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________________________________________________________________________ 

 
In the Social Web, a number of diverse recommendation approaches have been proposed to exploit the user 

generated contents available in the Web, such as rating, tagging, and social networking information. In general, 
these approaches naturally require the availability of a wide amount of the above user preferences. This may 

represent an important limitation for real applications, and may be somewhat unnoticed in studies focusing on 

overall precision, in which a failure to produce recommendations gets blurred when averaging the obtained 

results or, even worse, is just not accounted for, as users with no recommendations are typically excluded from 

the performance calculations. In this paper, we propose a coverage metric that uncovers and compensates for 

the incompleteness of performance evaluations based only on precision. We use this metric together with 
precision metrics in an empirical comparison of several social, collaborative filtering, and hybrid 

recommenders. The obtained results show that a better balance between precision and coverage can be achieved 

by combining social-based filtering (high accuracy, low coverage) and collaborative filtering (low accuracy, 
high coverage) recommendation techniques. We thus explore several hybrid recommendation approaches to 

balance this tradeoff. In particular, we compare, on the one hand, techniques integrating collaborative and social 

information into a single model, and on the other, linear combinations of recommenders. For the last approach, 
we also propose a novel strategy to dynamically adjust the weight of each recommender on a user-basis, 

utilizing graph measures as indicators of the target user’s connectedness and relevance in a social network. 

 
Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information Search and 

Retrieval – information filtering, retrieval models 

General Terms: Algorithms, Experimentation, Performance. 

Additional Key Words and Phrases: Recommender Systems, collaborative filtering, hybrid recommenders, 

social networks, graph theory, random walk. 

________________________________________________________________________ 
 

1. INTRODUCTION 

1.1 Motivation 

Information systems where users share different types of feedback on products and 

services are commonplace nowadays. Users’ input creates rich explicit and implicit 

relations among items based on several forms of interaction: reviews, comments, ratings, 

and other types of feedback in the system, such as click-through data and browsing time. 

The richness and availability of user input and interaction data at worldwide scale has 

further boosted more research and development of complex technologies that analyze and 
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exploit this data in elaborate ways, opening new scenarios for the creation of novel 

services and business models. Personalized recommendation technologies are a 

characteristic example of this trend. Recommender Systems (RS) aim to automatically 

find the most useful products or services for a particular user, providing a personalized 

list of items for that user based on different input and attributes of users and items 

[ADOMAVICIOUS & TUZHILIN, 2005]. The state of the art recommender system 

technologies build on implicit relationships between users and items derived from 

different data sources, such as the content of the items or the preferences of similar-

minded users. They exploit these types of relationships to a significant degree of 

effectiveness, playing a consistent role in successful businesses such as Amazon
1
 or 

Netflix
2
. Seeking new horizons beyond current recommender technologies, the research 

community is investigating how to exploit other attributes and contexts that are currently 

reaching critical mass in terms of scale, density, and availability in such systems. An 

example of what has rapidly attracted considerable interest from the research community 

and industry in the recent years is the “social” context, as a consequence of the outburst 

of social systems in the so called Social Web or Web 2.0 [KONSTAS et al., 2009; MA et 

al., 2008; LIU & LEE, 2010]. 

Social recommenders are proving to be a good alternative and/or complement to 

Collaborative Filtering (CF) methods. CF algorithms, one of the most widespread 

recommendation approaches so far [KOREN & BELL, 2011], make use of user 

preferences for items to find similar-minded people (or similar items) according to the 

observed user interaction with the items, and present suggestions on this basis. Social 

recommenders, on the other hand, exploit the social context, represented as links between 

users in a community, to suggest interesting items. Although social recommenders 

perform very well in some situations, they naturally require the availability of a social 

context. This requirement introduces an important limitation of real applications, namely, 

the inability to produce recommendations for users, when insufficient social links are 

known to the system. This limitation may go somewhat unnoticed in studies focusing on 

overall recommendation accuracy, in which a failure to produce recommendations gets 

blurred when averaging the obtained results or, even worse, is just not accounted for, as 

users with no recommendations are typically excluded from the performance 

calculations.  

                                                           
1 Amazon, Electronic commerce company, http://www.amazon.com 
2 Netflix, Movie and television rental service, http://www.netflix.com 



Besides the accuracy of delivered recommendations, the ratio of users, for which a 

recommender is able to deliver a recommendation, which we shall call user coverage, is 

indeed a dimension one may also want to pay attention to. It is often the case that 

accuracy and coverage involve a tradeoff –e.g., one may enhance accuracy by 

withholding difficult recommendations [HERLOCKER et al., 2004]. In this work we 

suggest the use of a performance metric based on the tradeoff between precision and user 

coverage when building and evaluating recommender systems. We explore the 

combination of social and collaborative algorithms into hybrid recommendation 

approaches as a means to achieve balanced tradeoff between the two. We investigate 

different techniques for this combination, ranging from algorithms that integrate the two 

information sources into a single model (e.g., graph-based recommenders) to linear 

combinations of recommenders (e.g., weighted hybrid recommenders). Furthermore, for 

the latter case, we explore a novel approach to dynamically adapt the weight of each 

recommender on a per-user basis. 

We conduct the empiric part of our study in two different experimental setups: one in 

which only users with friends –i.e., those users with an explicit (direct) social 

relationship– are considered in the test set (social evaluation), and another in which users 

with and without friends are tested (collaborative-social evaluation). The experimental 

study is conducted using one of the datasets provided for the CAMRa Challenge [SAID 

et al., 2010]. These datasets were gathered from the Filmtipset and Moviepilot 

communities, and contain social links between users, movie ratings, movie reviews, 

review ratings, comments about actors and movies, movie directors and writers, lists of 

favorite movies, moods, and links between similar movies. Despite the proliferation of 

online information systems supporting both preference data and friendship links, the 

CAMRa data is, to the best of our knowledge, the only publicly available dataset, where 

this variety of user data is provided, meeting our experimental requirements. 

1.2 Contributions 

In this work, we make the following contributions: 

 We implement an array of state-of-the-art recommenders and propose 

modifications and adaptations of recommendation approaches based on those 

algorithms: personalized random walk with restart, popularity based on friends, 

and combinations of social and collaborative filtering recommenders. We will 

show that some of these algorithms deliver competitive performance under 

different evaluation conditions. In order to better understand the relation between 



accuracy and the amount of social context on a per-user basis, we compare the 

accuracy of social recommenders against collaborative filtering systems, and 

analyze two metrics, named user coverage and hitrate. The former considers how 

many users can receive a recommendation, and the latter, how many users receive 

a relevant recommendation. Besides, we conduct two different evaluations –

including and excluding users with an empty social context– so that we can 

compare different recommenders’ behavior for those metrics. 

 When building a social recommender system, we have to take into account a 

tradeoff between precision and coverage. We address this problem, first with 

recommenders that exploit a single source of information, and second with hybrid 

recommenders, in order to analyze whether hybridization obtains better balanced 

results than single, standard recommenders. We have found that social-based 

recommenders obtain good performance results, at the expense of low user 

coverage. On the other end of the spectrum is the performance (and coverage) of 

user-based recommenders, since their coverage is higher, but the performance is 

lower. We have found that hybrid algorithms improve the performance of 

collaborative methods and the coverage of social recommenders. 

 Weighted hybrid recommenders have two important shortcomings. First, the 

optimal weight has to be found empirically by relying on the recommender 

performance, dataset characteristics, etc, which are subject to change. Second, the 

weight should not be the same for all users in the system. We propose a novel 

approach for dynamic hybrid recommendation that makes use of indicators 

based on graph measures in order to adaptively weight the combined 

recommenders for certain users. In this situation, by dynamically selecting the 

weight for each method on a per-user basis, the results outperform those of simple 

hybrid recommenders. 

1.3 Structure of the paper 

The rest of the paper is structured as follows. Section 2 describes the evaluated 

recommenders. We present some well-known state-of-the-art collaborative filtering, 

social and hybrid recommender systems, and present extensions and adaptations of some 

of these recommenders in order to exploit social information. Section 3 discusses the 

results obtained when the user coverage metric was introduced in order to perform a fair 

comparison among the different techniques. Before that, we present some evaluation 

considerations taken into account in the experiments conducted, such as the evaluation 



methodology used, and the adaptation of some recommenders for their use with the 

Filmtipset dataset. Section 4 describes related works that exploit different social 

characteristics applied to recommendation, and investigates new evaluation metrics in 

recommender systems. Finally, section 5 summarizes the paper with some conclusions 

and potential future research lines. 

