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BAYESIAN LEARNING OF NOISY MARKOV DECISION

PROCESSES

SUMEETPAL S. SINGH, NICOLAS CHOPIN, AND NICK WHITELEY

Abstract. We consider the inverse reinforcement learning problem, that is,
the problem of learning from, and then predicting or mimicking a controller
based on state/action data. We propose a statistical model for such data, de-
rived from the structure of a Markov decision process. Adopting a Bayesian
approach to inference, we show how latent variables of the model can be esti-
mated, and how predictions about actions can be made, in a unified framework.
A new Markov chain Monte Carlo (MCMC) sampler is devised for simulation
from the posterior distribution. This step includes a parameter expansion step,
which is shown to be essential for good convergence properties of the MCMC
sampler. As an illustration, the method is applied to learning a human con-
troller.

1. Introduction

1.1. Motivation. The problem of fitting a statistical model to observed actions
has received significant attention in a variety of disciplines. These include Op-
timal Control (Rust, 1988), Economics (Gotz and McCall, 1980; Wolpin, 1984;
Rust, 1987; Hotz and Miller, 1993; Geweke and Keane, 2000; Geweke et al., 1994;
Aguirregabiria and Mira, 2002; Imai et al., 2009), andMachine Learning (Ng and Russell,
2000; Abbeel and Ng, 2004). Across these cases there is some variety in the estima-
tion aims and the assumed mechanisms which generate observed actions. We focus
on the case in which it is assumed that the observations arise from an underlying
Markov Decision Process (a full model specification is given in the next section). In
this case, given the current state X of the system, the controller chooses an action
A and receives an instantaneous reward specified by the function r,

(X,A) → r(X,A) ∈ R

where (X,A) is the state-action pair. The state then evolves according to a Markov
kernel p(·|X,A), the controller chooses the next action, receives a reward and so
on. The controller chooses its actions to maximize the average reward it will accrue
over an infinite horizon. However, the controller may take sub-optimal decisions
from time to time. This is captured by a “noisy” Markov Decision Process (MDP)
model.

A generic approach to automating a task is to model it as a control problem, see
Chapter 8 of Bertsekas and Tsitsiklis (1996), and also Bertsekas (2005), Bertsekas
(2007), which involves specifying a reward function and other elements of the model,
and then solving for the optimal controller. Putting aside the difficulties associated
with the last step, specifying the reward function is non-trivial and often achieved
in practice by a heuristic process of trial and error, i.e. by observing the system
under the computed optimal controller and then adjusting the reward function to
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avoid observed undesired behavior. After this adjustment, the optimal controller is
re-computed and this process is repeated until satisfaction.

An alternative, often simpler approach is to obtain a sample path which is char-
acteristic of desired behavior, e.g. by a human controller, and then estimate the
control policy generating this sample path: this is known as the inverse reinforce-
ment learning problem (Ng and Russell, 2000; Abbeel and Ng, 2004). Learning to
mimic a controller has many potential applications in applied fields such as robot-
ics and artificial intelligence (Coates et al., 2009); biology, e.g. the study of animal
learning (Watkins, 1987; Schmajuk and Zanutto, 1997), economics (Rust, 1987),
and other fields.

Our aim is to develop a purely statistical, and computationally tractable, solu-
tion to this problem of mimicking behaviour based on a statistical model for the
controller’s actions, and the Bayesian approach. This is advantageous because it
gives us a unified and principled framework for the following tasks: (a) to properly
model uncertainty (i.e. the human controller may make mistakes); (b) to estimate
jointly the control policy and the model parameters, (c) to predict future actions.

In a parametric approach to estimation, the reward function and other elements
of the model are assumed to be specific functional forms of a parameter vector θ
(Gotz and McCall, 1980; Wolpin, 1984; Rust, 1987, 1988; Aguirregabiria and Mira,
2002; Hotz and Miller, 1993; Imai et al., 2009). The best parametric estimate may
then be computed, for example, by maximizing the likelihood of the observed data
with respect to θ. From a computational perspective, we shall see that this approach
is cumbersome for a noisy MDP model because the likelihood of an observed action
given observed states is an intractable integral. We avoid this difficulty by targeting
the control policy directly; as we shall see, a specific quantity called the optimal
value function. This gives an additional justification to the Bayesian approach in
this context, as the data augmentation principle (Tanner and Wong, 1987) makes it
possible to estimate the model without computing the difficult integral mentioned.

1.2. Contributions. The contributions of this work are as follows. We adopt a
Bayesian approach to modelling state/action data derived from the structure of an
MDP. Our approach is inspired by the pioneering work of Albert and Chib (1993)
and McCulloch and Rossi (1994) in the context of statistical inference in discrete
choice models, where the computations are performed using a Gibbs sampler ap-
plied to an enlarged (or augmented) model. In subsequent work, Nobile (1998)
and Imai and van Dyk (2005) enhanced the computational efficiency of the Gibbs
sampling technique while McCulloch et al. (2000) and Imai and van Dyk (2005)
devised new priors for the identified parameters of the model.

We devise a new Gibbs sampling algorithm for inferring the optimal value func-
tion. The proposed algorithm is a Parameter Expanded Data Augmentation (PX-
DA) algorithm (Liu and Wu, 1999; Meng and van Dyk, 1999). PX-DA improves
upon the efficiency of standard DA by reducing the correlation between the sam-
ples. This is achieved by inserting an additional simulation step into the algorithm
which involves moving in the augmented data space. This extra simulation step is
computationally inexpensive and leads to improved performance over standard DA
algorithms. In fact, we give examples where the DA algorithm does not converge
after a large number of iterations, whereas PX-DA does. The PX-DA algorithm we
propose involves movement of the augmented data in the extra simulation step with
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a combination of translation and scaling. We also implement an efficient Metropolis-
Hastings kernel with independent proposals when sampling the augmented data.

As an illustrative example of learning a human controller we apply our frame-
work to the game of Tetris. Automating Tetris is a challenging benchmark problem
in the control literature, see for example Bertsekas and Tsitsiklis (1996), and treat-
ing it is difficult because the control model has a very large state space. Moreover,
data from a human player is noisy, as we are prone to making errors. We show
the proposed method can quite accurately mimic a given human player by per-
forming posterior prediction from a limited amount of observed data from that
player. By contrast, existing approaches from the control literature focus solely on,
having specified the reward function, solving the associated difficult optimization
problem using reinforcement learning or other dynamic programming algorithms
(Bertsekas, 2005, 2007; Tsitsiklis and Roy, 1994; Bertsekas and Tsitsiklis, 1996).
We also demonstrate the effect of the amount of data available from a player on
posterior distributions which, under the proposed model, characterise their action
preferences.

1.3. Plan, notation. The organization of this paper is as follows. Section 2 de-
fines the problem in detail and states the inference objectives. Section 3 describes
the PX-DA method generally and then the specific implementation for the model
we consider. Section 4 presents the PX-DA sampler in detail for the assumed priors
and discusses some practical issues and extensions. Numerical results highlighting
various properties of the proposed PX-DA algorithm are presented in Section 5,
as well as implementation details and results for Tetris. A proof of the correct-
ness of the proposed PX-DA algorithm is presented in the Appendix along with
implementation details of the MCMC algorithm.

