

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor de la comunicación de congreso publicada en:
This is an author produced version of a paper published in:

ACM Transactions on Intelligent Systems and Technology 4.1 (2013): 14

DOI: http://dx.doi.org/10.1145/2414425.2414439

Copyright: © 2013 ACM

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1145/2414425.2414439

An Empirical Comparison of Social, Collaborative
Filtering, and Hybrid Recommenders

ALEJANDRO BELLOGÍN, IVÁN CANTADOR, FERNANDO DÍEZ, PABLO
CASTELLS AND ENRIQUE CHAVARRIAGA

Universidad Autónoma de Madrid

__

In the Social Web, a number of diverse recommendation approaches have been proposed to exploit the user

generated contents available in the Web, such as rating, tagging, and social networking information. In general,
these approaches naturally require the availability of a wide amount of the above user preferences. This may

represent an important limitation for real applications, and may be somewhat unnoticed in studies focusing on

overall precision, in which a failure to produce recommendations gets blurred when averaging the obtained

results or, even worse, is just not accounted for, as users with no recommendations are typically excluded from

the performance calculations. In this paper, we propose a coverage metric that uncovers and compensates for

the incompleteness of performance evaluations based only on precision. We use this metric together with
precision metrics in an empirical comparison of several social, collaborative filtering, and hybrid

recommenders. The obtained results show that a better balance between precision and coverage can be achieved

by combining social-based filtering (high accuracy, low coverage) and collaborative filtering (low accuracy,
high coverage) recommendation techniques. We thus explore several hybrid recommendation approaches to

balance this tradeoff. In particular, we compare, on the one hand, techniques integrating collaborative and social

information into a single model, and on the other, linear combinations of recommenders. For the last approach,
we also propose a novel strategy to dynamically adjust the weight of each recommender on a user-basis,

utilizing graph measures as indicators of the target user’s connectedness and relevance in a social network.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information Search and

Retrieval – information filtering, retrieval models

General Terms: Algorithms, Experimentation, Performance.

Additional Key Words and Phrases: Recommender Systems, collaborative filtering, hybrid recommenders,

social networks, graph theory, random walk.

__

1. INTRODUCTION

1.1 Motivation

Information systems where users share different types of feedback on products and

services are commonplace nowadays. Users’ input creates rich explicit and implicit

relations among items based on several forms of interaction: reviews, comments, ratings,

and other types of feedback in the system, such as click-through data and browsing time.

The richness and availability of user input and interaction data at worldwide scale has

further boosted more research and development of complex technologies that analyze and

Authors’ addresses: Alejandro Bellogín, Iván Cantador, Fernando Díez, Pablo Castells, Enrique Chavarriaga;
Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente 11, 28049 Madrid, Spain; e-mail:

{alejandro.bellogin, ivan.cantador, fernando.diez, pablo.castells}@uam.es, jes.chavarriaga@estudiante.uam.es.

Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice,

the title of the publication, and its date of appear, and notice is given that copying is by permission of the ACM,

Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.

© 2011 ACM 1073-0516/01/0300-0034 $5.00

exploit this data in elaborate ways, opening new scenarios for the creation of novel

services and business models. Personalized recommendation technologies are a

characteristic example of this trend. Recommender Systems (RS) aim to automatically

find the most useful products or services for a particular user, providing a personalized

list of items for that user based on different input and attributes of users and items

[ADOMAVICIOUS & TUZHILIN, 2005]. The state of the art recommender system

technologies build on implicit relationships between users and items derived from

different data sources, such as the content of the items or the preferences of similar-

minded users. They exploit these types of relationships to a significant degree of

effectiveness, playing a consistent role in successful businesses such as Amazon
1
 or

Netflix
2
. Seeking new horizons beyond current recommender technologies, the research

community is investigating how to exploit other attributes and contexts that are currently

reaching critical mass in terms of scale, density, and availability in such systems. An

example of what has rapidly attracted considerable interest from the research community

and industry in the recent years is the “social” context, as a consequence of the outburst

of social systems in the so called Social Web or Web 2.0 [KONSTAS et al., 2009; MA et

al., 2008; LIU & LEE, 2010].