2. EVALUATED RECOMMENDERS 

In this paper, we investigate different types of recommender systems: collaborative 

filtering, social-based, and hybrid approaches. We present in this section an overview of 

these recommenders, including both state-of-the-art algorithms, and extensions and 

adaptations of some of them in order to exploit social information. 

2.1 Notation 

In the rest of the paper we shall use the following notation. We denote by   

{       } the set of users, and by   {       } the set of items; we reserve the letters 

    for users, and     for items.        denotes the set (with size  ) of neighbors of  , 

     represents the subset of items rated by user   . The function    (   ) gives the 

position of the item   in the recommended list for user  . We represent    (   ) as the 

rating given by user   to item  ; if the rating is unknown the symbol   is used. We use 

   ̅̅ ̅̅ (   ) to represent the average rating given by a user  ; similarly,    ̅̅ ̅̅ (   ) is the 

average rating received by item  . The predicted score of a user for an item is represented 

as  (   ). Similarity functions are denoted as    (   ), where   and   may be a pair of 

users or items. 

2.2 Collaborative Filtering Recommenders 

Collaborative Filtering is often based on explicit ratings, in such a way that systems 

record reviews/votes/evaluations that users give to certain items, thus, creating a user-

item matrix in which each user is associated with a row, and each item, with a column. 

The value in each cell of that matrix is the rating of a particular user-item pair if it is 

available, or a value not used in the rating scale otherwise; for instance, 0 is typically 

used when the rating scale is 1-5. In implicit CF systems, on the other hand, the available 

information corresponds to records of user’s activities and effective usage of items (e.g., 

browsing, purchases and downloads of products). Recommendation algorithms devised 

for explicit ratings can be applied to such implicit data by transforming non weighted 

user-item pairs (where pairs are assigned, for instance, an access frequency value, or a list 

of access timestamps) into (single valued) user-item-vote tuples. This processing may 



simply consist of recording binary votes (presence or absence of activity), or more 

refined techniques, which take advantage of further available information, such as item 

access frequency, duration, type of access (e.g., inspect vs. buy), etc [LINDEN et al., 

2003; CELMA, 2008; BALTRUNAS & AMATRIAIN, 2009]. In this paper, we focus on 

user- and item-based CF exploiting explicit ratings. More specifically, we include 

nearest-neighbor and matrix factorization algorithms in our study. 

User-based nearest-neighbor CF techniques compare the target user’s preferences 

with those of other users to identify a group of “similar-minded” people (usually called 

neighbors). Once this group has been identified, items highly rated by this group are 

recommended to the target user. More specifically, the predicted score  (     ) for user 

   and item    is estimated as follows: 

 (     )   ∑    (    )     (    )

         

 (1) 

where   is a normalization factor. Similarity between users can be calculated by using 

different metrics: Pearson and Spearman’s correlations, cosine-based distance, and others 

[ADOMAVICIOUS & TUZHILIN, 2005]. In this work, we use Pearson’s correlation, 

which is defined as: 

   (   )   
∑ (   (   )     ̅̅ ̅̅ (   ))(   (   )     ̅̅ ̅̅ (   )) 

√∑ (   (   )     ̅̅ ̅̅ (   ))
 

 √∑ (   (   )     ̅̅ ̅̅ (   ))
 

 

 (2) 

Additionally, item-based CF techniques recognize patterns of similarity between the 

items themselves, instead of between user choices like in user-based strategies. Item-

based CF looks at each item in the target user’s list of rated items, and finds other items 

that seem to be “similar” to that item. The item similarity is usually defined in terms of 

correlations of ratings between users [ADOMAVICIOUS & TUZHILIN, 2005]. More 

formally, the score  (     ) predicted by this method is estimated as follows: 

 (     )   ∑    (    )     (    )

    

 (3) 

As stated in [SARWAR et al., 2001], adjusted cosine similarity has proven to obtain 

better performance than other item similarities, such as cosine distance, and Pearson’s 

correlation, when they are used in equation 3. Adjusted cosine similarity subtracts the 

user’s average rating from each co-rated pair in the standard cosine formulation: 



   (   )   
∑ (   (   )     ̅̅ ̅̅ (   ))(   (   )     ̅̅ ̅̅ (   )) 

√∑ (   (   )     ̅̅ ̅̅ (   ))
 

 √∑ (   (   )     ̅̅ ̅̅ (   ))
 

 

 (4) 

 [BARMAN & DABEER, 2010] proposes a recommender where the items suggested 

to a user are the most popular ones among her set of similar users. The authors use a 

binary matrix model as input data (known rating values as 1’s and unknown ones to 0’s), 

and pick those items having the maximum number of 1’s among the active user’s top k 

neighbors –where neighbors are selected according to some similarity measure (e.g., 

Pearson’s correlation). In this paper, we consider this method as a baseline, and we 

extend it by considering also non-binary data, that is, we rank the items for each user 

according to the following quantity: 

 (    )   |{              (   )   }| (5) 

That is, each item is ranked according to how popular it is among the set of user’s 

neighbors. Once a ranking has been generated using the quantities calculated in (5), we 

compute a score by transforming the item position with the following equation: 

  (     )     
   (     )

 
 (6) 

This transformation implies that the first item in the ranking receives a score very close to 

one, while the last item (   (     )   ) gets a score of 0. If the item does not appear 

in the ranking generated for that user, a score of 0 is assigned. In this formulation, we 

assume that the length of the list is  , and, thus, we may trim the returned list at some 

level  , or assume   to be exactly the length of the generated recommendation list . Note 

that these scores are not in the range of ratings, but lie in the interval [0, 1), and because 

of that, they do not have a clear interpretation for rating value prediction, but they can be 

used for generating item rankings. It would not be difficult to modify the range of this 

transformation, using, for instance, techniques from rank aggregation [FERNÁNDEZ, 

VALLET, CASTELLS, 2006]. However, since in our experiments we are interested in 

measuring ranking precision, this function would be a valid transformation. 

Additionally, matrix factorization techniques have been successfully applied to the 

problem of rating prediction. These methods factorize the user-item ratings matrix into a 

product of two matrices, in order to identify latent semantic factors [KOREN & BELL, 

2011]. These methods map the preference data (user’s ratings for items) to a latent factor 

space of a particular dimensionality. The specific value of the dimension of the output 

space is chosen a priori and has impact on the final performance of the system. Recently, 



other sources of information, such as temporal dynamics or implicit feedback, have been 

integrated into these models in order to improve accuracy [KOREN & BELL, 2011]. 

2.3 Social Recommenders 

Recommender systems that exploit social context have been developed in recent years. 

Commonly, algorithms dealing with social context attempt to exploit the social 

connections of an active user. For example, [SHEPITSEN et al., 2008] employs a 

personalization algorithm for recommendation in folksonomies that relies on hierarchical 

tag clusters, which are used to recommend the most similar items to the user’s closest 

cluster, by using the cosine similarity measure. Other works focus on graph based 

techniques for finding the most relevant items for a particular user, inspired by algorithms 

from quite different areas, successfully bringing them to social recommendation 

[KONSTAS et al., 2009]. Methods have been proposed in this context to deal with data 

sparsity and poor prediction accuracy by means of a factor analysis approach based on 

probabilistic matrix factorization, employing both the users’ social network information 

and rating records [MA et al., 2008]. In this paper, we first focus on simple algorithms 

that only exploit social information (from now on referred to as “pure” social 

recommenders), and afterwards (Section 2.4) we study more general hybrid approaches 

that combine social information with explicit ratings, social tags, demographic 

information, etc. 

