−(Yt+Tn)

τn+1∑
s=1

ρ|t−s|osc{Ss+Tn}

∣∣∣∣∣
p]

,

I2,n
def
=

1

τn+1N
p
n+1

×
τn+1∑
t=0

E

∣∣∣∣ω+(Yt+Tn)

b−(Yt+Tn)

∣∣∣∣2p E
[∣∣∣∣∣
τn+1∑
s=1

ρ|t−s|osc{Ss+Tn}

∣∣∣∣∣
p̄∣∣∣∣∣FNn+1

n,t−1

]p/p̄ .

By the Hölder inequality applied with α def
= p̄/p ≥ 1 and β−1 def

= 1− α−1,

I1,n ≤
1

τ
p
2 +1
n+1 N

p
2
n+1

τn+1∑
t=1

∥∥∥∥∥
τn+1∑
s=1

ρ|t−s|osc{Ss+Tn}

∥∥∥∥∥
p

p̄

×
∥∥∥∥ω+(Yt+Tn)

b−(Yt+Tn)

∥∥∥∥2p

2p̄p/(p̄−p)
.
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By A2, A3-(p̄), A4(a) and A7-(∆p), we have

I1,n ≤
C

τ
p
2
n+1N

p
2
n+1

.

Using similar arguments for I2,n yields I2,n ≤ C N−pn+1, which concludes the
proof.

5.2 Lp-controls
Proposition 5.1. Let S : X2 × Y −→ Rd be a measurable function s.t. A3-(p̄)
holds for some p̄ > 2. Assume A2, A4, A6 and A7-(∆p) for some p ∈ (2, p̄),
where ∆p

def
= 2p̄p/(p̄− p). There exists a constant C s.t. for any n ≥ 1,∥∥∥S̃n(θn,Y)− S̄(θn)

∥∥∥
p
≤ C

(
1

√
τn+1

+
1

Nn+1

)
.

Proof. Under A2, A3-(p̄) and A4, by [23, Theorem 4.1], there exists a constant
C s.t. ∥∥∥S̄Tnτn+1

(θn,Y)− S̄(θn)
∥∥∥
p
≤ C
√
τn+1

.

Moreover, under A6 and A7-(∆p), by Proposition 4.1, we have∥∥∥S̃n(θn,Y)− S̄Tnτn+1
(θn,Y)

∥∥∥
p
≤ C

(
1

Nn+1
+

1

τ
1/2
n+1N

1/2
n+1

)
,

which concludes the proof.

Proposition 5.2. Let S : X2 × Y −→ Rd be a measurable function s.t. A3-(p̄)
holds for some p̄ > 2. Assume A2, A4-5, A6-8 and A7-(∆p) for some p ∈ (2, p̄),
where ∆p

def
= 2p̄p/(p̄−p). Let {θn}n be the P-BOEM sequence. For any θ? ∈ Θ,

on the set {limn θn = θ?},

Σ̃n −→ S̄(θ?) , P− a.s. ,

where S̄ is defined in (21) and Σ̃n in (7).

Proof. By (7), Σ̃n can be written as

Σ̃n =
1

Tn

n∑
j=1

τj

[
S̃j−1(θj−1,Y)− S̄(θj−1)

]
+

1

Tn

n∑
j=1

τj S̄(θj−1) . (28)

By Theorem 4.2, S̄ is continuous so, by the Cesaro Lemma, the second term in
the right-hand side of (28) converges to S̄(θ?) P-a.s., on the set {limn θn = θ?}.
By Proposition 5.1, there exists a constant C such that for any n,∥∥∥S̃n(θn,Y)− S̄(θn)

∥∥∥
p
≤ C

(
1

√
τn+1

+
1

Nn+1

)
.
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Hence, by A5, A8 and the Borel-Cantelli Lemma,∣∣∣S̃n(θn,Y)− S̄(θn)
∣∣∣ −→ 0 , P− a.s.

The proof is concluded by applying the Cesaro Lemma.

A Detailed SMC algorithm
In this section, we give a detailed description of the SMC algorithm used to
compute sequentially the quantities S̃n(θn,Y), n ≥ 0. This is the algorithm
proposed by [4] and [10].

At each time step, the weighted samples are produced using sequential im-
portance sampling and sampling importance resampling steps. In Algorithm 2,
the instrumental proposition kernel used to select and propagate the particles
is πt (see (13) and [16, 17, 27] for further details on this SMC step).