This section is concluded with a description of the notation used. Capital letters
are used for random variables and lower case for their realizations. We use the colon
short-hand for sequence of random variables, e.g. X0:k = (X0, . . . , Xk). The letters
f and p are reserved for the probability densities or probability mass functions of
random variables. For two jointly distributed random variables (X,Y ), fX|Y , fX,Y

and fX denote, respectively, the conditional probability density, the joint density
and the marginal density. When the subscript is omitted, the arguments of f or p
will indicate precisely the random variables to which the density corresponds. For
example, p(x|y) is pX|Y (x|y). The value at x of the multivariate normal probability
density with mean µ and covariance Σ is denoted N (x;µ,Σ). For a vector v, the
i-th component is denoted v(i). All vectors are column vectors and the transpose
of v is indicated by vT. The m-dimensional vector comprised of ones (respectively
zeros) only is denoted by 1m (respectively 0m). The subscript m is omitted when
the dimension is obvious from context. Im will denote the m by m identity matrix.
Similarly, [Σ]i,j will denote the (i, j)-th element of the matrix Σ. IA is the indicator
function of the set A, i.e. IA(x) = 1 if x ∈ A and 0 otherwise. R denotes the real
line, R+ its strictly positive part and E is the mathematical expectation operator.
The cardinality of a finite set A is denoted by |A|. The Dirac measure concentrated
at a point x is denoted by δx.

2. Problem Statement

2.1. Markov decision processes. An MDP is comprised of a controlled Markov
chain, a control process, a reward function and an optimality criterion. Each of
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these are defined in turn below; see Bertsekas (2005, 2007) for additional back-
ground and details of other MDP optimality criteria.

The state process, denoted {Xt}t≥1, is a X -valued controlled discrete time (so
t is always an integer) Markov chain where X is the finite set {1, 2, . . . , N}. Let
{At}t≥1 be the A-valued control (or action) process where A = {1, 2, . . . ,M} is the
set of all possible controls. Given the entire realization of the state and actions up
to time t ≥ 1, the evolution of the state to time t+1 is determined by the selected
action and state at time t only, i.e.

(1) Xt+1| (X1:t = x1:t, A1:t = a1:t) ∼ p(·|xt, at),

where for each state-action pair (x, a), p(·|x, a) is a probability distribution on X .
The evolution of the action process is determined by a policy µ which is a mapping
from the set of states to the set of actions. Particularly, for k ≥ 1

At| (X1:t = x1:t, A1:t−1 = a0:t−1) ∼ δµ(xt)(·).

Let r be a real valued function on X which is called the reward function. The
reward at time t for being in state Xt is r(Xt). We consider the following standard
optimality criterion: a discounted sum of accumulated rewards over an infinite
horizon,

(2) Cµ(x1) = Eµ

[
∞∑

t=1

βtr(Xt)

∣∣∣∣∣X1 = x1

]

where β ∈ (0, 1) is the discount factor ensuring the expectation is well defined. (If
there exists a zero reward state which is absorbing, and all policies lead to this state
with probability one for all initial states x1 then the expectation is well defined,
provided X is a finite set, without the discount β.) The subscript on the expectation
operator denotes the policy controlling the evolution of {Xt}t≥1. A policy µ∗ is
said to be optimal if Cµ∗(x1) ≥ Cµ(x1) for all (µ, x1).

It is well known that µ∗ is characterized by the real valued function on X , denoted
V , which satisfies the following fixed point equation,

(3) V (x) = max
a∈A

{
r(x) + β

∑

x′∈X

p(x′|x, a)V (x′)

}
.

In the literature on MDPs (Bertsekas and Tsitsiklis, 1996; Bertsekas, 2005, 2007),
V is referred to as the (optimal) value function. Since V is a X → R function, it
will be treated as a vector in R

N from now on. Given V , the optimal policy µ∗ is,
for all x ∈ X ,

(4) µ∗(x) = argmax
a∈A

{
∑

x′∈X

p(x′|x, a)V (x′)

}
= argmax

a∈A
{(RtV ) (a)}

where Rt is a short-hand for Rxt
, and, for each x ∈ X , Rx is the M ×N transition

probability matrix with elements

(5) [Rx]i,j = p(j|x, i), 1 ≤ i ≤M, 1 ≤ j ≤ N,

with p(j|x, i) defined as in (1). Recall that in our notations (RtV )(a) is the a-th
component of vector RtV .
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2.2. A statistical model for imperfect policy execution. We consider the
following statistical model for the action component at of each observed state-action
pair (xt, at) built around the MDP framework. It is assumed that

(6) At = argmax
a∈A

{ǫt(a) + (RtV ) (a)}

where Rt has been defined at the end of the previous section, and the ǫt’s, t ≥ 1,
are independent and identically distributed M -dimensional Gaussian variates,

ǫTt = (ǫt(1), . . . , ǫt(M)) ∼ N (0M ,Σ).

(The choice of the Gaussian distribution is for computational and inferential con-
venience.) The inclusion of this noise process renders the model more versatile. It
may be interpreted in two different ways. First, if there are several actions that are
near optimal, in the sense quantified by the numerical value of the expression in the
right hand side of (4), then the controller could have selected one of the near opti-
mal actions in error. Thus while the policy is optimal, the execution of the policy is
subject to disturbance. Second, it can be shown that (6) characterizes the optimal
policy of an MDP with a mixed discrete-continuous state process, (x, ǫ) ∈ X ×R

M ,
and reward function r : X×R

M×A → R given by r(x, ǫ, a) = r(x)+ǫ(a). Given the
state (xt, ǫt) at time t, and action at, the discrete component of the next state, Xt+1,
is drawn from (1) while the continuous component ǫt+1 is drawn from N (0M ,Σ).
It follows from this separation in the evolution of the state components that there
exists a vector V ∈ R

|X | such the optimal policy for this MDP is given by (6) (Rust,
1988, Theorems 3.1, 3.3). In this model, the statistician only observes the discrete
component of the state process and the action taken at each time, while ǫt is the
unobserved random component of the reward known only to the decision maker.

With respect to the interpretation of the model, note that, if β and V are fixed,
then the reward function is entirely determined by (3). Thus, when inferring V
from the model defined by (1) and (6), (and fixing β), one is also implicitly infer-
ring the optimality criterion (or equivalently the reward function) that governed
the controller’s behaviour, and that criterion is presumably unknown to the ob-
server, prior to collecting data. In practical terms, this also means that it remains
reasonable to apply this model even when the controller’s actions seem inefficient
or even erratic to the observer, as the observer and the controller may simply have
very different policy criteria.

2.3. Inference objectives. The data d consist of a sequence of state-action pairs,

d = {dt}Tt=1 = {(xt, at)}Tt=1 observed for T epochs and the aim is to infer V . It is
assumed that the law of the controlled process, which is specified by the collection of
transition matrices {Pa}a∈A is known, but the reward function r is unknown. This
implies (3) cannot be used to solve for V . The approach below can be generalized
to the case when {Pa}a∈A is unknown. However, assuming {Pa}a∈A is known is
reasonable in a number of applications, in particular the human controller example
studied in Section 5.

In Bayesian setting, a prior for V is chosen and inference will be based on samples
from the posterior pV |D(v|d), henceforth denoted as p(v|d). (The specification of
the prior over the optimal value function is postponed to Section 4.) These samples
may then also be used via (4) to estimate the optimal policy µ∗ and thus predict the
behavior of the system. In the context of the human controller example, d consists
of the observed actions of a person.
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The likelihood of the observed data is

p(d |v,Σ) =

T∏

t=1

p(xt|xt−1, at−1)p(at |v,Σ, xt ) ∝
T∏

t=1

p(at |v,Σ, xt)

where, abusing notation, p(x1|x0, a0) denotes the prior distribution for X1. The
terms p(xt|xt−1, at−1) may be omitted as they have no bearing on the desired
posterior.

The likelihood p(at |v,Σ, xt ), or conditional choice probability, is the intractable
integral

(7) p(At = at |v,Σ, xt ) =
∫

{u∈RM :u(at)≥u(j) for all j 6=at}

N (u;Rtv,Σ)du.