2.3.1 Pure Social Recommender 

Inspired by the approach presented in [LIU & LEE, 2010], we propose a pure social 

recommender that incorporates social information into the user-based CF model. This 

social recommender makes use of the same formula as the user-based CF technique 

(equation 1), but replaces the set of nearest neighbors with the active user’s (explicit) 

friends. That is: 

               {                     } (7) 

2.2.2 Friends Popularity Recommender 

Similarly to the recommender proposed in [BARMAN & DABEER, 2010], and extended 

in the previous section (equations 5 and 6), we propose a social version of such 

recommender with the same rationale. We have implemented a friends’ popularity 

recommender, where the algorithm suggests those items that are more popular among her 

set of friends, i.e., instead of using equation 5, we redefine the   value as follows: 



 (    )   |{                               (   )   }| (8) 

Again, the scores predicted by this recommender cannot be interpreted as ratings, but 

can be used for generating item rankings. Because of its simplicity, we take this 

recommender as a baseline for the social-based recommender algorithms. 

2.2.3 Personal Social Recommender 

The approach of [BEN-SHIMON et al., 2007] explicitly introduces distances between 

users in the social graph in the scoring formula: 

 (     )   ∑    (    )   (    )

   (    )

 (9) 

For this recommender, the authors propose to use the Breadth-First Search algorithm 

in order to build a social tree for each user; this tree for user   is denoted as  (   ), 

where   is the maximum number of levels taken into consideration in the algorithm, and 

  is an attenuation coefficient of the social network that determines the extent of the 

effect of  (   ), that is, the impact of the distance between two users in the social graph 

(for instance, by using an algorithm that computes the distance between two nodes in a 

graph, such as Dijkstra’s algorithm [DIJKSTRA, 1959]). Hence, when    , the impact 

is constant and the resulting ranking is sorted by the popularity of the items. Furthermore, 

for this value of  , no expansion is employed and only directly connected users are 

involved in the score computation. 

In this work, we use this recommender to obtain the raw scores in order to generate 

item rankings, since, like in the previous recommender, the scores calculated in this way 

cannot be interpreted as ratings. 

2.4 Hybrid Recommenders 

In addition to the recommenders presented in the previous section, there are other more 

complex algorithms that fall into the hybrid recommender category, and also exploit the 

social context of users. [BURKE, 2002] presents a detailed taxonomy where hybrid 

approaches are classified: meta-level hybrid recommenders, where the model learned by 

one recommendation technique is used as the input for another; cascade hybrid 

recommenders, in which recommendation is performed as a sequential process using 

different recommendation techniques; weighted hybrid recommenders, where scores from 

the recommendation techniques are aggregated using a linear combination or voting 

schemes; and switched hybrid recommenders, which are special case of weighted 

recommenders, in which one recommendation technique is turned off whenever the other 

is turned on. 



In this paper, we explore different techniques in order to combine social and 

collaborative filtering techniques, as well as other strategies like Random Walks 

[KONSTAS et al., 2009], and extensions thereof. These techniques are useful not only 

for exploiting the social context of a user, but for providing higher coverage in extreme 

situations (such as the social or rating cold start, where no social context or ratings are 

available for a particular user). 

2.4.1 Combined (Pure+CF) Recommender 

Based on the recommender defined in Section 2.3.1, we propose a hybrid recommender 

that utilizes the user-based CF formula, but is based on all the active user’s friends, as 

well as her most similar nearest neighbors, combining them into a new neighbor set: 

        {                     }  {         } (10) 

This new neighborhood is then used in equation 1 for estimating the score between a 

user and an item. Thus, this recommender integrates social and collaborative information 

in a simple but flexible way. According to Burke’s taxonomy, it can be categorized as a 

feature combination hybrid, where the social information is treated as additional data for 

building the collaborative neighborhoods. 

2.4.2 Random Walk-based Recommenders 

Markov chains are stochastic processes that link states in a graph with certain transition 

probabilities, such that the probability of reaching a state depends only on the previous 

state, and no others. The matrix representing these probabilities for each pair of states is 

called the transition probability matrix. The random trajectory described in such a state 

graph based on the transition probabilities is called a Random Walk (RW). 

The hypothesis behind an RW applied to social graphs is that users, who have 

evaluated the same items, probably have similar tastes and, as a statistical trend, will be 

connected by, comparatively, a large number of short paths. Users with different tastes 

would be expected to be connected by a smaller number of paths in the social network, 

and, therefore, the shortest paths between them should be longer. The notion of path 

length can also consider weights assigned to the edges connecting users in the adjacency 

matrix of the social graph. 

In the following, we describe the basics of this approach, as well as other possible 

extensions. These recommenders can fit, again, as feature combination hybrids, since a 

generic model (Random Walk) is built using input from many different sources, such as 

friendship links, preferred items, and even tags (not considered in this work). 



For readability, we show here the final equations for the definition of the adjacency 

matrix   here, but leave the detailed derivation for Appendix A. Given a feature    

available in the collection, and its associated enumerated set image    
, the elements of 

this matrix    
(   ) may be defined using two alternative formulations, depending on 

whether explicit (equation 11) or implicit (equation 12) information is available: 

   
    

                              
→            

                   (   )
                              
→            

(   )
 (11) 

   
     {   }| |

                              
→          

                                       (     ⃗)  
                              
→            

(     ⃗)
 (12) 

Once the matrix   has been defined, it is possible to compute the recommendations 

by means of a Random Walk based recommendation algorithm [KONSTAS et al., 2009], 

and some of its variations. In the application to RW algorithms to recommendation, users 

and items are considered as the nodes of the state graph. The nodes are linked to each 

other by a probability      of going from node  ( ) at some state or time   to the 

adjacent node   at the next state, i.e.,  (   ). These probabilities define the transition 

matrix  , and are calculated based on the values of the matrix   as follows: 

      ( | )  
   

(   )

∑    
(   )  | |

 (13) 

where D is the set of nodes of the graph. Besides users and items, other components can 

be included in the state graph, such as tags, genres, etc, resulting in further variations of 

the basic RW recommendation approach. Based on the above matrices, the probability 

distribution of states at a given time t associated to the RW is defined by: 

 ( )  [  ( )   ( )    | |( )]
 
 (14) 

where   ( )  [ ( ( )|  )    ( ( )| | |)] represents the probability vector of being 

at node   at time  . The fact that   ( ) depends only on the states at time    , as 

determined by transition probabilities, provides the basis for recursive definition of  ( ): 

 (   )     ( ) 

 ( )     
(15) 

where    is the identity matrix. 

Random Walk with Restarts (RWR) introduces a probability of restarting from the 

original state, no matter what the current state is. This is formulated by modifying how 

the state transition probabilities are computed, in this case: 

 (   )  (   )   ( )     (16) 



  (

    
    
    
    

) 

where   is the identity matrix and the probability of restarting is represented as  . 

Therefore, the corresponding vector        according to the  -th column in the RWR 

approach would be    [       ⏟
 

       ], with 1’s only in the  -th position. 

Moreover, if    , we obtain the standard RW. In fact, the higher the value   is, the 

higher is the probability to restart at the departure state, i.e., in that case,  (   )  . 

The personalization matrix   defined in this way allows to use personal user tastes during 

the random path, since a bias towards the starting node is introduced by using this matrix. 

In [KONSTAS et al., 2009], it is shown that the performance of a recommender 

system using the RWR method is improved when the extra knowledge provided by the 

users’ social activity is used. Because of that, we propose a modification in the way the 

matrix   is computed, by including all other users who also evaluated the same item. In 

our approach, each component of   is computed by means of the following expression: 

    
(   )        

    

∑       {       ( )}
      {

     
(   )   

     
(   )   

  (17) 

We denote this approach as Personalized Random Walk with Restart (PRWR). Using 

the Personalized approach, and assuming that   elements in each column   have a non 

zero value (i.e., ∑       {       ( )}   ), the resulting vector would be 

       [
 

 
     

 

 
 
 

 
     ] (18) 

Thus, we introduce the probability to restart at some state as a uniform weight for 

each user   taking into account their relative importance in the user set. The assigned 

values distribute the restart probability uniformly among all the users who have evaluated 

the item, as opposed to just the target user. 

3. EXPERIMENTAL COMPARISON 

We report in this section the results obtained in empiric observations with the different 

recommenders described in the previous section. We shall first describe the experimental 

methodology, and then, the details and results of the conducted experiments, which 

encompass different considerations regarding the test set. In particular, firstly, we have 

used a test set containing only users with social context (social evaluation) and, secondly, 



a test set where half of the users have an empty social context, and the other half have a 

non-empty one (collaborative-social evaluation). 