It is readily seen from the description below that the observations Yt are
processed sequentially.

Algorithm 2 Forward SMC step
Require: θn, τn+1, N , YTn+1:Tn+τn+1

.

Ensure: S̃n(θn,Y) .
Sample {ξ`0}N`=1 i.i.d. with distribution χ .
Set ω`0 = 1/N for all ` ∈ {1, . . . , N} .
Set R`0,θn = 0 for all ` ∈ {1, . . . , N} .
for t = 1 to τn+1 do

for ` = 1 to N do
Conditionally to (θn, YTn+1:Tn+t, {J`t−1, ξ

`
t−1}N`=1), sample independently

(J`t , ξ
`
t ) ∼ πt(i,dx) , where πt(i,dx) ∝ ωit−1υt(ξ

i
t−1)qt(ξ

i
t−1, x)λ(dx) .

Set

ω`t =
mθn(ξ

J`t
t−1, ξ

`
t )gθn(ξ`t ,YTn+t)

υt(ξ
J`t
t−1)qt(ξ

J`t
t−1, ξ

`
t )

.

Set

R`t,θn =
1

t

N∑
j=1

ωjt−1mθn(ξjt−1, ξ
`
t )
S(ξjt−1, ξ

`
t ,YTn+t) + (t− 1)Rjt−1,θn∑N
k=1 ω

k
t−1mθn(ξkt−1, ξ

`
t )

.

end for
end for
Set

S̃n(θn,Y) =

N∑
`=1

ω`τn+1
R`τn+1,θn .
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B Lp-controls of SMC approximations
In this section, we give further details on the Lp control on each block (see (27)):

E
[∣∣∣S̃N,Tnτn+1

(θn,Y)− S̄Tnτn+1
(θn,Y)

∣∣∣p] ,
S̄Tτ is defined by (6) (we recall that, χ being fixed, it is dropped from the
notations) and S̃N,Tτ is the SMC approximation of S̄Tτ based on N particles
computed as described in Section 2.4.

The following results are technical lemmas taken from [16] (stated here for
a better clarity) or extensions of the Lp controls derived in [19].

Hereafter, “time t” corresponds to time t in the block n. Therefore, even if
it is not explicit in the notations (in order to make them simpler), the following
quantities depend upon the observations YTn+1:Tn+τn+1

.

Denote by φθs the filtering distribution at time s, and let

Bθφθt
(x, dx′)

def
=

mθ(x
′, x)∫

mθ(u, x)φθt (du)
φθt (dx

′)

be the backward kernel smoothing kernel at time t+1. For all 0 ≤ s ≤ τ−1 and
for all bounded measurable function h on Xτ−s+1, define recursively φθs:τ |τ [h]
backward in time, according to

φθs:τ |τ [h] =

∫
· · ·
∫

Bθφθs (xs+1,dxs)φ
θ
s+1:τ |τ (dxs+1:τ )h(xs:τ ) , (29)

starting from φθτ :τ |τ = φθτ . By convention, φθ0 = χ.

For t ≥ 1, let
{

(ξ`t , ω
`
t )
}N
`=1

be the weighted samples obtained as described in
Section 2.4 (see also Algorithm 2 in Appendix A); it approximates the filtering
distribution φθt . Denote by φN,θt this approximation. For 0 ≤ s ≤ τ − 1, an
approximation of the backward kernel can be obtained

BφN,θs
(x, h) =

N∑
i=1

ωismθ(ξ
i
s, x)∑N

`=1 ω
`
smθ(ξ`s, x)

h
(
ξis
)

;

and inserting this expression into (29) gives the following particle approximation
of the fixed-interval smoothing distribution φθ0:τ |τ [h]

φN,θ0:τ |τ [h] =

N∑
i0=1

· · ·
N∑
iτ=1

(
τ∏
u=1

ω
iu−1

u−1 mθ(ξ
iu−1

u−1 , ξ
iu
u )∑N

`=1 ω
`
u−1mθ(ξ`u−1, ξ

iu
u )