Henceforth p(At = at |v,Σ, xt ) will be abbreviated to p(at |v,Σ). The likelihood is
invariant to both translations of the vector v and multiplications of it by positive
scalars,

(8) p(d |v,Σ) = p(d |√z1(v + z21), z1Σ), ∀(z1, z2) ∈ R+ × R.

The design of the PX-DA algorithm presented in the following Section is based on
this property.

The assumed model for the noise corrupting the action selection process re-
sults in a target distribution similar to the multinomial probit (MNP) problem
(Albert and Chib, 1993; Geweke et al., 1994; McCulloch and Rossi, 1994; McCulloch et al.,
2000; Imai and van Dyk, 2005) and the stated invariance of the likelihood to scal-
ing (z1) is well documented in this literature. Specifically, in (6), the observed
actions At correspond to the observed chosen outcomes (among M alternatives),
the random terms ǫt(a) may be interpreted as the non-observed part of the utility
function, and the observed part of the utility function (RtV )(a) may be interpreted
as a linear combination of covariates, where the covariates are the probabilities
p(xt+1 = j|xt, at), j = 1, . . . , N , and the unknown regression coefficients are the
components of V .

In the context of MNP models, the main existing approach to ensure the posterior
is well defined for improper priors is to constrain enough parameters of the model
to ensure identifiability of the remaining ones and then introduce priors for them.
For example, by setting the last component of V to zero and then introducing a
suitable prior for the remaining N−1 non-zero components. We shall use a different
approach as detailed in Section 4.

3. The PX-DA Method

Let fX : Rp → R be a target probability density from which samples are sought.
In many applications, it is not possible to simulate from fX directly. However, it is
often possible to introduce a random vector Y ∈ R

q which is jointly distributed with
X such that sampling from the conditional densities fX|Y and fY |X is straightfor-
ward. This is the principle of data augmentation (DA) (Tanner and Wong, 1987).
Simulating from these densities sequentially as follows,

(9) Yn+1|Xn = xn ∼ fY |X(·|xn), Xn+1|Yn+1 = yn+1 ∼ fX|Y (·|yn+1), n ≥ 0,
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results in a Markov chain {Xn}n≥0 with the correct asymptotic distribution for any
initial state x0 (under weak regularity assumptions) (Hobert, 2011):

(10) lim
n→∞

P(Xn ∈ A) =

∫

A

fX(x)dx.

As noted by Liu and Wu (1999), Meng and van Dyk (1999) in some situations it is
possible to improve the efficiency of this sampler by introducing auxiliary variables.
This technique was termed parameter expanded (PX) DA by Liu and Wu (1999).

Let Λ ⊆ R
d and let {ϕλ}λ∈Λ be a class of one-to-one differentiable functions mapping

R
q to itself. Let

(11) Jλ(y
′) =

∣∣∣∣∣∣
det



[
∂ϕλ,i(y)

∂y(j)

∣∣∣∣
y=y′

]

i,j



∣∣∣∣∣∣

where ϕλ,i(y) is i-th component function of ϕλ(y). Jλ is the Jacobian determinant
of the mapping ϕλ : R

q → R
q. Let Z be a random vector in Λ ⊆ R

d with
probability density fZ . The aim is to reduce the auto-correlation between Xn

and Xn+1 generated by the Gibbs sampler and PX-DA achieves this by inserting
an extra simulation step as follows.

A generic PX-DA sampler

Given Xn = xn at iteration n+ 1, perform the following steps to sample Xn+1:
Step 1. Sample Yn+1 from fY |X(·|xn) and call the sampled value yn+1. (If exact

sampling from fY |X is not possible, sample Yn+1 from a Markov kernel that leaves
fY |X(·|xn) invariant.)

Step 2a. Sample Z
(1)
n+1 from fZ(·), call the sample z

(1)
n+1 and let ỹn+1 =

ϕ−1

z
(1)
n+1

(yn+1).

Step 2b. Sample another Λ-valued random variable, Z
(2)
n+1, from the density

which is defined (upto a proportionality constant) by

(12) fY (ϕz(ỹn+1))Jz(ỹn+1)fZ(z).

Call the result z
(2)
n+1 and set y′n+1 = ϕ

z
(2)
n+1

(ỹn+1).

Step 3. Sample Xn+1 from fX|Y (·|y′n+1)

The difference between the standard DA algorithm in (9) and PX-DA is step
2. Per iteration, PX-DA has a slightly greater computational cost due to the need

to sample the variables (Z
(1)
n , Z

(2)
n ). However, in cases of practical interest, these

variables are typically of a much lower dimension than X or Y and the increase in
computational cost is often negligible. The benefit though, in terms of the mixing
rate of the sampler, has been observed to be quite substantial in some situations
(Liu and Wu, 1999). Direct simulation from the probability density on Λ given
by (12) is possible for the specific family of mappings {ϕλ}λ∈Λ we consider in the
sequel. When a direct draw from (12) is possible the resulting PX-DA algorithm is
termed exact.
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Step 2 transforms the simulated random variable in step 1 from yn+1 to y′n+1 via
the intermediate value ỹn+1. Essentially step 2 is implementing a Markov transition
from R

q to R
q using the kernel

Q(yn+1, B) = E
{
IB(Y

′
n+1)|Yn+1 = yn+1

}
= E

{
IB(ϕZ

(2)
n+1

◦ ϕ−1

Z
(1)
n+1

(Yn+1))|Yn+1 = yn+1

}

It can be shown that Q is reversible with respect to the marginal distribution fY of
Y , and thus fY is also invariant for Q(yn, B) (Liu and Wu, 1999, Theorem 1). This
in turn implies that the invariant probability density of the Markov chain {Xn}n≥0

generated by the PX-DA algorithm is indeed fX ; if Xn ∼ fX then the law of Yn+1 is
fY and, since fY is invariant for Q, the law of Y ′

n+1 is also fY .
As was noted by Liu and Wu (1999), Meng and van Dyk (1999), it is possible

to reduce the auto-correlation between the successive Xn samples generated by the
PX-DA algorithm by making the prior fZ more diffuse. In fact, with a trivial
modification, the PX-DA algorithm can still remain valid as an MCMC scheme
when the prior is improper. The random draw in step 2a is then no longer well
defined, but as we shall now see in the context of a specfic transformation, the
correct procedure in this case is to omit this draw and set ỹn+1 to yn+1 from step
1. All other steps remain unchanged.

Let Λ = R+ × R and

(13) ϕz(y) =
y

z1
− z21, z = (z1, z2) ∈ R+ × R.

A result concerning the correctness of the PX-DA method when fZ is improper is
now stated. Although this has been established explicitly in the case of either scal-
ing or translation only (Liu and Wu, 1999; Meng and van Dyk, 1999), the extension
to the present setting is not difficult. (See also Proposition 3 of Hobert and Marchev
(2008).)

Proposition 1. Consider the transformation in (13) and suppose that
c(y) :=

∫
R+×R

fY (ϕz(y))Jz(y)dz1dz2, y ∈ R
q is positive and finite almost every-

where. Then the Markov transition density on R
q defined by

Q(y,B) =

∫

R+×R

IB(ϕz(y))
fY (ϕz(y))Jz(y)

c(y)
dz1dz2

is reversible with respect to fY .

(Proof is in the Appendix.)
For any h : Rp → R which is square-integrable with respect to fX , i.e.

∫
h2(x)fX(x)dx <

∞, if a central limit theorem holds, then

(14)
1√
L

L∑

n=1

h(Xn)
d→ N (EfX (h(X)), σ2(h))

where

σ2(h) = c0(h) + 2

∞∑

i=1

ci(h), ci(h) = EfX (h(Xi)h(X0))− EfX (h(X0))
2, i ≥ 0.