3.1 Experimental Setup 

This section shows the specific details about the dataset used in our experiments, the 

different metrics included in the study, and the chosen configurations for the involved 

recommenders. 

3.1.1 Dataset 

The experiments we report here are conducted on the Filmtipset dataset provided for the 

CAMRa Challenge [SAID et al., 2010]. Filmtipset is Sweden’s largest online social 

community in the movie domain, with more than 80,000 users. It contains a wide range 

of user and movie information that could be exploited to make predictions of users’ tastes 

and provide movie recommendations. 

The Filmtipset dataset contains explicit information about movies, such as film genres 

and featuring actors. It also contains personal information about the users, such as their 

social contacts and their movie reviews. Finally, it also has implicit information like the 

frequencies with which a user watches a film of a specific genre, or makes reviews of a 

specific person. The CAMRa dataset is quite unique in its kind, as a publicly available 

resource, in the range and variety of user data provided. In particular, to the best of our 

knowledge, it is as of today among the only three public datasets (see Section 4) 

including both user preference data and social relationships, thus, meeting the 

requirements for the experimental work in our research. Of all the available data in this 

dataset –different types of reviews, comments, favorites, etc – we focus in our 

experiments on the exploitation of explicit preferences and social links, as the most 

general and representative type of data in similar information systems. 

Figure 1 shows the entity/relationship model of the Filmtipset dataset. The tables 

marked with an asterisk (*) are those provided in the original dataset. Additionally, we 

have included the following tables: Status, ReviewRatingType, RatingType, Movies, 

People, PeopleRoles, Lists, and Genres, to generate a database with referential integrity 

to optimize queries in the computation process. We note that, in order to create the 

Movies table, we take into account existing relationships with all those tables of the 

Filmtipset dataset containing movies, as shown in Figure 1. That is, the Movies table 

includes information from all tables but Friends, Users, and PersonComments tables. We 

proceed in the same way to create the People, Genres, and Lists tables. 



Figure 1. The entity/relationship model of the CAMRa 2010 Filmtipset Social Recommendation 

dataset. Tables with (*) are those provided with the dataset. 

 

With the pre-processed data, we build and evaluate the recommenders explained in 

Section 2 using the metrics and parameters specified in the following sections. 

3.1.2 Metrics and Methodology 

We compute several standard accuracy metrics from the Information Retrieval field, 

which are being increasingly adopted by the Recommender Systems research community: 

Precision, Recall [BAEZA-YATES & RIBEIRO-NETO, 1999], and Normalized 

Discounted Cumulative Gain (NDCG) [JÄRVELIN & KEKÄLÄINEN, 2002] at top 

positions 5, 10 and 50. These evaluation metrics capture the accuracy in matching the 

user’s interests when she is presented with an item ranking. The chosen ranking cutoff 

positions are standard in common practice in IR. They are suitable in the RS context as 

well, where it seems sensible to assume that the top positions of recommendations are 

more frequently examined by users, and items beyond, e.g., position 50, are rarely 

accessed in common real scenarios [WANG, HAWK, TENOPIR, 2000; JANSEN & 

SPINK, 2003; CARTERETTE, 2011]. Note that, in contrast with the typical experimental 

setup in Information Retrieval, Recommender Systems’ false positives might be 

overestimated, since the items not rated by the user are considered as non relevant, where 

in reality, we may only say the preference of the user for such items has not been 

observed in the system –i.e., their relevance or non-relevance is unknown to the system, 



when in fact, those items could be good and serendipitous recommendations. For this 

reason, we report recall along with precision. To compute the measures listed above we 

used trec_eval
3
, a public program distributed in the scope of the Text Retrieval 

Conference (TREC) to evaluate retrieval system results by using the standard NIST 

procedures.  

The evaluation methodology we used in our experiments is the following: for each 

user, a recommender is requested to provide a preference score for every item in the test 

set, except for those items already included in the user’s (training) profile; from these 

scores, a ranking is generated, the items are sorted in descending preference score order. 

In Appendix B, a detailed analysis of the number of generated ties by this strategy for 

each recommender is provided. 

3.1.3 Configuration of the Recommenders 

We evaluated different neighborhoods for the user-based recommender, ranging from 3 

to 300. For the sake of clarity, in each situation, we have selected the best performing one 

–by which we mean the one with highest performance with respect to more metrics– and 

denoted it as UB. For comparison purposes, Figure 2 summarizes the performance results 

obtained for each neighborhood size for precision and recall at 10 –a similar trend is 

observed for other cutoffs and performance metrics. In contrast with previous 

experiments reported using error-based metrics such as [HERLOCKER, KONSTAN, 

RIEDL, 2002], in this situation, smaller neighborhoods seem to provide better accuracy 

(higher precision and recall) than larger ones. Thus, in the rest of this section, a 

neighborhood size of 5 will be used. 

                                                           
3
 http://trec.nist.gov/trec_eval/ 



Figure 2. Performance evolution of user-based method depending on the neighborhood size (k). 

 

Friends popularity recommender is taken as a baseline and named as FriendsPop, the 

pure social recommender is denoted as PureSocial, the similar users popularity 

recommender as SimPop, and the personal social recommender Personal. The latter 

recommender is evaluated using an attenuation coefficient of     and a level     

(see equation 9). Additionally, the matrix factorization method SVD is also included in 

the experiments, where the dimension of the latent space varies from 50 to 200. 

For this experiment, we also tested different implementations of random-walk 

algorithms (see Section 2.4) according to our previous work [DIEZ et al, 2010]. More 

specifically, the random walk method was built using the set of features     {        }, 

where    is the relation defined by the reviews received by each item;    is the relation 

defined by the ratings given to the items in the collection; and    is the binary relation 

defined as whether a user has indicated an item as favorite or not. According to our 

previous work, the best performing RW was the one involving the feature   , i.e., 

reviews, with the vector  ⃗  {     }, and is denoted as RW. The best performing random 

walk method with restarts employs a restart probability of 0.3, and uses also the feature 

   and  ⃗  {     } parameters; we denote it as RWR. Finally, the personalized version is 

denoted as PRWR, which makes use of the same feature and weights than the previous 

models, but using the personalized matrix defined in equation 17. 

The other hybrid is denoted as Combined where, as with the user-based method, 

different neighborhood sizes have been considered in addition to the user’s friends, and 

only the best performing one is reported. 
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3.2 Social Evaluation 

Table I shows the performance results obtained by the recommenders described in 

Section 2 for the test set provided in the social track of the CAMRa challenge [SAID et 

al., 2010]. As explained previously, in the test set provided in the dataset, all users have a 

non-empty set of contacts –at least two friends. Later on we will extend our study to a 

situation where the social network coverage is only partial. 

As expected, the baseline for the social-based recommenders (friends’ popularity 

recommender) is outperformed by the pure social recommender. However, the analogous 

collaborative recommender SimPop outperforms SVD in terms of precision, performing 

worse however in terms of recall. Nevertheless, SimPop always performs better than its 

social counterpart (FriendsPop). 

Personal recommender is the best performing algorithm under different metrics, 

despite its simplicity. We presume this behavior is due to the relatively high value of  , 

which causes the social tree of every user to spread along several nodes.  

Results from the best performing random-walk algorithms according to previous work 

[DIEZ et al, 2010] are also included in the table. RW algorithms perform very well in 

comparison with other social-based recommenders (leaving aside the personal social 

recommender). However, there is no clear winner among them, since depending on the 

evaluation metric, RW performs better than RWR, and vice versa.  

The performance of the evaluated hybrid approaches varies dramatically: while 

Combined is able to achieve better performance than UB and PureSocial for many 

different metrics, there are other situations where it obtains worse performance than their 

corresponding baselines. 

Table I. Summary of the results for the social evaluation (i.e., original challenge test set). Best 

recommenders in bold. Best recommenders for each type, in italics. 