)
× ωiττ

Ωnτ
h
(
ξi00 , . . . , ξ

iτ
τ

)
,

(30)
with ΩNτ

def
=
∑N
`=1 ω

`
τ .
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Lemma B.1. Let
{

(ξ`t , ω
`
t ), 1 ≤ ` ≤ N, 0 ≤ t ≤ τn+1

}
be the weighted samples

obtained by Algorithm 2 in Appendix A, with θn, τn+1, N , YTn+1:Tn+τn+1
. Then,[

S̃N,Tnτn+1
(θn,Y)− S̄Tnτn+1

(θn,Y)
]

=
1

τn+1

(
φN,θn0:τn+1|τn+1

[
Sτn+1

]
− φθn0:τn+1|τn+1

[
Sτn+1

])
, (31)

where

Sτ (x0:τ )
def
=

τ∑
s=1

S(xs−1, xs,Ys+T ) . (32)

For all t ∈ {0, . . . , τ} and all bounded measurable function h on Xτ+1, define
the kernel Lt,τ : Xt+1 ×X⊗τ+1 → [0, 1] by

Lθt,τh(x0:t)
def
=

∫ τ∏
u=t+1

mθ(xu−1, xu)gθ(xu,Yu+T )h(x0:τ )λ(dxt+1:τ ) ; (33)

by convention, Lθτ,τh = h. Let LN,θt,τ and Lθt,τ be two kernels on X × X⊗(τ+1)

defined for all xt ∈ X by

Lθt,τh(xt)
def
=

∫
Bθφθt−1

(xt,dxt−1) · · ·Bθφθ0(x1,dx0)Lθt,τh(x0:t) (34)

LN,θt,τ h(xt)
def
=

∫
Bθ
φN,θt−1

(xt,dxt−1) · · ·Bθ
φN,θ0

(x1,dx0)Lθt,τh(x0:t) . (35)

Note that

Lθt,τ1(xt) =

∫
mθ(xt, x

′)gθ(x
′,YT+t+1) Lθt+1,τ1(x′)λ(dx′) . (36)

Lemma B.2, Proposition B.3, Lemma B.4 and B.5 can be found in [16].

Lemma B.2. Let
{

(ξ`t , ω
`
t ), 1 ≤ ` ≤ N, 0 ≤ t ≤ τn+1

}
be the weighted samples

obtained by Algorithm 2 in Appendix A, with θn, τn+1, N , YTn+1:Tn+τn+1
. Then,

φN,θn0:τn+1|τn+1
[h]− φθn0:τn+1|τn+1

[h] =

τn+1∑
t=0

∑N
`=1 ω

`
t G

N,θn
t,τn+1

h(ξ`t )∑N
`=1 ω

`
t L

θn
t,τn+1

1(ξ`t )
, (37)

with GN,θt,τ is a kernel on X × X⊗(τ+1) defined, for all x ∈ X and all bounded
and measurable function h on Xτ+1, by

GN,θt,τ h(x)
def
= LN,θt,τ h(x)−

φN,θt−1[LN,θt−1,τh]

φN,θt−1[LN,θt−1,τ1]
LN,θt,τ 1(x) . (38)
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Proof. By definition of Lθt,τ ,

φθ0:τ |τ [h] =
φθ0:t|t

[
Lθt,τh

]
φθ0:t|t

[
Lθt,τ1

] .
We write

φN,θ0:τ |τ [h]− φθ0:τ |τ [h] =

τ∑
t=0

{
φN,θ0:t|t

[
Lθt,τh

]
φN,θ0:t|t

[
Lθt,τ1

] − φN,θ0:t−1|t−1

[
Lθt−1,τh

]
φN,θ0:t−1|t−1

[
Lθt−1,τ1

]} ,

where we used the convention

φN,θ0:−1|−1

[
Lθ−1,τh

]
φN,θ0:−1|−1

[
Lθ−1,τ1

] =
χ
[
Lτ0,τh

]
χ
[
Lθ0,τ1

] = φθ0:τ |τ [h] .

We have for all 0 ≤ t ≤ τ ,

φN,θ0:t|t [Lt,τh] =

∫
φN,θt (dxt)

t−1∏
j=0

BφN,θj
(xj+1,dxj) Lθt,τh(x0:t) = φN,θt [LN,θt,τ h] .