(15)

The convergence in (14) is in distribution and the expectations in the expression
for σ2(h) are computed with respect to the law of the Markov chain {Xn}n≥0 with
initial distribution fX .
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Hobert and Marchev (2008) studied the relative performance of DA and PX-DA
algorithms, addressing the case of Haar PX-DA - a class of algorithms involving
transformations derived from a particular group structure. The full details of Haar
PX-DA are beyond the scope of this article, but we note, for example, that if Algo-
rithm 1 is modified to perform only a scaling transformation and not translation,
then it is an instance of Haar PX-DA (the reader is also directed to Liu and Wu
(1999) for details of the group structure underlying scaling and translations).

The following inequality for the asymptotic variance of DA, PX-DA (for any
proper prior for Z) and Haar PX-DA is due to Hobert and Marchev (2008),

σ2(h) ≥ σ2
P(h) ≥ σ2

H(h)

where the subscripts indicate the algorithm generating {Xn}n≥0; the standard DA
is without subscript, the subscript P denotes PX-DA with a proper prior on Z and
H denotes Haar PX-DA. Haar PX-DA is said to be the most efficient since it has
a smallest asymptotic variance as measured by (14). It should also be noted that
Roy (2012) has recently established that a general “sandwich” data augmentation
algorithm always converges as fast as its standard DA counterpart. Subject to the
transition kernel Q in Proposition 1 being well defined, it is immediate that our
algorithm using that Q is a sandwich data augmentation algorithm, and thus enjoys
this ordering property.

We stress that this variance inequality has only been shown to hold when fY |X

can be sampled from exactly in step 1 of Algorithm 1. In our numerical experiments,
this step is performed using a Metropolis-Hastings kernel, but as we shall see,
empirical results suggest that with this modification the PX-DA algorithm still
out-performs standard DA.

4. A PX-DA sampler for the MDP model

The transformation of the augmented data will be as in (13). This section
completes the description by specifying the prior for the optimal value function,
the auxiliary variable Z and culminates with a statement of the complete sampling
algorithm for these specific choices. Extensions to a more general reward function
and the practicality of the approach for large problem sizes, specifically large X ,
are discussed at the end of the section.

Regarding the prior for V , the following requirements seem reasonable: (a) it
should respect the symmetry of the model regarding the N states; specifically, it
should be invariant with respect to permutation of the state labels; (b) it should be
conjugate, so that Gibbs steps can be implemented; and (c) to ease interpretation
of the output, it should make the model identifiable. These requirements are met
by the following prior distribution: a Gaussian N (0N , κIN ) distribution (where κ

is a fixed hyper-parameter), but conditional on the event
∑N

i=1 V (i) = 0. This
prior distribution may be alternately described as follows: take U ∼ N (0N , κIN ),
then set V = U − N−11N1T

NU , that is, remove the mean of the U(i) to force the
components of V to sum to zero.

The constraint
∑N

i=1 V (i) = 0 addresses the additive unidentifiability of the
model, i.e. the fact that the likelihood is unchanged if the same constant is added to
all the V (i). To fix multiplicative unidentifiability, i.e. the likelihood is unchanged if
both V and Σ are multiplied by the same constant, we take Σ = I for the remainder
of this Section. This choice presents an important advantage: it makes it possible
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to implement Step 1 of Algorithm 1 using an efficient Metropolis-Hastings step, as
described below. In Section 4.1, we explain briefly how to consider a more general
matrix Σ, and why we believe that Σ = I should be sufficient in many practical
(MDP) applications.

We note in passing a different way to treat additive unidentifiability inspired
by multivariate probit models (McCulloch and Rossi, 1994): i.e. set one of the N
components of the value function to zero, e.g. V (N) = 0. In our context however,
this would suppress the symmetry between the N states, complicate the notations,
and bring no obvious benefit. Also, additive unidentifiability can be exploited to
yield a better PX-DA sampler.

The augmented data is

Y = (W1, . . . ,WT ), with p(w1, . . . , wT | v) =
T∏

i=1

p(wi| v) =
T∏

i=1

N (wi;Riv, IM ),

which may be viewed as arising from “disintegration” of (7). Indeed, the PX-DA
algorithm defined below will be derived from the joint density (fX,Y (x, y) in section
3, with x = v and y = w1, . . . , wT ):

p(v, w1, . . . , wT |d)

∝ N
(
v;0N−1, κIN−1 − κN−11N−11

T
N−1

) T∏

i=1

I{wi∈RM :wi(ai)≥wi(j),j 6=ai}N (wi;Riv, IM ),

(16)

with the slight abuse of notation that the vector v in N (wi;Riv, IM ) is N dimen-
sional where N -th component is

v(N) = −
N−1∑

i=1

v(i).

(This convention will hold for the remainder of this section wherever Riv occurs.)
The density (16) clearly admits the posterior over v as a marginal. Direct simula-
tion from p(w1, ..., wT |v, d) is difficult in general, due to the presence of truncated
Gaussian distributions. This is where our Metropolis-Hastings step will come in;
further discussion is postponed until the end this section. Putting aside this dif-
ficulty for now, we next describe a PX-DA algorithm for this model, i.e. derived
from the standard DA algorithm which iteratively samples from the conditionals
p(v|w1, ..., wT , d) and p(w1, ..., wT |v, d).

The transformation of the augmented data for the PX-DA scheme is given in
(13). We set fZ1,Z2(z1, z2) = fZ2(z2)fZ1(z1) and

(17) Z1 ∼ IG(a, b), Z2 ∼ N (0, κ/N),

where IG is the inverse Gamma density. We stress that here κ is the same parameter
as appearing in the prior distribution over U , specified earlier in this section. It
is this structure which allows us to construct a PX-DA algorithm incorporating a
translation move.

To clarify the connection with the description of the generic PX-DA sampler in
section 3, with a slight abuse of the definition of ϕ−1

z ,

Y ′ = ϕ−1
z (Y ) =

(√
z1(W

T
1 + z21

T
M ), . . . ,

√
z1(W

T
T + z21

T
M )
)T
,
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and the Jacobian in (11) is

Jz(y
′) = z

−MT
2

1 .

With this choice of transformation of the variables, step 1 and 2a of the generic
PX-DA algorithm 1 can be combined into step 1 of algorithm 2 below. Similarly,
step 2b and 3 of algorithm 1 may be combined into step 2 of algorithm 2.

The Metropolis Hastings kernel (with independent proposals) for step 1 of Algo-
rithm 2 presented in the Appendix is quite efficient with acceptance rates typically
around 70 percent for the numerical examples in Section 5. Step 2 can be imple-
mented as detailed in Section 7.3. When improper priors are used for V , Z1 and
Z2, the corresponding terms in (20) should be omitted. As discussed in Section 3,
when improper priors are used for Z1 and Z2, these variables should not be sampled
in step 1 above. However, one should be careful that (16) is still well defined when
κ = ∞ otherwise κ should always be set to a finite value. (For instance, if the
observed process is constant, then κ = ∞ gives an improper posterior. However,
we have been able to establish that κ = ∞ can give a proper posterior under quite
general conditions; details may be obtained from the authors.)

4.1. Extensions.

4.1.1. Action dependent Rewards. In Section 2 it was assumed that the reward
function is not action dependent. The following extension to the criterion in (2)
can be considered. Replace r(Xt) in (2) by

(18) r(Xt, At) = r1(Xt) + r2(At).

PX-DA for the MDP model

Let w1:T and v be the samples after iteration n. At iteration n+1, perform the
following two steps.