Social recommenders are proving to be a good alternative and/or complement to

Collaborative Filtering (CF) methods. CF algorithms, one of the most widespread

recommendation approaches so far [KOREN & BELL, 2011], make use of user

preferences for items to find similar-minded people (or similar items) according to the

observed user interaction with the items, and present suggestions on this basis. Social

recommenders, on the other hand, exploit the social context, represented as links between

users in a community, to suggest interesting items. Although social recommenders

perform very well in some situations, they naturally require the availability of a social

context. This requirement introduces an important limitation of real applications, namely,

the inability to produce recommendations for users, when insufficient social links are

known to the system. This limitation may go somewhat unnoticed in studies focusing on

overall recommendation accuracy, in which a failure to produce recommendations gets

blurred when averaging the obtained results or, even worse, is just not accounted for, as

users with no recommendations are typically excluded from the performance

calculations.

1 Amazon, Electronic commerce company, http://www.amazon.com
2 Netflix, Movie and television rental service, http://www.netflix.com

Besides the accuracy of delivered recommendations, the ratio of users, for which a

recommender is able to deliver a recommendation, which we shall call user coverage, is

indeed a dimension one may also want to pay attention to. It is often the case that

accuracy and coverage involve a tradeoff –e.g., one may enhance accuracy by

withholding difficult recommendations [HERLOCKER et al., 2004]. In this work we

suggest the use of a performance metric based on the tradeoff between precision and user

coverage when building and evaluating recommender systems. We explore the

combination of social and collaborative algorithms into hybrid recommendation

approaches as a means to achieve balanced tradeoff between the two. We investigate

different techniques for this combination, ranging from algorithms that integrate the two

information sources into a single model (e.g., graph-based recommenders) to linear

combinations of recommenders (e.g., weighted hybrid recommenders). Furthermore, for

the latter case, we explore a novel approach to dynamically adapt the weight of each

recommender on a per-user basis.

We conduct the empiric part of our study in two different experimental setups: one in

which only users with friends –i.e., those users with an explicit (direct) social

relationship– are considered in the test set (social evaluation), and another in which users

with and without friends are tested (collaborative-social evaluation). The experimental

study is conducted using one of the datasets provided for the CAMRa Challenge [SAID

et al., 2010]. These datasets were gathered from the Filmtipset and Moviepilot

communities, and contain social links between users, movie ratings, movie reviews,

review ratings, comments about actors and movies, movie directors and writers, lists of

favorite movies, moods, and links between similar movies. Despite the proliferation of

online information systems supporting both preference data and friendship links, the

CAMRa data is, to the best of our knowledge, the only publicly available dataset, where

this variety of user data is provided, meeting our experimental requirements.

1.2 Contributions

In this work, we make the following contributions:

 We implement an array of state-of-the-art recommenders and propose

modifications and adaptations of recommendation approaches based on those

algorithms: personalized random walk with restart, popularity based on friends,

and combinations of social and collaborative filtering recommenders. We will

show that some of these algorithms deliver competitive performance under

different evaluation conditions. In order to better understand the relation between

accuracy and the amount of social context on a per-user basis, we compare the

accuracy of social recommenders against collaborative filtering systems, and

analyze two metrics, named user coverage and hitrate. The former considers how

many users can receive a recommendation, and the latter, how many users receive

a relevant recommendation. Besides, we conduct two different evaluations –

including and excluding users with an empty social context– so that we can

compare different recommenders’ behavior for those metrics.

 When building a social recommender system, we have to take into account a

tradeoff between precision and coverage. We address this problem, first with

recommenders that exploit a single source of information, and second with hybrid

recommenders, in order to analyze whether hybridization obtains better balanced

results than single, standard recommenders. We have found that social-based

recommenders obtain good performance results, at the expense of low user

coverage. On the other end of the spectrum is the performance (and coverage) of

user-based recommenders, since their coverage is higher, but the performance is

lower. We have found that hybrid algorithms improve the performance of

collaborative methods and the coverage of social recommenders.