Therefore, for all 1 ≤ t ≤ τ ,

φN,θ0:t|t[L
θ
t,τh]

φN,θ0:t|t[L
θ
t,τ1]

−
φN,θ0:t−1|t−1[Lθt−1,τh]

φN,θ0:t−1|t−1[Lθt−1,τ1]
=
φN,θt [LN,θt,τ h]

φN,θt [LN,θt,τ 1]
−
φN,θt−1[LN,θt−1,τh]

φN,θt−1[LN,θt−1,τ1]
=
φN,θt [GN,θt,τ h]

φN,θt [LN,θt,τ 1]
.

Proposition B.3. Let
{

(ξ`t , ω
`
t ), 1 ≤ ` ≤ N, 0 ≤ t ≤ τn+1

}
be the weighted sam-

ples obtained by Algorithm 2 in Appendix A, with input variables θn, τn+1, N ,
YTn+1:Tn+τn+1

. Then,

[
S̃N,Tnτn+1

(θn,Y)− S̄Tnτn+1
(θn,Y)

]
=

1

τn+1

τn+1∑
t=0

DN,θn
t,τn+1

(Sτn+1
)

+
1

τn+1

τn+1∑
t=0

CN,θnt,τn+1
(Sτn+1

) ,

where Sτ is given by (32) and

DN,θn
t,τn+1

(h)
def
=

φN,θnt−1 [υt]

φN,θnt−1

[
Lθnt−1,τn+1

1

|Lθnt,τn+1
1|∞

]N−1
N∑
`=1

ω`t
GN,θnt,τn+1

h(ξ`t )

|Lθnt,τn+1
1|∞

; (39)

CNt,τn+1
(h)

def
=

 1

N−1
∑N
i=1 ω

i
t

Lθnt,τn+1
1(ξit)

|Lθnt,τn+1
1|∞

−
φN,θnt−1 [υt]

φN,θnt−1

[
Lθnt−1,τn+1

1

|Lθnt,τn+1
1|∞

]
 (40)

×N−1
N∑
`=1

ω`t
GN,θnt,τn+1

h(ξ`t )

|Lθnt,τn+1
1|∞

.
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Proof. (37) can be rewritten as follows:

φN,θn0:τn+1|τn+1
[h]− φθn0:τn+1|τn+1

[h] =

τn+1∑
t=0

DN,θn
t,τn+1

(h) +

τn+1∑
t=0

CN,θnt,τn+1
(h) . (41)

The proof is concluded by Lemma B.1.

For any t ∈ {0, . . . , τn+1}, we recall the definition of FNn,t given by (26)

FNn,t = σ
{
θn,YTn+1:Tn+t+1,

(
ξ`s, ω

`
s

)
; ` ∈ {1, . . . , N}; 0 ≤ s ≤ t

}
,

where
{

(ξ`t , ω
`
t )
}N
`=1

are the weighted samples obtained by Algorithm 2 in Ap-
pendix A, with input variables θn, τn+1, N , YTn+1:Tn+τn+1

.

Lemma B.4. Let
{

(ξ`t , ω
`
t ), 1 ≤ ` ≤ N, 0 ≤ t ≤ τn+1

}
be the weighted samples

obtained by Algorithm 2 in Appendix A, with θn, τn+1, N , YTn+1:Tn+τn+1
. Then,

for any 1 ≤ t ≤ τn+1 and any 1 ≤ ` ≤ N ,

E
[
ω`th(ξ`t )

∣∣FNn,t−1

]
=
φN,θnt−1

[∫
mθn(·, x)gθn(x,YTn+t) h(x) λ(dx)

]
φN,θnt−1 [υt]

. (42)

Proof. By definition of the weighted particles,

E
[
ω`th(ξ`t )

∣∣FNn,t−1

]
= E

[
mθn(ξ

I1t
t−1, ξ

1
t )gθn(ξ1

t ,Yt+Tn)

υt(ξ
I1t
t−1)qt(ξ

I1t
t−1, ξ

1
t )

h(ξ1
t )

∣∣∣∣∣FNn,t−1

]

=

(
N∑
i=1

ωit−1υt(ξ
i
t−1)

)−1 N∑
i=1

∫
ωit−1υt(ξ

i
t−1)qt(ξ

i
t−1, x)

×
mθn(ξit−1, x)gθn(x,Yt+Tn)

υt(ξit−1)qt(ξit−1, x)
h(x)λ(dx)

=

(
N∑
i=1

ωit−1υt(ξ
i
t−1)

)−1 N∑
i=1

∫
ωit−1mθn(ξit−1, x)gθn(x,Yt+Tn)h(x)λ(dx) .