Step 1: Sample Z1 ∼ IG(a, b), call the result z1, sample Z2 ∼ N (0, κ/N) and let
z2 denote this sampled value. For each i = 1, ..., T , sample Wi from the truncated
Gaussian

(19) I{wi∈RM :wi(ai)≥wi(j),j 6=ai}N (wi;Riv, IM ),

call the result wi and set w′
i =

√
z1(wi+z21M ). (This step can be achieved directly

or using the Metropolis-Hastings kernel detailed in Section 7.2.)
Step 2: Sample (V (1), . . . , V (N − 1), Z2, Z1) from the joint density

N
(
v;0N−1, κIN−1 − κN−11N−11

T
N−1

) T∏

i=1

N
(
w′

i√
z1

− z21M ;Riv, IM

)

×N (z2; 0, κ/N)z
−MT

2
1 IG(z1; a, b)(20)

and z−0.5
1 w′

i − z21M , i = 1,. . . , T , are now the final w1:T for iteration n+ 1.

Note that V for this new problem still satisfies (3) with the reward function
therein replaced by (18). In this case the action generation model is now

At = argmax
a∈A

{ǫt(a) + r2(a) + β (RtV ) (a)}
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and

p(At = i |v, r2,Σ, xt ) =
∫

{u∈RM :u(i)≥u(j)for all j 6=i}

N (u; r2 +Rtv,Σ)du.

It can be verified that, for all (z1, z2, z3) ∈ R+ × R× R,

p(At = i |√z1(v + z21),
√
z1(r2 + z31), z1Σ, xt ) = p(At = i |v, r2,Σ, xt ).

The prior for V could be the same as before (see Section 4) and one could also use
a prior with the same structure for r2.

4.1.2. Large State-spaces. Since V is a vector of length |X |, the approach detailed
thus far will be impractical for a very large state-space X . In this setting we
may regress the optimal value function onto a set of basis functions. (A similar
approach was proposed by Geweke and Keane (1996), Geweke and Keane (2000)
for a finite horizon dynamic discrete choice problem and the idea goes back some
way in the control literature, see for example Schweitzer and Seidmann (1985)) Let
{φi}1≤i≤K be a collection of basis functions, mapping X to the real line. Typi-
cally K is much smaller than |X |. It is assumed that the conditional expectation,∑

x′∈X φi(x
′)p(x′|x, a), can be computed easily for each state-action pair (x, a) and

i. For example, this would be true if p(x′|x, a) is non-zero for only a handful of
values of x′, see the human controller example considered in Section 5.2. The action
generation model is (for an action independent reward),

at = argmax
a∈A

{
ǫt(a) +

K∑

i=1

V (i) (Rtφi) (a)

}
,

and the corresponding likelihood satisfies

p(At = i |√z1v, z1Σ, xt ) = p(At = i |v,Σ, xt ).
The likelihood is no longer invariant to scalar translations of the value function.
As the model is no longer additively unidentifiable, an unconstrained prior may
thus be defined over all N components of V . For example, the prior N(0N , κIN ) is
admissible even as κ→ ∞. The PX-DA implementation for this model will involve
transforming the augmented data by a scalar multiplication only.

4.1.3. Constrained Actions. In some applications, state dependent action constraints
are present, i.e. not every action in A is permitted in every state. The modification
to Algorithm 2 is trivial. For example, if action j is not permitted in state xi, then
row j of the Rxi

defined in (5) is deleted. Action constraints are present in the
example studied in Section 5.

4.1.4. Non-identity Noise Covariance Matrix. We think that restricting the model
to an identity covariance matrix for the noise term is very reasonable for the fol-
lowing reasons. First, in the MDP context, one is mostly interested in inferring V
as Σ is merely a nuisance parameter. Second, since only one action is observed at
a time, it seems hard to estimate correlations between the different components of
the noise vector. Third, considering a general Σ means that the dimension of the
parameter space becomes O(M2), and the computational burden O(M3), as op-
posed to O(M) for both quantities in the Σ = I case. (The computational burden
increases also because of the greater difficulty to sample the latent variablesWi, as
explained below.) This is clearly impractical when M is large.
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However, for the sake of completeness, we now explain how to account for a
general covariance matrix Σ. The prior suggested in Imai and van Dyk (2005) may
adapted to the present setting. A prior for the covariance matrix Σ subject to
the constraint [Σ]1,1 = 1 is constructed by normalizing the samples from an inverse

Wishart distribution. Specifically, Σ̃ ∼ IW(ν, S̃) and Σ = Σ̃/[Σ̃]1,1. Let z1 = [Σ̃]1,1
then,

p(z1,Σ) ∝ |Σ|−(ν+M+1)/2 exp

(
− α2

2z1
tr(SΣ−1)

)
(z1)

− νM
2 −1

where constant α2 satisfies S̃ = α2S. The conditional density

p(z1|Σ) = IG

(
νM

2
,
α2

2
tr(SΣ−1)

)

is now the new distribution for the scaling parameter in the PX-DA transformation
of the augmented data; see (17). To infer Σ as well, Algorithm 2 would be modified
to sample W1:T , V and then Σ in turn. For a non-diagonal covariance matrix, step
1 cannot be implemented with the Metropolis-Hastings kernel described in Section
7.2. A possible alternative is to use a Gibbs sampling step where, for each i, each
component of Wi is sampled conditioned on the remaining components. Once a
complete cycle has been performed, then the transformation at the end of step
1 can be applied. Step 2 will be modified to sample (Z1, Z2, V,Σ) conditioned on
w1:T , which can be performed by an appropriate blocking scheme after the change of
variable in (30). Roughly speaking, (Z1, Z2, V ) is sampled conditioned on (Σ, w1:T )
and then (Z1,Σ) conditioned on (Z2, V, w1:T ). The samples produced may suffer
from much more correlation than in the case of Algorithm 2 which is catered to
Σ = I.

5. Numerical Examples

5.1. Toy Example. To demonstrate the performance improvements of PX-DA
over standard DA, a data record of 20 state-action pairs was generated from the
model with 7 states, 3 actions. The true optimal value function was drawn from
the prior. Algorithm 2 was run for 5 × 105 iterations and half were discarded for
burn in. The parameters of the priors in (17) were chosen a = b = 1, κ = 2500.
Figure 1 shows the empirical auto-correlation of the MCMC output for some of
the components of the estimated optimal value function. The improvements due to
scaling and translation of the augmented data are isolated. For the components of
the value function not shown, the improvements were comparable.The acceptance
rate for the Metropolis-Hastings kernel used to implement step 1 of Algorithm 2
was in excess of 95%.

Figure 2 isolates the effect of an improper prior in PX-DA (i.e. a = b = 0,
κ = ∞). This study is restricted to PX-DA that scales the augmented data only
since the prior for the value function in (16) also depends on the parameter κ
that controls the variance of the law of the translation parameter (17). Figure 2
shows the computed autocorrelation for components 4 and 7 of the estimated value
function. For the proper prior, a = 5, b = 0.5. In this case the improper prior for
the scaling parameter yields a modest improvement in performance over the proper
prior. (Note though there no longer the issue of tuning the prior for the scaling
parameter.)
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Figure 1. Post-burn in autocorrelation plots of posterior samples
for components (left) 4 and (right) 7 of the value function. Solid
line is standard DA, dash-dot is PX-DA with scale move only,
dashed line is PX-DA with scale and translation move.
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Figure 2. PX-DA post-burn in autocorrelation plots of posterior
samples for component 4 (left) and 7 (right) of the value function.
Dash-dot line is PX-DA with scale move only and a proper prior
with a = 5, b = 0.5. Solid line is PX-DA with scale move only and
an improper prior.