 Weighted hybrid recommenders have two important shortcomings. First, the

optimal weight has to be found empirically by relying on the recommender

performance, dataset characteristics, etc, which are subject to change. Second, the

weight should not be the same for all users in the system. We propose a novel

approach for dynamic hybrid recommendation that makes use of indicators

based on graph measures in order to adaptively weight the combined

recommenders for certain users. In this situation, by dynamically selecting the

weight for each method on a per-user basis, the results outperform those of simple

hybrid recommenders.

1.3 Structure of the paper

The rest of the paper is structured as follows. Section 2 describes the evaluated

recommenders. We present some well-known state-of-the-art collaborative filtering,

social and hybrid recommender systems, and present extensions and adaptations of some

of these recommenders in order to exploit social information. Section 3 discusses the

results obtained when the user coverage metric was introduced in order to perform a fair

comparison among the different techniques. Before that, we present some evaluation

considerations taken into account in the experiments conducted, such as the evaluation

methodology used, and the adaptation of some recommenders for their use with the

Filmtipset dataset. Section 4 describes related works that exploit different social

characteristics applied to recommendation, and investigates new evaluation metrics in

recommender systems. Finally, section 5 summarizes the paper with some conclusions

and potential future research lines.

2. EVALUATED RECOMMENDERS

In this paper, we investigate different types of recommender systems: collaborative

filtering, social-based, and hybrid approaches. We present in this section an overview of

these recommenders, including both state-of-the-art algorithms, and extensions and

adaptations of some of them in order to exploit social information.

2.1 Notation

In the rest of the paper we shall use the following notation. We denote by

{ } the set of users, and by { } the set of items; we reserve the letters

 for users, and for items. denotes the set (with size) of neighbors of ,

 represents the subset of items rated by user . The function () gives the

position of the item in the recommended list for user . We represent () as the

rating given by user to item ; if the rating is unknown the symbol is used. We use

 ̅̅ ̅̅ () to represent the average rating given by a user ; similarly, ̅̅ ̅̅ () is the

average rating received by item . The predicted score of a user for an item is represented

as (). Similarity functions are denoted as (), where and may be a pair of

users or items.

2.2 Collaborative Filtering Recommenders

Collaborative Filtering is often based on explicit ratings, in such a way that systems

record reviews/votes/evaluations that users give to certain items, thus, creating a user-

item matrix in which each user is associated with a row, and each item, with a column.

The value in each cell of that matrix is the rating of a particular user-item pair if it is

available, or a value not used in the rating scale otherwise; for instance, 0 is typically

used when the rating scale is 1-5. In implicit CF systems, on the other hand, the available

information corresponds to records of user’s activities and effective usage of items (e.g.,

browsing, purchases and downloads of products). Recommendation algorithms devised

for explicit ratings can be applied to such implicit data by transforming non weighted

user-item pairs (where pairs are assigned, for instance, an access frequency value, or a list

of access timestamps) into (single valued) user-item-vote tuples. This processing may

simply consist of recording binary votes (presence or absence of activity), or more

refined techniques, which take advantage of further available information, such as item

access frequency, duration, type of access (e.g., inspect vs. buy), etc [LINDEN et al.,

2003; CELMA, 2008; BALTRUNAS & AMATRIAIN, 2009]. In this paper, we focus on

user- and item-based CF exploiting explicit ratings. More specifically, we include

nearest-neighbor and matrix factorization algorithms in our study.

User-based nearest-neighbor CF techniques compare the target user’s preferences

with those of other users to identify a group of “similar-minded” people (usually called

neighbors). Once this group has been identified, items highly rated by this group are

recommended to the target user. More specifically, the predicted score () for user

 and item is estimated as follows:

 () ∑ () ()

 (1)

where is a normalization factor. Similarity between users can be calculated by using

different metrics: Pearson and Spearman’s correlations, cosine-based distance, and others

[ADOMAVICIOUS & TUZHILIN, 2005]. In this work, we use Pearson’s correlation,

which is defined as:

 ()
∑ (() ̅̅ ̅̅ ())(() ̅̅ ̅̅ ())

√∑ (() ̅̅ ̅̅ ())

 √∑ (() ̅̅ ̅̅ ())

 (2)