Lemma B.5. Assume A2 and A6. Let
{

(ξ`t , ω
`
t ), 1 ≤ ` ≤ N, 0 ≤ t ≤ τn+1

}
be

the weighted samples obtained by Algorithm 2 in Appendix A, with input vari-
ables θn, τn+1, N , YTn+1:Tn+τn+1 .

(i) For any t ∈ {0, . . . , τn+1} and any measurable function h on Xτn+1+1, the

random variables
{
ω`t G

N,θn
t,τn+1

h(ξ`t ) |L
θn
t,τn+1

1|−1
∞

}N
`=1

are:

(a) conditionally independent and identically distributed given FNn,t−1 ,

26



(b) centered conditionally to FNn,t−1 .

(ii) For any t ∈ {0, . . . , τn+1}:∣∣∣∣∣G
N,θn
t,τn+1

Sτn+1
(ξ`t )

|Lθnt,τn+1
1|∞

∣∣∣∣∣ ≤
τn+1∑
s=1

ρ|t−s|osc{S(·, ·,Ys+Tn)} , (43)

where Sτ is defined by (32).

(iii) For all x ∈ X and any t ∈ {0, . . . , τn+1},

Lθnt,τn+1
1(x)

|Lθnt,τn+1
1|∞

≥ σ−
σ+

,
Lθnt−1,τn+1

1(x)

|Lθnt,τn+1
1|∞

≥
σ2
−
σ+

b−(Yt+Tn) .

Proof. The proof of (i) is given by [16, Lemma 3].
Proof of (ii). Let Πs−1:s,τ be the operator which associates to any bounded

and measurable function h on X × X the function Πs−1:s,τh given, for any
(x0, . . . , xτ ) ∈ Xτ+1, by

Πs−1:s,τh(x0:τ )
def
= h(xs−1:s) .

Using this notation, we may write Sτ =
∑τ
s=1 Πs−1:s,τS(·, ·,Ys+T ) andGN,θt,τ Sτ =∑τ

s=1G
N,θ
t,τ Πs−1:s,τS(·, ·,Ys+T ). Following the same lines as in [16, Lemma 10],

|GN,θt,τ Πs−1:s,τS(·, ·,Ys+T )|∞ ≤ ρs−1−tosc(S(·, ·,Ys+T ))|Lθt,τ1|∞ if t ≤ s− 1 ,

|GN,θt,τ Πs−1:s,τS(·, ·,Ys+T )|∞ ≤ ρt−sosc(S(·, ·,Ys+T ))|Lθt,τ1|∞ if t ≥ s .

Consequently,

∣∣∣GN,θt,τ Sτ

∣∣∣
∞
≤

τ∑
s=1

|GN,θt,τ Πs−1:s,τS(·, ·,Ys+T )|∞

≤

(
τ∑
s=1

ρ|t−s|osc{S(·, ·,Ys+T )}

)
|Lθt,τ1|∞ ,

which shows (ii).
Proof of (iii). By the definition (34), for all x ∈ X and all t ∈ {1, . . . , τ},

Lθt,τ1(x) =

∫
mθ(x, xt+1)gθ(xt+1,Yt+T+1)

×
τ∏

u=t+2

mθ(xu−1,dxu)gθ(xu,Yu+T )λ(dxt+1:τ ) .
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Hence, by A2,∣∣Lθt,τ1∣∣∞ ≤ σ+

∫
gθ(xt+1,Yt+T+1)Lθt+1,τ1(xt+1)λ(dxt+1)

Lθt,τ1(x) ≥ σ−
∫
gθ(xt+1,Yt+T+1)Lθt+1,τ1(xt+1)λ(dxt+1) ,

which concludes the proof of the first statement. By (36), A2 and (16),

Lθt−1,τ1(x)

|Lθt,τ1|∞
=

∫
mθ(x, x

′)gθ(x
′,Yt+T )

Lθt,τ1(x′)

|Lθt,τ1|∞
λ(dx′) ≥

σ2
−
σ+

b−(Yt+T ) .

The proofs of Propositions B.6 and B.7 follow the same lines as [19, Propo-
sitions 1-2]. The upper bounds given here provide an explicit dependence on
the observations.