  P@ Recall@ NDCG@ 

 Model 5 10 50 5 10 50 5 10 50 

User 

Based 

UB 0.085 0.072 0.045 0.022 0.034 0.099 0.088 0.083 0.082 

SimPop 0.062 0.063 0.041 0.005 0.011 0.061 0.066 0.068 0.070 

SVD 0.044 0.038 0.033 0.007 0.015 0.054 0.044 0.041 0.048 

Social 

Based 

PureSocial 0.062 0.057 0.053 0.015 0.032 0.149 0.064 0.064 0.094 

FriendsPop 0.001 0.001 0.004 0.000 0.000 0.033 0.001 0.001 0.011 

Personal 0.370 0.344 0.233 0.143 0.226 0.513 0.408 0.414 0.449 

Hybrid 
RW 0.080 0.070 0.066 0.013 0.024 0.107 0.082 0.077 0.095 

RWR 0.063 0.056 0.057 0.016 0.029 0.110 0.068 0.066 0.090 



PRWR 0.043 0.044 0.059 0.007 0.017 0.122 0.047 0.048 0.085 

Combined 0.084 0.077 0.073 0.017 0.035 0.168 0.086 0.085 0.119 

We observed that some of these algorithms are sensitive to the minimum number of 

users who have evaluated the current item in order to compute the predicted score. Some 

of the recommenders may produce their predictions using a very small number of users, 

and, thus, decrease their performance. Both collaborative algorithms and social-based 

algorithms can be sensitive to this parameter which, from now on, we will refer to as 

overlap threshold value. It is defined as the minimum number of neighbors which 

should have rated the current item in order to consider the current recommendation as 

valid. Table II shows the results when this threshold is set to 2, that is, whereas Table I 

shows results where only one neighbor is required to have evaluated the item the 

prediction aims at, Table II shows results where at least two neighbors are required. In 

this setting, we obtain a significant improvement for all the algorithms. FriendsPop and 

RW recommenders are not included in this table because they do not include such a 

constraint in their definitions, although we plan to include it in the future. 

Table II. Summary of the results for the social evaluation when overlap threshold is 2. Best 

recommenders in bold. Best recommenders for each type, in italics. 

  P@ Recall@ NDCG@ 

 Model 5 10 50 5 10 50 5 10 50 

User 

Based 

UB 0.110 0.092 0.042 0.027 0.044 0.099 0.117 0.108 0.092 

SimPop 0.062 0.063 0.041 0.010 0.023 0.082 0.066 0.068 0.070 

Social 

Based 

PureSocial 0.277 0.257 0.216 0.134 0.214 0.535 0.309 0.321 0.415 

FriendsPop 0.001 0.001 0.004 0.000 0.000 0.033 0.001 0.001 0.011 

Personal 0.374 0.347 0.238 0.151 0.237 0.542 0.414 0.422 0.466 

Hybrid Combined 0.274 0.269 0.203 0.114 0.210 0.497 0.300 0.324 0.391 

This gain in performance, however, is not obtained without cost. Figure 3 shows the 

loss in user coverage suffered by some algorithms when the overlap threshold is 

increased. We define the user coverage as the amount of users for which the system is 

able to produce a recommendation. This concept is related to the prediction coverage 

described in [HERLOCKER et al., 2004], but focused on users instead of items. User 

coverage, in contrast with item (or catalog) coverage, may have a large impact when 

comparing different recommender’s performance, since some methods may obtain better 

accuracy at the expense of reducing the proportion of users able to receive 

recommendations. For instance, in a typical recommendation scenario, the user coverage 



should be 100%, but since recommender systems typically deal with very sparse data, it 

may be the case that some users cannot be recommended any item.  

In our experiments, we observe that, except in a few cases (where coverage loss is 

zero, and the improvement is positive), the rest of the recommenders either lose coverage 

while gaining performance, or improve nothing at all; there is, however, no clear relation 

between both variables. This observation reinforces the one presented in [HERLOCKER 

et al., 2004], where the authors claim that “coverage must be measured in combination 

with accuracy” in order to avoid strange behaviors in recommendation. Item coverage 

was also measured in the experiments, and similar results were obtained. An additional 

measure, hitrate, is also included in the figure. It is computed as the percentage of users 

with at least one correct recommendation. Note that this measure is equivalent to the 

success metric, as defined in TREC; besides, this metric requires an additional parameter, 

namely the maximum number of documents to look up for the correct recommendation. 

In our experiments, we set this parameter to 50, since we compare these values against 

nDCG@50. We can observe in the figure how this metric provides an adequate balance 

between coverage and performance, since the better the performance, the more likely this 

metric obtains a higher value (R
2 

= 0.8096, coefficient of determination for an 

exponential fit). 



Figure 3. Comparison of performance gain (NDCG@50) versus user coverage and hitrate gain. 

  

  

The design of the CAMRa dataset, and more specifically, the selection of test users as 

provided in the challenge’s social track, in which the above results are observed, is 

representative of online applications, in which every target user has a non-empty list of 

contacts (see Figure 4). This is the case of social-centric systems such as Facebook, 

Linkedin or Twitter, but in many social media applications, such as Delicious or Last.fm, 

the social network coverage is only partial –some users use it, some do not. In fact, the 
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Filmtipset dataset belongs to this case: considering the set of all users, more than 10,000 

out of about 16,500 users do not have any friends in the system. The number of contacts 

per user follows a power law distribution, where the average number of friends per user is 

0.74 and the mode among users (with at least one friend) is 1. If we take this dataset as 

representative of social media systems, the presence of contacts by itself does not 

guarantee the accuracy of social recommendation, and intermediate cases, where social 

data is available but not enough to support optimal recommendation, would rather seem 

to be the norm. We, therefore, consider such common real situations in our study, where 

there is a mixed degree of participation in social networking. For this purpose, we 

simulate an alternative scenario by adding an equal amount of users without friends to the 

test set, as we describe next.  

Figure 4. Friends distributions among the users composing the original test set of the social track. 

Note how a logarithmic regression line fits almost perfectly the distribution. The total number of 

users is 439, the maximum number of friends is 14 and the minimum is 2. 

 

3.3 Collaborative-social Evaluation 

For our second experiment, we add an equal number of test users as was included in the 

original test set (i.e., 439 users), randomly sampled among users having no friends. We 

also keep the same ratio of test ratings per user as in the original data split. Results for 

this new test set are shown in Tables III and IV. Like in the previous evaluation, we can 

observe that using a higher overlap threshold improves the performance of all the 

recommenders. In general, the relative performance of the recommenders is quite similar 

to that presented in Section 3.2, since for some metrics the user-based recommender 

outperforms PureSocial when no threshold is set, whereas PureSocial increases its 
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performance notably when this threshold is increased. Once again, Personal is the best 

performing algorithm in both situations.  

The behavior of hybrid recommenders, however, is substantially different: Random 

Walk recommenders no longer outperform simple social-based recommenders; and 

Combined obtains better performance than both their baselines (UB and PureSocial) 

when no threshold is used. When a higher overlap threshold is used, combined 

recommenders do not get as close to the baselines as in the other evaluation. 

Table III. Summary of the results for the collaborative-social evaluation and an overlap threshold 

of 1. Best recommenders in bold. Best recommenders for each type, in italics. 

  P@ Recall@ NDCG@ 

 Model 5 10 50 5 10 50 5 10 50 

User 

Based 

UB 0.054 0.052 0.036 0.021 0.036 0.126 0.060 0.062 0.080 

SimPop 0.042 0.042 0.030 0.011 0.025 0.100 0.043 0.046 0.060 

SVD 0.028 0.026 0.020 0.012 0.017 0.050 0.029 0.030 0.038 

Social 

Based 

PureSocial 0.055 0.050 0.047 0.013 0.029 0.132 0.053 0.054 0.082 

FriendsPop 0.001 0.001 0.004 0.000 0.000 0.028 0.001 0.001 0.009 

Personal 0.369 0.342 0.230 0.139 0.222 0.510 0.403 0.409 0.443 

Hybrid 

RW 0.023 0.021 0.030 0.004 0.008 0.078 0.026 0.025 0.048 

RWR 0.023 0.021 0.030 0.004 0.008 0.078 0.026 0.025 0.048 

PRWR 0.023 0.021 0.030 0.004 0.008 0.078 0.026 0.025 0.048 

Combined 0.055 0.053 0.049 0.008 0.012 0.080 0.059 0.062 0.097 

Table IV. Summary of the results for the collaborative-social evaluation for an overlap threshold of 

2. Best recommenders in bold. Best recommenders for each type, in italics. 

  P@ Recall@ NDCG@ 

 Model 5 10 50 5 10 50 5 10 50 

User 

Based 

UB 0.090 0.073 0.029 0.045 0.065 0.100 0.103 0.099 0.088 

SimPop 0.042 0.042 0.030 0.011 0.025 0.100 0.043 0.046 0.060 

Social 

Based 

PureSocial 0.270 0.249 0.209 0.132 0.209 0.523 0.298 0.310 0.403 

FriendsPop 0.001 0.001 0.004 0.000 0.000 0.028 0.001 0.001 0.009 

Personal 0.372 0.345 0.235 0.147 0.235 0.538 0.409 0.417 0.460 

Hybrid Combined 0.185 0.173 0.121 0.093 0.154 0.331 0.207 0.218 0.258 

Coverage analysis explains the different performance of social and hybrid 

recommenders. Figures 5a and 5b show the relation between precision and coverage in 

the two evaluations conducted, first with respect to the user coverage metric (Figure 5a), 

and then with respect to the hitrate metric (Figure 5b). In both figures, we group the 

recommenders according to their source of information: social (PureSocial, FriendsPop, 



Personal), collaborative (UB, SimPop, SVD), and hybrid (RW, RWR, PRWR, Combined). 