Additionally, item-based CF techniques recognize patterns of similarity between the

items themselves, instead of between user choices like in user-based strategies. Item-

based CF looks at each item in the target user’s list of rated items, and finds other items

that seem to be “similar” to that item. The item similarity is usually defined in terms of

correlations of ratings between users [ADOMAVICIOUS & TUZHILIN, 2005]. More

formally, the score () predicted by this method is estimated as follows:

 () ∑ () ()

 (3)

As stated in [SARWAR et al., 2001], adjusted cosine similarity has proven to obtain

better performance than other item similarities, such as cosine distance, and Pearson’s

correlation, when they are used in equation 3. Adjusted cosine similarity subtracts the

user’s average rating from each co-rated pair in the standard cosine formulation:

 ()
∑ (() ̅̅ ̅̅ ())(() ̅̅ ̅̅ ())

√∑ (() ̅̅ ̅̅ ())

 √∑ (() ̅̅ ̅̅ ())

 (4)

 [BARMAN & DABEER, 2010] proposes a recommender where the items suggested

to a user are the most popular ones among her set of similar users. The authors use a

binary matrix model as input data (known rating values as 1’s and unknown ones to 0’s),

and pick those items having the maximum number of 1’s among the active user’s top k

neighbors –where neighbors are selected according to some similarity measure (e.g.,

Pearson’s correlation). In this paper, we consider this method as a baseline, and we

extend it by considering also non-binary data, that is, we rank the items for each user

according to the following quantity:

 () |{ () }| (5)

That is, each item is ranked according to how popular it is among the set of user’s

neighbors. Once a ranking has been generated using the quantities calculated in (5), we

compute a score by transforming the item position with the following equation:

 ()
 ()

 (6)

This transformation implies that the first item in the ranking receives a score very close to

one, while the last item (()) gets a score of 0. If the item does not appear

in the ranking generated for that user, a score of 0 is assigned. In this formulation, we

assume that the length of the list is , and, thus, we may trim the returned list at some

level , or assume to be exactly the length of the generated recommendation list . Note

that these scores are not in the range of ratings, but lie in the interval [0, 1), and because

of that, they do not have a clear interpretation for rating value prediction, but they can be

used for generating item rankings. It would not be difficult to modify the range of this

transformation, using, for instance, techniques from rank aggregation [FERNÁNDEZ,

VALLET, CASTELLS, 2006]. However, since in our experiments we are interested in

measuring ranking precision, this function would be a valid transformation.

Additionally, matrix factorization techniques have been successfully applied to the

problem of rating prediction. These methods factorize the user-item ratings matrix into a

product of two matrices, in order to identify latent semantic factors [KOREN & BELL,

2011]. These methods map the preference data (user’s ratings for items) to a latent factor

space of a particular dimensionality. The specific value of the dimension of the output

space is chosen a priori and has impact on the final performance of the system. Recently,

other sources of information, such as temporal dynamics or implicit feedback, have been

integrated into these models in order to improve accuracy [KOREN & BELL, 2011].

2.3 Social Recommenders

Recommender systems that exploit social context have been developed in recent years.

Commonly, algorithms dealing with social context attempt to exploit the social

connections of an active user. For example, [SHEPITSEN et al., 2008] employs a

personalization algorithm for recommendation in folksonomies that relies on hierarchical

tag clusters, which are used to recommend the most similar items to the user’s closest

cluster, by using the cosine similarity measure. Other works focus on graph based

techniques for finding the most relevant items for a particular user, inspired by algorithms

from quite different areas, successfully bringing them to social recommendation

[KONSTAS et al., 2009]. Methods have been proposed in this context to deal with data

sparsity and poor prediction accuracy by means of a factor analysis approach based on

probabilistic matrix factorization, employing both the users’ social network information

and rating records [MA et al., 2008]. In this paper, we first focus on simple algorithms

that only exploit social information (from now on referred to as “pure” social

recommenders), and afterwards (Section 2.4) we study more general hybrid approaches

that combine social information with explicit ratings, social tags, demographic

information, etc.