Proposition B.6. Assume A2 and A6. Let
{

(ξ`t , ω
`
t ), 1 ≤ ` ≤ N, 0 ≤ t ≤ τn+1

}
be the weighted samples obtained by Algorithm 2 in Appendix A, with input
variables θn, τn+1, N , YTn+1:Tn+τn+1

. For all p > 1, there exists a constant C
such that

E

[∣∣∣∣∣
τn+1∑
t=0

DN,θn
t,τn+1

(Sτn+1)

∣∣∣∣∣
p]

≤ C
τ

( p2−1)∨0
n+1

Np−( p2∨1)

τn+1∑
t=0

E

[∣∣∣∣∣ω+(Yt+Tn)

b−(Yt+Tn)

τn+1∑
s=1

ρ|t−s|osc{S(·, ·,Ys+Tn)}

∣∣∣∣∣
p]

. (44)

where DN,θ
t,τ is defined in (39).

Proof. By Lemma B.5(iii),

φN,θnt−1 [υt]

φN,θnt−1

[
Lθnt−1,τn+1

1

|Lθnt,τn+1
1|∞

] ≤ σ+|υ|∞
σ2
−b−(Yt+Tn)

.

By Lemma B.5(i) and since θn is FNn,t-measurable for all t ∈ {0, . . . , τn+1},{
DN,θn
t,τn+1

(Sτn+1
),FNn,t

}
0≤t≤τn+1

is a martingale difference. Since p > 1, Burkholder’s

inequality (see [21, Theorem 2.10, page 23]) states the existence of a constant
C depending only on p such that:

E

[∣∣∣∣∣
τn+1∑
t=0

DN,θn
t,τn+1

(Sτn+1)

∣∣∣∣∣
p]
≤ CE

∣∣∣∣∣
τn+1∑
t=0

∣∣∣DN,θn
t,τn+1

(Sτn+1)
∣∣∣2∣∣∣∣∣

p/2
 .
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Hence,

E

[∣∣∣∣∣
τn+1∑
t=0

DN,θn
t,τn+1

(Sτn+1
)

∣∣∣∣∣
p]
≤ C

(
σ+|υ|∞
σ2
−

)p

× E


∣∣∣∣∣∣
τn+1∑
t=0

∣∣∣∣∣N−1
N∑
`=1

ω`t
b−(Yt+Tn)

GN,θnt,τn+1
Sτn+1

(ξ`t )

|Lθnt,τn+1
1|∞

∣∣∣∣∣
2
∣∣∣∣∣∣
p/2
 ,

which implies, using the convexity inequality (
∑τ
k=1 ak)p/2 ≤ τ (p/2−1)∨0

∑τ
k=1 a

p/2
k ,

E

[∣∣∣∣∣
τn+1∑
t=0

DN,θn
t,τn+1

(Sτn+1
)

∣∣∣∣∣
p]
≤ C

(
σ+|υ|∞
σ2
−

)p

× (τn+1 + 1)
( p2−1)∨0

Np

τn+1∑
t=0

E

[∣∣∣∣∣ 1

b−(Yt+Tn)

N∑
`=1

ω`t
GN,θnt,τn+1

Sτn+1(ξ`t )

|Lθnt,τn+1
1|∞

∣∣∣∣∣
p]

.

Since Yt+Tn and θn are FNn,t−1-measurable,

E

[∣∣∣∣∣ 1

b−(Yt+Tn)

N∑
`=1

ω`t
GN,θnt,τn+1

Sτn+1
(ξ`t )

|Lθnt,τn+1
1|∞

∣∣∣∣∣
p]

= E

[
E

[∣∣∣∣∣
N∑
`=1

ω`t
GN,θnt,τn+1

Sτn+1
(ξ`t )

|Lθnt,τn+1
1|∞

∣∣∣∣∣
p∣∣∣∣∣FNn,t−1

]
1

b−(Yt+Tn)p

]
By Lemma B.5(i), using again the Burkholder and convexity inequalities, there
exists C s.t.