We also show the performance of the recommenders for the two analyzed overlap 

thresholds (filled vs. unfilled markers).  

Figure 5a shows the shift in performance at the expense of coverage when changing 

the overlap threshold, since unfilled markers tend to be leftwards (less coverage) or 

higher (more performance) than their corresponding filled markers in the two evaluations 

performed. We can also observe that, in the social evaluation (top figure), most of the 

recommenders obtain the same user coverage, whereas in the second evaluation, social 

recommenders have less coverage, although their performance is higher than other 

recommendation methods. 

Figure 5a. Comparison between user coverage and performance (NDCG@50) for the different 

recommenders used in the experiments grouped by its nature: social-based, collaborative-based, 

and hybrids. Unfilled markers represent that the overlap threshold has been increased. Top figure 

shows the comparison using the original test set, and the bottom one uses the new test set 

(collaborative-social evaluation). Coverage ratio has been normalized for comparison purposes. 
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Figure 5b presents the coverage results with respect to the hitrate measure. In this 

case, social and hybrid recommenders obtain higher values for the social evaluation. 

Then, in the collaborative-social evaluation, hitrate values decrease for most of the 

recommenders, leading to consistent results with respect to those found using the user 

coverage metric. 

Figure 5b. Comparison between hitrate and performance (NDCG@50) for the different 

recommenders used in the experiments grouped by its nature. See Figure 5a for notation. 

 

Thus, the collaborative-social evaluation confirms the coverage degradation of pure 

social methods as the social network gets sparser, as one might expect, providing a 

quantitative assessment of the extent of the loss. Furthermore, the results in Figures 5a 

and 5b confirm the advantages expected for hybrid approaches: they are the best 

performing algorithms among those having high user coverage and hitrate. This 
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observation motivates further analysis and elaboration into recommender hybridizations 

aimed at maximizing coverage and performance, which we address in the next section. 

3.4 Evaluation of Hybrid Recommenders 

When aiming to achieve the most accurate performance, while preserving the highest 

coverage, it would seem that in the original evaluation there was no reason for 

hybridization, since all the algorithms had similar coverage, and social-based 

recommenders were the best performing. Thus, in that case, the answer to our problem 

would be simple: just use social-based recommenders. This conclusion, however, arises 

from a partial experiment, as we explained in the previous section: by design, the test set 

favors algorithms using social information. To address that problem, in the second 

evaluation, we presented a scenario where hybrid algorithms may prove their usefulness: 

collaborative filtering recommenders achieved high coverage, and social-based 

recommenders performed well, although with low coverage, and indeed, some of the 

evaluated hybrid recommenders obtained good results –although not clearly superior to 

collaborative or social recommenders. 

In this section, we analyze another hybridization, which combines multiple 

recommender systems to produce an output (score) [BURKE, 2002], in contrast to 

Combined or RW, where each recommender takes two or more different sources of 

information as input. Specifically, we focus on weighted hybrid recommenders, where 

the score of each technique is aggregated by a linear combination with a weight  

between 0 and 1 in the following manner: 

 (     )  (  )    (     )      (     ) (19) 

Except for  = 0 and 1, a weighted hybrid algorithm achieves a non-zero coverage for 

the entire set of users for which each combined system is able to produce a 

recommendation. In general, the optimum weight is derived by examining the 

performance when using all possible weight values [BURKE, 2002]. Figure 6 shows the 

results for different values of , gradually increasing from 0 to 1 by increments of 0.1. In 

this figure, two combinations of recommenders are presented: H1 (UB and Personal, with 

an overlap threshold of 2) and H2 (UB and PureSocial, with the same threshold). An 

additional hybrid was evaluated, namely, the same as H2, but with an overlap threshold 

of 1. As expected, the accuracy for this hybrid is lower and, because of that, its 

performance is always inferior to H2. Hence, we omit this result from our analysis. In 

summary, these results confirm our previous claim: the gain in coverage (and 

performance) when combining collaborative and social information is clear. 



Figure 6. Performance of the different static hybrid recommenders evaluated. Top figure shows 

NDCG@50, and bottom figure shows P@5. Black dots represent the coverage obtained at each 

recommender combination. 

 

Both presented hybrids obtain maximum coverage, since one of the combined 

recommenders in every situation is a user-based recommender. The other recommenders 

in the combination (PureSocial and Personal) have been chosen because they are purely 

social-based recommenders, and have proven to perform very well, although not 

achieving high coverage. 

3.5 Dynamic Hybridization 

The type of hybridization presented above weights the recommenders in a static way. 

That is, once the value of  is fixed, recommendations from each technique receive the 

same weight, independently of the target user. In this section, we propose to make 

dynamic hybrid recommendations: depending on some user characteristics or 
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attributes, one of the combined recommenders is given more or less weight. Therefore, in 

this case, the value  is fixed for each user rather than for the entire population, aiming to 

promote the recommender that is expected to perform best for each particular user, or 

equivalently   (  ). Hence, equation 19 can be rewritten as 

 (     )  (  (  ))    (     )  (  )    (     ) (20) 

The user dependent weight (  ) would be computed as a function of some user 

attributes, such as her profile or behavior in the system, i.e., (  )   (  ). In this 

paper, since the hybrids in consideration consist of combinations of collaborative filtering 

and social-based recommenders, we propose to use graph-based measures as indicators of 

the user strength in the social network. The utilized indicators of the user strength in the 

community are: user degree (the number of friends in the social network) and average 

neighbor degree (the mean number of friends of each user’s friend), PageRank and HITS 

score (measures of connectivity relevance within a social network) [BRIN & PAGE, 

1998; KLEINBERG, 1999], betweenness centrality (an indicator of whether a user can 

reach others on relatively short paths) [FREEMAN, 1977], and clustering coefficient 

(probability that the user’s friends are friends themselves) [WATTS & STROGATZ, 

1998]. 

More specifically, we apply these measures to set the weight of the social 

recommender in the hybrid combination, in such a way that when a user is very socially 

relevant (e.g., she has a lot of friends or plays a special role in her community), the 

recommendations from the social recommender are made more influential than those 

from the user-based CF recommender, and vice versa. That is, for each hybrid 

recommender,  (  ) is set according to the (normalized) value of each of the above 

presented graph-based measures for that particular user. 

Table V. Performance results of the two hybrid recommenders tested: H1 (UB and Personal, 

overlap threshold is 2), H2 (UB and PureSocial, overlap threshold is 2). The performance of the 

dynamic hybrid recommenders is included, as well as the one of the best static hybrid recommender 

and of the static with weight 0.5. The performance metrics are NDCG@50 and P@5. 

Improvements over the best static are denoted with bold font, and over the static 0.5 with italics. 

Statistical significant (p<0.05) performance differences between dynamic hybrid recommender and 

static 0.5, best static and both static 0.5 and best static are respectively marked with *, † and ‡. 