The final experiment demonstrates a situation where PX-DA converges but DA
does not. The data comprising of 20 state-action pairs of the previous examples is
extended to 50 by appending 30 more. In this example, the priors for V , Z1 and
Z2 are improper. The posterior mean of the value function calculated with PX-
DA with scaling and translation is [2.34,−0.92,−1.02, 4.12, 5.69,−1.79,−8.41]T.
(1.5 × 106 posterior samples but half discarded for burn in. The posterior mean
for PX-DA with scaling or translation only was practically the same.) The PX-DA
implementations were initialized with the value function set to 100 × 17. Shown
in Figure 3 is the trace plot of the samples of component 7 of the value function
obtained using the DA method initialized with the value function set to 10 × 17.
The mean of the second half of the samples in Figure 3 is −3.56. (In fact all other
components of the mean of the posterior value function calculated with DA are
quite far out.) In this case we see that DA fails to converge even though initialized
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far closer to the true values than PX-DA. Finally, to isolate the improvements
due to scaling and translation, the autocorrelation plots of certain components of
the posterior samples of the value function are compared in Figure 3 for PX-DA
implemented with both additive and scaling, scaling only and additive only. In this
example, the translation move appears more beneficial than scaling.
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Figure 3. From left to right: PX-DA post-burn in autocorrela-
tion plots of posterior samples for component 4 and 7 of the value
function; and DA trace plot of posterior samples of component 7 of
the value function, lack of stationarity is apparent. For the auto-
correlation plots, solid line is PX-DA with translation move only,
dash-dot is PX-DA with scale move only, dashed line is PX-DA
with scale and translation move. The mean of the second half of
the samples from DA is −3.56 whereas the true posterior mean
(calculated with PX-DA for which the three implementations are
in agreement) is −8.4.. It appears the DA algorithm has not con-
verged.

5.2. Application to Human Controller Learning. In this section we apply the
proposed method to an MDP which arises in the context of the popular computer
game Tetris. In this game the player controls the positions and orientations of
random two-dimensional shapes, henceforth the blocks, which arrive over time and
occupy a field of play, henceforth the board, in a non-overlapping manner.

5.2.1. Model Definition. In the MDP formulation of Tetris, the state X = (ζ, η)
consists of two components. The first component, ζ, is the current configuration of
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Figure 4. The seven blocks of Tetris.

Figure 5. Example iteration of Tetris. From left to right: 1) A
block appears at the top of the board. 2) An action is taken to
rotate and translate the block. 3) The block then falls until it
reaches occupied squares. 4) Fully occupied rows of the board are
removed.

the board and is expressed as a 30× 10 binary matrix. The second component, η,
is the index of a block. We consider 7 distinct blocks, shown in Figure 4, and thus
η takes values in {1, 2, ..., 7}. Each action A consists of the angle through which to
rotate the current block (0◦, 90◦, 180◦, 270◦), and the number of squares by which
to move it left or right. For each state not all combinations of horizontal translation
and rotation are necessarily permitted as the block must remain entirely within the
boundaries of the board and must not overlap with any occupied squares. We write
A(x) for the set of actions which are valid in state X = x.

From the current state Xt = (ζt, ηt) and an action At ∈ A(Xt), the evolution of
the state occurs according to

ζt+1 = ψ(ζt, ηt, At), ηt+1 ∼ U(1, 2, ..., 7),(21)

where ψ is a deterministic mapping which describes the evolution of the board
configuration once the action has been chosen. For a configuration ζt with no
occupied squares in the top row, ψ yields the new configuration ζt+1 by moving
the block ηt according to At, then allowing the block to “fall” until it reaches
an occupied square or the bottom row of the board, and then removing any fully
occupied rows. For a configuration ζt which has an occupied square in the top row,
ψ sets ζt+1 = ζt irrespective of At and ηt. The latter corresponds to “termination”
of the game; once such a state is reached, subsequent actions do not influence the
state. A pictorial representation of one iteration of the game is given in Figure 5.

As each state consists of a single board configuration and block type, the total
number of states in the Tetris model is rather large. We therefore adopt the ap-
proach outlined in Section 4 and regress the value function on to a collection of
K basis functions {φ1, φ2, ..., φK}, which depend on the board configuration ζ but
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not on the randomly falling piece η. (Note that the latter is not controlled as new
blocks arrive independently of the action and the previous state.) Specific details
of the basis functions are given in section 5.2.

We assume that the reward is independent of the action and the action generation
model is then

(22) At = arg max
a∈A(xt)

{
ǫt(a) +

K∑

i=1

V (i) · (φi ◦ ψ) (ζt, ηt, a)
}
.

We assume that the noise corrupting the action choice has identity covariance. The
likelihood of observed data is

p(d|v,Σ) =
T∏

t=1

p(at|v, xt,Σ),

where for each k = 1, ..., T ,

p(At = i |v, xt,Σ) =

∫

{ǫ∈RMt : ǫ(i)≥ǫ(j) for all j 6=i}

N (ǫ;Rtv, IMt
)dǫ.

Here Mt := |A(xt)| and Rt is the Mt ×N matrix with entries specified by

[Rt]ij := (φj ◦ ψ)(ζt, ηt, i).

In this case the likelihood is invariant to scaling in the sense that

p(d|v, σ2I) = p(d|√z1v, z1σ2I), ∀z1 ∈ R+.

The sampling algorithm for inference is Algorithm 2 where the augmented data and
transformation are given by

Y = (W1, . . . ,WT ), Y ′ = ϕ−1
z1 (Y ) =

(√
z1W

T
1 , . . . ,

√
z1W

T
T

)T
,

where the scaling factor Z1 ∼ IG(a, b). The Jacobian for this transformation is

Jz1(y
′) = z

−
∑T

t=1 Mt

2
1 .

The prior for V is N (0N , κIN ).
We consider the following K = 3 basis functions which were found to capture

various features of the board configuration. φ1, the height of the top-most occupied
square in the board, across all the columns; φ2, the number of unoccupied squares
which have at least one occupied square above them in the same column; φ3 the
sum of the squared differences between occupied heights of adjacent columns.

In Tsitsiklis and Roy (1994), Bertsekas and Tsitsiklis (1996), for a board with c
columns, φ1, φ2 and 2c−1 additional features were used to construct an automated
self-improving Tetris playing system using Reinforcement Learning techniques. In
contrast, the emphasis here is to make predictions about actions and mimic play on
the basis of observed state-action data. In our setup the latter amounts to posterior
prediction, which can be performed in the following manner. Let {Vn}Ln=1 be a
collection of post-burn-in samples from the posterior distribution over the value
function, obtained from the PX-DA algorithm. Then for each state in a given
sequence {(ζt, ηt)}Tt=1 we would like to make predictions under our model about
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the corresponding action, on the basis of the posterior samples {Vn}Ln=1. To this
end, for each (ζt, ηt) we define the MAP predicted action as

ÂMAP
t (ζt, ηt) := arg max

a∈A(xt)

L∑

n=1

I

[
Ân,k(ζt, ηt) = a

]
,

Ân,k(ζt, ηt) := arg max
a∈A(xt)



ǫn,k(a) +

N∑

j=1

Vn(j) · (φj ◦ ψ) (ζt, ηt, a)



 ,(23)

where for each 1 ≤ n ≤ L, 1 ≤ k ≤ T and a ∈ A(xt), ǫn,k(a) is an independent
N (0, 1) random variable.

In the following section the predictive performance of the model is assessed for
a number of data sets. Each data set is divided into two subsets. The PX-DA
algorithm is used to draw samples from the posterior corresponding to the first
subset and then the accuracy of the posterior prediction is assessed using the second
subset. This assessment is performed in terms of the empirical action error, defined
as

(24) Ea :=
1

T

T∑

t=1

I

[
ÂMAP

t (ζt, ηt) 6= at

]
.

where {(ζt, ηt, at)}Tt=1 is the second data subset.
Finally we note that in practical situations computation of (23) may be expensive

if L is large, in which case one may resort to heuristic action prediction based on a
posterior point estimate of V . We do not explore this issue further.