E

[∣∣∣∣∣
N∑
`=1

ω`t
GN,θnt,τn+1

Sτn+1(ξ`t )

|Lθnt,τn+1
1|∞

∣∣∣∣∣
p∣∣∣∣∣FNt−1,n

]
≤ CN ( p2−1)∨0E

[
N∑
`=1

∣∣∣∣∣ω`t G
N,θn
t,τn+1

Sτn+1(ξ`t )

|Lθnt,τn+1
1|∞

∣∣∣∣∣
p∣∣∣∣∣FNn,t−1

]

≤ CN
p
2∨1E

[∣∣∣∣∣ω1
t

GN,θnt,τn+1
Sτn+1(ξ1

t )

|Lθnt,τn+1
1|∞

∣∣∣∣∣
p∣∣∣∣∣FNn,t−1

]
.

The proof is concluded by (43).

Proposition B.7. Assume A2 and A6. Let
{

(ξ`t , ω
`
t ), 1 ≤ ` ≤ N, 0 ≤ t ≤ τn+1

}
be the weighted samples obtained by Algorithm 2 in Appendix A, with input
variables θn, τn+1, N , YTn+1:Tn+τn+1

. For all p̄ > 1 and all p ∈ (1, p̄), there
exists a constant C s.t. for any t ∈ {0, . . . , τn+1},

E
[∣∣∣CN,θnt,τn+1

(Sτn+1
)
∣∣∣p] ≤ CN ( p2∨

1
α )+( p2∨

1
β )−2p

× E

∣∣∣∣ω+(Yt+Tn)

b−(Yt+Tn)

∣∣∣∣2p E
[∣∣∣∣∣
τn+1∑
s=1

ρ|t−s|osc{S(·, ·,Ys+Tn)}

∣∣∣∣∣
p̄∣∣∣∣∣FNn,t−1

]p/p̄ , (45)
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where CN,θt,τ is defined in (40) and α def
= p̄/p and β−1 = 1− α−1.

Proof. Lemma B.4 applied with the function h = Lθnt,τn+1
1 and (36) yield for

any 1 ≤ ` ≤ N

E
[
ω`tL

θn
t,τn+1

1(ξ`t )
∣∣∣FNn,t−1

]
=
φN,θnt−1

[
Lθnt−1,τn+1

1
]

φN,θnt−1 [υt]
.

Therefore, by definition of CN,θt,τ (see (40)), CN,θnt,τn+1
(Sτn+1

) is equal to

E
[
ANn,t

∣∣FNn,t−1

]
−ANn,t

E
[
ANn,t

∣∣FNn,t−1

]
ANn,t

BNn,t =
(
E
[
ANn,t

∣∣FNn,t−1

]
−ANn,t

)
· · ·

×
ΩNn,t

E
[
ANn,t

∣∣FNn,t−1

]
ANn,t

(
BNn,t

E
[
ΩNn,t

∣∣FNn,t−1

] +
BNn,t

ΩNn,tE
[
ΩNn,t

∣∣FNn,t−1

] (E [ΩNn,t∣∣FNn,t−1

]
− ΩNn,t

))

= BNn,t
(
E
[
ANn,t

∣∣FNn,t−1

]
−ANn,t

) ΩNn,t

E
[
ANn,t

∣∣FNn,t−1

]
ANn,t

1

E
[
ΩNn,t

∣∣FNn,t−1

]
+
(
E
[
ANn,t

∣∣FNn,t−1

]
−ANn,t

) (
E
[
ΩNn,t

∣∣FNn,t−1

]
− ΩNn,t

) BNn,t

E
[
ANn,t

∣∣FNn,t−1

]
ANn,t

1

E
[
ΩNn,t

∣∣FNn,t−1

]
with

ANn,t
def
= N−1

N∑
`=1

ω`t
Lθnt,τn+1

1(ξ`t )

|Lθnt,τn+1
1|∞

,

BNn,t
def
=

1

N

N∑
`=1

ω`t
GN,θnt,τn+1

Sτn+1
(ξ`t )

|Lθnt,τn+1
1|∞

,

ΩNn,t
def
=

1

N

N∑
`=1

ω`t .