 

 NDCG@50  P@5 

Hybrid H1 H2  H1 H2 

Average neighbor degree 0.301* 0.280*  0.219* 0.199 

Centrality 0.296* 0.276†  0.222* 0.188 



Clustering Coefficient 0.294* 0.274†  0.211* 0.188 

Degree 0.309‡ 0.286*  0.233‡ 0.197 

HITS 0.306* 0.284*  0.225* 0.197 

PageRank 0.303* 0.289*  0.227‡ 0.200* 

Static 0.5 0.266 0.270  0.186 0.189 

Best static 0.303 0.287  0.218 0.199 

Table V shows the results obtained with the proposed dynamic hybridization 

technique. We compare the results from the dynamic hybrid recommendations against 

those of the best static weighted hybrid recommender (for a given evaluation metric), and 

a static weighted hybrid recommender with =0.5. This value is the natural choice (and 

best prior on average) in the absence of information about the recommender systems to 

be combined. It is also appropriate when the recommenders are not reliable or, in 

summary, there is uncertainty about the output of the recommenders. In the table, we may 

observe that, in general terms, dynamic hybrids outperform the best static hybrid 

recommender in each situation, or at least, they obtain a very similar performance. It is 

important to note that the best static one is different for each combination (namely, =0.9 

for H1 and 0.8 for H2), which further highlights the importance of this result, in that the 

best static one is not actually a real configuration: the best static configuration would 

require manual tuning of , and even so, the table shows the post-hoc best static one, 

which a manually tuned  would not even guarantee that such improvement is obtained. 

Nonetheless, although no dynamic method is substantially better in every situation, the 

PageRank indicator seems to be a safe alternative for both hybrids. 

3.6 Discussion 

In this paper, we have compared a wide array of recommenders and method 

configurations using two different input information sources: the ratings of users and 

their social context. Our analysis has focused on the tradeoff between the performance of 

each recommender method and its completeness, measured in terms of user coverage 

(ratio of users who receive a recommendation) and hitrate (ratio of users with at least one 

correct recommendation). 

The first issue we have observed is that depending on the experimental configuration, 

the results could be biased towards one type of methods or the other. If only users with a 

social context are tested (social evaluation, Section 3.2) social-based recommenders 

obtain very good results, and the same coverage as non-social methods. However, when 



considering users in the evaluation without social context (Section 3.3), the coverage of 

the social-based methods decreases, whereas the performance of non-social 

(collaborative) recommenders stays low. This situation motivates the definition of hybrid 

recommenders which make use of the two information sources (Section 3.4). We have 

experimented with different hybridization methods, namely feature combination and 

weighted hybrid recommenders according to Burke’s taxonomy [BURKE, 2002]. Other 

hybridization methods could be explored, and are left for future work. 

Performance of hybrid methods is usually close to (or even better than) that of the 

best recommender in the combination. Besides, these methods obtain coverage values as 

high as the best recommender being combined. Furthermore, by using indicators based on 

graph-based measures we have dynamically modified the weight given to each 

recommender in the combination on a user-basis. Results indicate that dynamic hybrid 

recommendation outperforms standard hybrids for different combinations of 

recommenders (Section 3.5). 

A parameter we have found decisive in the tradeoff of performance and coverage is 

what we named overlap threshold. It determines the minimum number of neighbors 

required to have rated a particular item in order to consider a recommended score as a 

valid one. Results show that the larger this parameter is, the higher the performance for 

most of the recommenders, but the lower their coverage. This is because the 

recommenders have higher confidence in the actual suggestions, but have an additional 

constraint: it becomes more difficult to find interesting items for users with odd 

preferences. 

Our study, thus, covers a range of variables, configurations and parameters, and their 

effect on the accuracy and coverage of different recommendation strategies. Further study 

focusing on particular points addressed so far, e.g., sensitivity analyses, should be 

worthwhile as future work and might bring additional findings, by a more detailed 

observation of the dependency and variations in the investigated methods and strategies 

with respect to the relevant parameters. 

4. RELATED WORK 

Social Web systems deal with many different information sources, from user opinions 

about services and products, to items attributes and explicit ratings. The importance of 

such systems has grown in the last decade. In [KAUTZ et al., 1997], the authors propose 

to use different types of social networks (friends, colleagues, and collaborators) within an 

organization, in order to guide the search process, disambiguate queries and provide 



trusted recommendations by presenting named individuals when explaining suggestions. 

As in that work, social networks have been usually employed as a source of trust among 

individuals. Works like [O’DONOVAN & SMYTH, 2005] and more recently [JAMALI 

& ESTER, 2009], [MA et al., 2009], [WALTER et al., 2009], confirm this point. Other 

works, however, embed the social information into traditional CF algorithms in order to 

study how many neighbors automatically selected by the collaborative algorithm are 

socially connected [LEE & BRUSILOVSKY, 2010]. 

Information sources available in Social Web systems have, thus, been exploited from 

different points of view. Most proposed approaches, however, are only based on two 

dimensions of the data, mainly collaborative and social network information, such as 

[JAMALI & ESTER, 2010]. There exist, nonetheless, recent works dealing with further 

dimensions. In [BELLOGÍN et al., 2010], the authors make a comparative analysis of 

different types of recommenders, each of them making use of a different source of 

information: tags, ratings, and social links. [KONSTAS et al., 2009] propose a music 

recommender that combines tagging information, play counts, and social relations for 

making music track recommendations. 

The lack of heterogeneous datasets probably explains, among the main reasons, the 

relatively small amount of works on Social Web systems that exploit more than the two 

aforementioned data dimensions. Nevertheless, recently in [JAMALI & ESTER, 2010], 

the authors make use of rating and social data, evaluating their recommenders with two 

manually crawled datasets: one from Epinions
4
 (where a reputation system is used and 

various product categories are available) and another from Flixster
5
 (the domain of this 

dataset –movies– is the same as ours). Both datasets are publicly available, which, 

together with the Filmtipset dataset, as analyzed in this paper, may provide a basis for 

further research. In fact, the dataset used in this work may have a bigger impact, since it 

provides richer information such as the social user context, explicit ratings, temporal 

dimension, item reviews, and item attributes (directors/actors/scriptwriters). 

It is important to note that as a consequence of combining different sources of 

information, recommendation evaluation measures have to be properly adapted, in order 

to consider every possible dimension in the recommendation task. As it was pointed out 

in [HERLOCKER et al., 2004], it is very important to go beyond accuracy metrics in 

order to define proper methodological targets for recommenders to achieve actual utility 

for real users. Coverage, novelty, and serendipity are some of the non-performance 

                                                           
4 Epinions.com, General consumer review site, http://www.epinions.com 
5 Flixster Inc., Social movie site, http://flixster.com 



metrics mentioned by the authors as alternative relevant measures to be considered when 

building recommender systems. In this work, we have defined user coverage as the 

proportion of users able to receive a recommendation. Recently in [SHANI & 

GUNAWARDANA, 2011], the authors have defined what they called user space 

coverage, which is an analogous concept to what we define here. They propose an 

alternative way for computing coverage, which consists on measuring how rich a user’s 

profile should be to receive recommendations, for example, by counting the number of 

items a user must rate before receiving recommendations. This recent research, among 

others, highlights the importance of this dimension when evaluating recommender 

systems, realizing the tradeoff between accuracy and coverage. 

5. CONCLUSIONS 

Aiming to explore how social context can be used to enhance recommendation, we have 

compared an array of different recommender systems under two evaluation scenarios: 

one in which only users with social relations are taken into account (social evaluation), 

and one where users with no friends are included in the test set (collaborative-social 

evaluation). The evaluated recommenders include collaborative filtering algorithms (such 

as user-based and similar users’ popularity CF), social recommenders (such as friends’ 

popularity, personal social, and pure social-based recommenders), and algorithms 

integrating collaborative and social information into hybrid recommendation methods 

(e.g., Random Walk-based recommenders). In order to uncover and compensate for the 

incompleteness of performance evaluations based on accuracy only, we have explored a 

new definition of a recently proposed metric to assess the user coverage of 

recommendation strategies. 

The two considered evaluation scenarios, along with the new metric, have allowed us 

to analyze the different behavior of recommenders based on user ratings, social 

information, and an aggregation of both types of user information under different 

conditions. Our analysis confirms a shortcoming of social-based recommenders, namely 

their user coverage degrades when measured in a realistic scenario, that is, when the 

system includes users without friends. On the other hand, collaborative filtering 

algorithms show a higher user coverage (and lower performance). Therefore, we propose 

to use hybrid algorithms for combining the outputs from recommenders based on 

collaborative and social information. We show that recommenders using several 

information sources (such as those based on Random Walks and hybrids) obtain higher 

coverage than pure social-based recommenders. 