5.2.2. Experiment 1. The aim of the first numerical experiment is to verify that it
is possible to recover a value function and perform accurate prediction from data
when the truth is known. We consider three different value functions (−3,−15,−1),
(0, 5, 0) and (−20, 0, 1). These value functions were chosen for purposes of expo-
sition; the corresponding optimal policies lead to qualitatively distinct styles of
play. Snap-shots of typical board configurations under play according to the ac-
tion generation model for each of these value functions are given in the top row
of Figure 7. The first value function, (−3,−15,−1), led to an “efficient” style of
play in which the upper region of the board is rarely occupied. The second value
function, (0, 5, 0), yields a policy which encloses many unoccupied spaces, leading
to the distinctive zig–zag pattern displayed in the second columns of Figure 7. The
third value function, (−20, 0, 1), corresponds to a policy which tends to produce
“towers” of occupied squares.

For each of the three value functions, 500 observations (state/action pairs) were
generated according to the model (22) with the state updated according to (21).
During generation of the data, if the game terminated it was immediately restarted.
For the value function (−3,−15,−1), termination did not occur within 500 time
steps of the game. For the other two, termination typically occurred after 10 to
20 time steps so the full data record of length 500 consisted of the concatenation
of several data sets. In all three cases, the first 100 observations were reserved for
inference and the remaining 400 used for assessment of predictive performance.

For each value function the PX-DA algorithm, incorporating the Metropolis-
Hastings kernel, was run independently targeting the posterior distributions corre-
sponding to the first 10, 20, 50 and 100 observations. In each case the algorithm was
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run for 5×105 iterations, with a burn in of 104 iterations. The Metropolis-Hastings
acceptance rate was found to be between 0.5 and 0.9 in all cases. The parameters
of the model were set to κ = 2500 to give a relatively uninformative prior over the
value function, and for the prior on the parameter z1, a = 3 and b = 105. For
these tuned values of a and b, using an improper prior over z1 led to negligible im-
provements in performance. Post-burn in trace plots, histograms and kernel density
estimates are shown in Figure 6 along with the true value function values for the
case of inference from 50 observations. In all cases, the posterior marginals have
significant mass in the neighborhood of the true value function values.

Figure 6 also shows the autocorrelation for one component of one of the value
function, from the output of the PX-DA and standard DA algorithms. This indi-
cates that the PX-DA algorithm yields a significantly lower autocorrelation than
the standard DA scheme.

Figure 7 shows the predictive performance in terms of the prediction error Ea
defined in equation (24) as a function of the number of observations used for infer-
ence. In all cases Ea was computed using the remaining 400 observations, i.e. in
(24) T = 400. These results verify that the predictive performance improves as the
number of observations used for inference increases.

The qualitative characteristics of play according to the three true value functions
and according to the posterior predictions are also summarized in Figure 7. In this
Figure, the top row shows snap-shots of board configurations. The bottom row
shows snap-shots of play according to posterior predicted actions (with inference
based on 50 observations) for a different block sequence {ηk} and with the state
updated according to

ζt+1 = ψ
(
ζt, ηt, Â

MAP
t (ζk, ηk)

)
, ηt+1 ∼ U(1, 2, ..., 7).

These results indicate that the predicted actions result in a style of play which is
qualitatively similar to that obtained from actions generated according to the true
value function.

Lastly, with moves played according to ÂMAP
t based on inference from the 100

observations generated using the value function (−3,−15,−1), termination of the
game did not occur within 250 time steps in 80 out of 100 trials. In this sense,
play according to ÂMAP

t compared quite well with play according to At, where no
termination occurred within 500 time steps.

5.2.3. Experiment 2. The aim of the second experiment is to demonstrate inference
and prediction from a data set of a human player, i.e. in this case the true value
function is unknown. The game was played for 500 iterations and again, the first
100 observations were reserved for inference and the subsequent 400 observations
were reserved for assessment of predictive performance. The PX-DA algorithm was
run using the same settings as in Experiment 1. Again, the Metropolis-Hastings
acceptance rate was found to be between 0.5 and 0.9. Trace plots, histograms and
kernel density estimates are displayed in Figure 8 for the case of inference from
50 observations. Figure 8 also shows the empirical action error as function of the
number of observations used for inference. The result indicates that even with three
basis functions, it is possible to capture significant information about the player’s
policy.
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Figure 6. Experiment 1. PX-DA post burn-in trace plots of
4×105 samples, histograms and kernel density estimates of the pos-
terior marginal distributions corresponding to 50 observations for
the three value functions. Top left: value function (−3,−15,−1).
Top right: (−20, 0, 1). Bottom left: (0, 5, 0). True values are shown
with vertical lines. Bottom right: auto-correlation as a function of
lag of the first component of V for PX-DA (dashed) and DA (solid)
algorithms in the case of the true value function (−3,−15,−1)T ,
from 4× 105 post burn-in samples.

5.2.4. Experiment 3. In the third experiment, the play of a human was recorded
under time-pressure: at each iteration of the game a fixed time was allocated for
an action to be chosen. The aim of this experiment was to validate the statistical
treatment of the problem, by exhibiting the influence of the amount of data recorded
on inferences drawn about a player’s action preferences. The experiment concerns
a situation in which the amount of data recorded is driven by the speed at which
the player is forced to play; upon the appearance of a block at the top of the board,
the player was allowed τ seconds to decide how to move the block. If this time limit
was exceeded, no action was recorded and the board was updated by allowing the
block to fall without any rotation or translation.

Figure 9 shows histograms of post-burn-in MCMC samples approximating pos-
terior marginals. Each panel corresponds to a different value of the time-pressure
parameter τ (see caption for details). For each of the four values of τ , the player
was presented with the same sequence of 100 blocks. The hyper-parameters were
set to the same values as in Experiment 2. The results indicate that, as the time
allocated for decision making was increased, the data provide more information
about their action preferences, and this is manifested in the concentration of the
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Figure 7. Experiment 1. Right top row: Board snap-shots. From
left to right the true value functions are (−3,−15,−1), (0, 5, 0)
and (−20, 0, 1). Right bottom row: Board snapshots during play
according to posterior predictive actions for a different block se-
quence. Left: Posterior prediction errors as a function of the num-
ber of observations used for inference for the three value functions:
(−3,−15,−1) solid, (0, 5, 0) dashed and (−20, 0, 1) dash-dot.
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Figure 8. Left: trace plots, histograms and kernel density esti-
mates for of posterior marginals for the three components of the
value function. Inference based on 50 observations. Right: Poste-
rior prediction error as a functions of the number of observations
used for inference.

posterior marginals. A striking feature is the difference between the top two panels,
especially in terms of mode locations. These two panels correspond respectively to
τ = 10 and τ = 5 seconds for decision making. The player made 28 more decisions
within the allocated time in the former case than in the latter, evidently leading to
differences in posterior distributions over components of the value function.

6. Conclusion

Our approach to inferential computation, based on an MCMC scheme, is well
suited to the situation in which one is presented with a batch of state/action data.
In some situations, it may be that data actually arrive gradually over time, in
which case one is faced with the computational task of approximating a sequence
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Figure 9. Experiment 3. Histogram approximations of poste-
rior marginals from MCMC output of 250 × 103 samples. Each
panel corresponds to a different constraint on the time τ al-
lowed per decision. Top to bottom: τ = 10, 5, 3, 1 seconds.
The player was presented with 100 blocks in total and made re-
spectively/Users/sumeetpalsingh/Desktop/untitled folder/refs.bib
100, 72, 55, 17 decisions within the time constraints. White, grey
and black shaded histograms correspond to the three components
of the value function.

of posterior distributions, defined as the data become available. Sequential Monte
Carlo methods (Chopin, 2002; Del Moral et al., 2006) are amenable to this kind of
sequential inference computations and a possible extension of the work presented
here is to develop such methods for the class of models we consider. Recently,
Zhang and Singh (2012) have applied the same probabilistic model and PX-DA
sampler developed in this paper to Microsoft’s skill-based ranking model. The goal
is to estimate the joint probability distribution of the skills of all players (where
the skill of each player is represented by a real number) from the observation of the
outcomes of multiple games involving subsets of these players. Preliminary results
indicate that the PX-DA sampler is more accurate in predicting the outcome of
games involving closely ranked players compared to Microsoft’s variational Bayes
approach (called TrueSkill.) This research is being developed further by the authors.
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7. Appendix

7.1. Proof of Proposition 1. The proof is essentially that of Hobert and Marchev
(2008, Proposition 3) specialized to our specific choice for the PX-DA move which
comprises of both a scale and translation.