This can be rewritten,
CN,θt,τ = C1 + C2 ,

with

C1 = BNn,t
(
E
[
ANn,t

∣∣FNn,t−1

]
−ANn,t

) ΩNn,t

E
[
ANn,t

∣∣FNn,t−1

]
ANn,t

1

E
[
ΩNn,t

∣∣FNn,t−1

]
and

C2 =
(
E
[
ANn,t

∣∣FNn,t−1

]
−ANn,t

) (
E
[
ΩNn,t

∣∣FNn,t−1

]
− ΩNn,t

)
×

BNn,t

E
[
ANn,t

∣∣FNn,t−1

]
ANn,t

1

E
[
ΩNn,t

∣∣FNn,t−1

] .
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By Lemmas B.4 and Lemmas B.5(iii), and A6,

1

E
[
ΩNn,t

∣∣FNn,t−1

] ≤ σ−|υ|∞
b−(Yt+Tn)

;
ΩNt,n

E
[
ANn,t

∣∣FNn,t−1

]
ANn,t

≤
(
σ+

σ−

)2 |υ|∞
σ−b−(Yt+Tn)

;

and by Lemma B.5(ii)

BNn,t

E
[
ANn,t

∣∣FNn,t−1

]
ANn,t

≤
(
σ+

σ−

)2 |υ|∞
σ−b−(Yt+Tn)

(
τn+1∑
s=1

ρ|t−s|osc(S(·, ·,Ys+Tn)

)
.

Therefore, there exists a constant C s.t.

E
[
|C1|p

∣∣FNn,t−1

]
≤ C

∣∣∣∣ 1

b−(Yt+Tn)

∣∣∣∣2p E [∣∣BNn,t∣∣p ∣∣E [ANn,t∣∣FNn,t−1

]
−ANn,t

∣∣p∣∣∣FNn,t−1

]
Applying the Holder inequality with α def

= p̄/p ≥ 1 and β−1 def
= 1− α−1 yields

E
[∣∣BNn,t∣∣p ∣∣E [ANn,t∣∣FNn,t−1

]
−ANn,t

∣∣p∣∣∣FNn,t−1

]
≤ E

[∣∣BNn,t∣∣αp∣∣∣FNn,t−1

]1/α
E
[∣∣E [ANn,t∣∣FNn,t−1

]
−ANn,t

∣∣βp∣∣∣FNn,t−1

]1/β
.

By Proposition B.6,

E
[∣∣BNn,t∣∣αp∣∣∣FNn,t−1

]1/α
≤ CN ( p2∨

1
α )−pE

[∣∣∣∣∣ω1
t

GN,θnt,τn+1
Sτn+1

(ξ1
t )

|Lθnt,τn+1
1|∞

∣∣∣∣∣
αp∣∣∣∣∣FNn,t−1

]1/α

≤ CN ( p2∨
1
α )−pω+(Yt+Tn)pE

[∣∣∣∣∣
τn+1∑
s=1

ρ|t−s|osc{S(·, ·,Ys+Tn)}

∣∣∣∣∣
αp∣∣∣∣∣FNn,t−1

]1/α

,

Given FNn,t−1, the random variables
{
E
[
ω`t
Lθnt,τn+1

1(ξ1t )

|Lθnt,τn+1
1|∞

∣∣∣∣FNn,t−1

]
− ω`t

Lt,τn+1
1(ξ`t)

|Lθnt,τn+1
1|∞

}N
`=1

are conditionally independent, centered and bounded by Lemma B.5. Following
the same steps as in the proof of Proposition B.6, there exists a constant C such
that

E
[∣∣E [ANn,t∣∣FNn,t−1

]
−ANn,t

∣∣βp∣∣∣FNn,t−1

]1/β
≤ CN ( p2∨

1
β )−pω+(Yt+Tn)p .

Hence,

E [|C1|p] ≤ CN ( p2∨
1
α )+( p2∨

1
β )−2p

× E

∣∣∣∣ω+(Yt+Tn)
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s=1

ρ|t−s|osc{S(·, ·,Ys+Tn)}

∣∣∣∣∣
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]p/p̄ .
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Similarly, using

E
[∣∣E [ΩNt,n∣∣FNn,t−1

]
− ΩNt,n

∣∣αp∣∣∣FNn,t−1

]1/α
≤ CN ( p2∨

1
α )−pω+(Yt+Tn)p ,

yields

E [|C2|p] ≤ CN−p

× E

∣∣∣∣ω+(Yt+Tn)

b−(Yt+Tn)

∣∣∣∣2p E
[∣∣∣∣∣
τn+1∑
s=1

ρ|t−s|osc{S(·, ·,Ys+Tn)}
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]p/p̄ .
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