Different techniques for combining recommenders based on collaborative and social 

information have been explored in the experiments. We first used linear (weighted) 

combinations of recommenders, observing mixed results: whereas the user coverage 

increased, the performance of the hybrid recommender was conditional to the original 

performance of each of the combined recommenders, in such a way that in some cases 

the hybrid recommender outperformed both baselines or only the worst one. Secondly, 

we tested a novel approach to dynamically select the weight of each recommender on a 

user-basis, in such a manner that the social-based recommender is weighted more heavily 

on socially important users. Results in this direction were positive, outperforming the best 

static hybrid in different situations. 

The generality of the observations deserves further study by testing them on other 

datasets, and heterogeneous ones in particular, where very different information is 

involved. Further analysis is required with respect to the collaborative-social evaluation. 

We plan to study to what extent the 50-50 proportion between users with and without 

social context is a reasonable representation of common social media systems currently in 

use. In that situation, the first evaluation performed in this paper would make sense and 

the results obtained would hold. Otherwise, if social media systems present different 

proportions, then this fact would encourage even further the use of hybrid recommenders. 

Further possibilities regarding hybrid recommendation can be explored, such as the 

extension of Markov chain-based recommenders (e.g., by using the techniques described 

in [FOUSS & PIROTE, 2007], which improve average computing times) and the analysis 

of different recommender combinations.  

Apart from the weighted hybridization schema, other forms of hybrid recommenders 

(switch, cascade, and meta-level) should be investigated. Regarding the evaluated 

personal social recommender [BEN-SHIMON et al., 2007], it is possible to investigate an 

alternative family of recommenders based on ratings instead of on graph distance. This 

new family would be able to suggest items even when social context is not available, 

since we may substitute the graph distance between users for a similarity measure, and, 

thus, the similarity could be computed based on ratings. 
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APPENDIX 

A. THE ADJACENCY MATRIX   FOR RANDOM-WALK METHODS 

Let us define a set of features   {       }, and consider an enumerated finite set 

   . Then, for all the elements in   we define 

    
                   
→      ( )

                

                   
→      (  )     

 (21) 

being  ( ) the power set of the set  . For example, when           , then this set is 

 (  )  {         }. Moreover, for each feature      we define  

   
     |  

                       
→          

                           (   )  
                       
→          

(   )
 (22) 

where    
 is the function that assigns to each pair of elements a value from the 

enumerated set related to the feature chosen, as defined in (21). The reader should take 

into account that the set     |  
 is restricted to features applicable to (or relate) any 

pair of users and items in the collection, such as tags, and implicit/explicit preference.  

Now, we define a user (respectively item) partition depending on whether there is a 

relation between a particular user (item) and the rest of items (users). 

       {        
(   )}  {        

(   )}        
        

  (23) 

       {        
(   )}  {        

(   )}        

        

  (24) 

For instance, the set      

 
 represents the subset of users related to the item   with 

respect to the feature   . Once the subsets      

 
 and      

 
 have been defined, it is 

possible to obtain the average value of each feature    from two points of view: 

averaging over all users (equation 25) or over all items (equation 26). 
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Consider now the active user     . For each pair of users     , we define the 

following set 

        

         
         

 , (27) 

which represents the items related to user   but not to the active user, with respect to the 

feature   . 

Taking into account all the previous definitions, now we can define the adjacency 

matrix  . Depending on the nature of each feature, we need to distinguish two different 

types of relations: explicit and implicit. 



Explicit relations case 

These types of relations are those that are directly extracted from the features. In this 

case the elements of   are defined as 

   
    

                              
→            

                                            (   )  
                              
→            

(   )     
(   )

 (28) 

For example, when           we have that  

       (   )         (   )  {
                  

   (   )          
 

For this feature, we have that        

    . 

Implicit relations case 

In this case, we use a weighting vector  ⃗  {   }| | to make use of various features. 

In this way, we are able to adjust the weight assigned to each available feature. Therefore, 

we define the elements of   as 

   
     {   }| |

                              
→          

                                       (     ⃗)  
                              
→            

(     ⃗)
 

(29) 
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Implicit relations take different values depending on whether the user is related to that 

particular item, where the assigned value is the average feature value for that item. 

Otherwise, the value is an average across the different available features, weighted by 

vector  ⃗. 

In summary, the elements of the matrix   may be defined by expression (28) or (29), 

depending on the input data available. Moreover, the definition of function    
 may 

involve other input spaces different to user and items, such as users or items only. 

Examples of features defined in these spaces are friendship (           (   )    if both 

users are friends) or similar item (        (   )     (   )). Figure 7 shows which sub-

matrices are needed, and how we can combine them in order to create the complete 

matrix  . 



Figure 7. Adjacency matrix   and their sub-matrices for the user  . 

 

B. ANALYSIS OF THE TIE-BREAKING BIAS IN RECOMMENDER RANKINGS 

The experimental results presented in this work are based on the evaluation of rankings 

generated by several recommenders. There is, however, an important concern when such 

an evaluation is performed, since the use of ranking cutoffs may introduce an 

uncontrolled parameter, or bias, depending on how the (possible) ties in the ranking –that 

is, two items with the same predicted score for some user– are broken. In this section, we 

measure how many ranking ties are generated for several recommender algorithms at 

different cutoffs. In particular, we analyze the number of items per user with ties at the 

different cutoffs used in this work –i.e., 5, 10, and 50– for the recommenders involved in 

our analysis. Furthermore, we compare our results with those reported in [CABANAC et 

al., 2010], where the authors compared many different TREC datasets with the trec_eval 

program, the same program we have used in our experiments. The authors observed that, 

in TREC, the tie-breaking strategy followed by this program is unfair. In the following, 

we check whether the results found for TREC appear in the recommender evaluation, 

and, in that case, if they are comparable with our results. 

Table VI. Average ratio of tied items per user, at different cutoffs for the evaluated recommenders. 

 Tied items at 5  Tied items at 10  Tied items at 50 

Recommender 

type 
Min Avg Max 

 
Min Avg Max 

 
Min Avg Max 

UB 15.11 130.64 280.83  14.33 130.52 280.83  7.83 128.20 281.39 

SimPop 4.50 235.31 736.50  4.50 234.58 736.5  0 224.02 736.50 

SVD 0 0 0  0 0 0  0 0.01 0.67 

PureSocial 2 50.75 172  0 50.61 172  0 46.51 172 

FriendsPop 10 350.20 1057  9 349.91 1052  0 343.13 1012 

Personal 0 1.80 65  0 2.53 65  0 8.86 122.50 
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Combined 2.80 62.20 205.10  2 61.99 205.1  0.10 57.81 205.10 

Table VI shows a typically unnoticed result about recommendation rankings. We 

observe that those methods, which directly depend on the size of some particular set, 

generate more ties in the ranking. This is the case of the SimPop recommender (where the 

items are ranked according to the number of users who have ranked each item), 

FriendsPop (like the previous one, but only considering the user’s friends), and 

PureSocial (again, the number of friends of each user is very important). Several ties are 

also observed in the user-based recommender, this might be due to the fact that several 

neighbors obtain the same similarity value, along with the discrete scale of ratings, which 

makes very likely that different items obtains the same score. 

On the other hand, recommenders like SVD and Personal generate very few tied 

items. This is probably because the formula used for estimating the preference is not 

normalized (Personal) or comes from more complicated equations (SVD). It is also 

noticeable that the hybrid recommender Combined provides a lower number of tied items 

with respect to one of the recommenders being combined, user-based CF. 

In summary, the number of tied items per user in recommender systems is larger than 

expected and depends on the recommender under consideration. If we compare these 

results with those presented in [CABANAC et al., 2010] we find no direct equivalence 

between them, since the number of users (queries) and items (documents) is different. 

The conclusion, however, is the same for both: the issue of tie breaking affects the final 

results of the systems and, furthermore, it may even influence the final user satisfaction 

because of the so-called choice overload effect and item set attractiveness [BOLLEN et 

al., 2010]. 
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