An operation on R+×R is defined as follows. For any constants z̃ = (z̃1, z̃2), z =
(z1, z2) ∈ R+ × R, let

z̃z := (z̃1z1, z̃2 +
z2
z̃1

), z−1 := (z−1
1 ,−z1z2).

As a consequence of these definitions, ϕz̃(ϕz(y)) = ϕz̃z(y), ϕz−1(ϕz(y)) = ϕz(ϕz−1(y)) =
y and ϕ−1

z (y) = ϕz−1(y). The following equivalences may be established by rou-
tine integration. For any z ∈ R+ × R and integrable functions h1, h2 : Rq → R,
g : R+ × R → R,

(25)

∫
h1(ϕz(y))Jz(y)dy =

∫
h1(y)dy,

(26)

∫

R+×R

g(zz̃)dz1dz2 =
1

z̃1

∫

R+×R

g(z)dz1dz2,

(27) c(ϕz(y)) =
c(y)

z1Jz(y)
,

(28)

∫

R+×R

g(z−1
1 ,−z1z2)

1

z1
dz1dz2 =

∫

R+×R

g(z1, z2)dz1dz2.

(25) and (26) follow from the change of variable formula while (27) follows from
(26) and the fact that

Jz(ϕz̃(y)) =
Jzz̃(y)

Jz̃(y)
.

Then,
∫

R+×R

[∫

Rq

h1(y)h2(ϕz(y))
fY (ϕz(y))Jz(y)

c(y)
fY (y)dy

]
dz1dz2

=

∫

R+×R

[∫

Rq

h1(ϕz−1(ϕz(y)))h2(ϕz(y))
fY (ϕz(y))Jz(y)

c(ϕz−1 (ϕz(y)))
fY (ϕz−1(ϕz(y)))dy

]
dz1dz2

=

∫

R+×R

[∫

Rq

h1(ϕz−1(y))h2(y)
fY (y)

c(ϕz−1(y))
fY (ϕz−1(y))dy

]
dz1dz2

=

∫

Rq

[∫

R+×R

h1(ϕz−1(y))h2(y)
fY (y)Jz−1(y)

z1c(y)
fY (ϕz−1(y))dz1dz2

]
dy

=

∫

Rq

[∫

R+×R

h1(ϕz(y))h2(y)
fY (y)Jz(y)

c(y)
fY (ϕz(y))dz1dz2

]
dy

where the final three lines are established by invoking (25), (27) and (28). This
establishes the stated reversibility.
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7.2. Metropolis Hastings Kernel . For each i = 1, ..., T , one must sample Wi

from the truncated Gaussian given in (19). The procedure for performing this step
is discussed below for W1, with the subscript omitted from the notation.

Let W (i) ∼ N (µ(i), 1) independently, i = 1, . . . ,M . The aim is to sample the
scalar random variables W (i)’s conditional on the event W (i) < W (l), for a fixed l
and all i 6= l. Without loss of generality, take l = 1. The corresponding distribution
for the W (i)’s may be decomposed as follows. The marginal density of W (1) is

p(w(1)) ∝ pu(w(1)) = N (w(1);µ(1), 1)

M∏

i=2

Φ(w(1) − µ(i)),

and, conditional onW (1) = w(1), W (i)|{W (1) = w(1)} ∼ T N (−∞,w(1)](µ(i), 1) for
i = 2, . . . ,M , independently, where Φ denotes the cumulative distribution function
of N (0, 1), and T N [a,b](m, s

2) stands for the N (m, s2) distribution truncated to
the interval [a, b].

Several efficient algorithms exists for sampling from a truncated Gaussian dis-
tribution, see Chopin (2011). We focus on the marginal of W (1). We derive an
efficient independent Metropolis-Hastings step for W (1) based on a N (m, s2) pro-
posal distribution. The acceptance rate reads:

1 ∧ pu(w
′(1))N (w(1);m, s2)

pu(w(1))N (w′(1);m, s2)

where w(1) and w′(1) denote, respectively, the current value and the proposed value
W ′(1) ∼ N (m, s2). The main issue is to derive a method for calculating a good
Gaussian approximation N (m, s2) of p(w(1)).

The Gaussian approximation N (m, s2) is obtained iteratively. At each iteration,
we use the following crude approximation: the function Φ(x) is replaced by constant
one for x > 0, and by function N (x; 0, 1) for x < 0. The latter approximation is
justified by the fact that, for x→ −∞, xΦ(x)/N (x; 0, 1) → −1 quickly.

At first iteration, set (m, s2) = (mu(1), 1). Then repeat the following steps: se-
lect the factor i with largest µ(i) and multiply the current Gaussian approximation
N (x;m0, s

2
0) by either the density N (x;µ(i), 1) if µ(i) > m0, or by 1 otherwise. Dis-

card factor i and repeat this procedure until all M − 1 factors have been accounted
for. Set (m, s2) to be the mean and variance of this resulting proposal.

To refine this proposal, perform several Newton-Raphson iterations for finding
the mode and the curvature of the mode of log p(w(1)) by using (m, s2) as the
starting values. All these operations take very little time, and leads to an acceptance
rate close to one in most cases. This program is available upon request.

7.3. Implementing Step 2 of Algorithm 2 . The density (20) can be written
as

N
(
v;0N−1, κIN−1 − κN−11N−11

T
N−1

) T∏

i=1

N (w′
i −Ri

√
z1 (v + z21N) ;0M , z1IM )

×N (z2; 0, κN
−1)IG(z1; a, b).

(29)
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By implementing the change of variable

(v(1), . . . , v(N − 1), z2)

→ (u(1), . . . , u(N)) =
√
z1

([
v(1), . . . , v(N − 1),−

N−1∑

i=1

v(i)

]
+ z21

T
N

)
,(30)

(29) becomes

N (u;0N , κz1IN )

T∏

i=1

N (w′
i −Riu;0M , z1IM )× IG(z1; a, b).

Sampling (U,Z1) is now straightforward:

Z1 ∼ IG(
TM

2
+ a, b+ SSR/2 +H/2), U |Z1 = z1 ∼ N (

1

z1
S−1R̃Tw̃, S−1).

where

SSR = w̃Tw̃ − w̃TR̃(R̃TR̃)−1R̃Tw̃, uLS = (R̃TR̃)−1R̃Tw̃,

H = uTLS(INκ+ (R̃TR̃)−1)−1uLS, S = INz
−1
1 κ−1 + z−1

1 (R̃TR̃).

and w̃T =
[
(w′

1)
T, . . . , (w′

T )
T
]
, R̃T =

[
RT

1 , . . . , R
T
T

]
. Here uLS refers to the least

squares estimate of u and SSR is the minimum mean-squared error. To recover
(V, Z2) from (U,Z1), let u denote the sampled random vector U , then (Z2, V ) is

obtained as
(
z
−1/2
1

1
T
Nu
N , z

−1/2
1 (u − 1

T
Nu
N 1N )

)
.
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