2.3.1 Pure Social Recommender

Inspired by the approach presented in [LIU & LEE, 2010], we propose a pure social

recommender that incorporates social information into the user-based CF model. This

social recommender makes use of the same formula as the user-based CF technique

(equation 1), but replaces the set of nearest neighbors with the active user’s (explicit)

friends. That is:

 { } (7)

2.2.2 Friends Popularity Recommender

Similarly to the recommender proposed in [BARMAN & DABEER, 2010], and extended

in the previous section (equations 5 and 6), we propose a social version of such

recommender with the same rationale. We have implemented a friends’ popularity

recommender, where the algorithm suggests those items that are more popular among her

set of friends, i.e., instead of using equation 5, we redefine the value as follows:

 () |{ () }| (8)

Again, the scores predicted by this recommender cannot be interpreted as ratings, but

can be used for generating item rankings. Because of its simplicity, we take this

recommender as a baseline for the social-based recommender algorithms.

2.2.3 Personal Social Recommender

The approach of [BEN-SHIMON et al., 2007] explicitly introduces distances between

users in the social graph in the scoring formula:

 () ∑ () ()

 ()

 (9)

For this recommender, the authors propose to use the Breadth-First Search algorithm

in order to build a social tree for each user; this tree for user is denoted as (),

where is the maximum number of levels taken into consideration in the algorithm, and

 is an attenuation coefficient of the social network that determines the extent of the

effect of (), that is, the impact of the distance between two users in the social graph

(for instance, by using an algorithm that computes the distance between two nodes in a

graph, such as Dijkstra’s algorithm [DIJKSTRA, 1959]). Hence, when , the impact

is constant and the resulting ranking is sorted by the popularity of the items. Furthermore,

for this value of , no expansion is employed and only directly connected users are

involved in the score computation.

In this work, we use this recommender to obtain the raw scores in order to generate

item rankings, since, like in the previous recommender, the scores calculated in this way

cannot be interpreted as ratings.

2.4 Hybrid Recommenders

In addition to the recommenders presented in the previous section, there are other more

complex algorithms that fall into the hybrid recommender category, and also exploit the

social context of users. [BURKE, 2002] presents a detailed taxonomy where hybrid

approaches are classified: meta-level hybrid recommenders, where the model learned by

one recommendation technique is used as the input for another; cascade hybrid

recommenders, in which recommendation is performed as a sequential process using

different recommendation techniques; weighted hybrid recommenders, where scores from

the recommendation techniques are aggregated using a linear combination or voting

schemes; and switched hybrid recommenders, which are special case of weighted

recommenders, in which one recommendation technique is turned off whenever the other

is turned on.

In this paper, we explore different techniques in order to combine social and

collaborative filtering techniques, as well as other strategies like Random Walks

[KONSTAS et al., 2009], and extensions thereof. These techniques are useful not only

for exploiting the social context of a user, but for providing higher coverage in extreme

situations (such as the social or rating cold start, where no social context or ratings are

available for a particular user).

2.4.1 Combined (Pure+CF) Recommender

Based on the recommender defined in Section 2.3.1, we propose a hybrid recommender

that utilizes the user-based CF formula, but is based on all the active user’s friends, as

well as her most similar nearest neighbors, combining them into a new neighbor set:

 { } { } (10)

This new neighborhood is then used in equation 1 for estimating the score between a

user and an item. Thus, this recommender integrates social and collaborative information

in a simple but flexible way. According to Burke’s taxonomy, it can be categorized as a

feature combination hybrid, where the social information is treated as additional data for

building the collaborative neighborhoods.

2.4.2 Random Walk-based Recommenders

Markov chains are stochastic processes that link states in a graph with certain transition

probabilities, such that the probability of reaching a state depends only on the previous

state, and no others. The matrix representing these probabilities for each pair of states is

called the transition probability matrix. The random trajectory described in such a state

graph based on the transition probabilities is called a Random Walk (RW).

The hypothesis behind an RW applied to social graphs is that users, who have

evaluated the same items, probably have similar tastes and, as a statistical trend, will be

connected by, comparatively, a large number of short paths. Users with different tastes

would be expected to be connected by a smaller number of paths in the social network,

and, therefore, the shortest paths between them should be longer. The notion of path

length can also consider weights assigned to the edges connecting users in the adjacency

matrix of the social graph.

In the following, we describe the basics of this approach, as well as other possible

extensions. These recommenders can fit, again, as feature combination hybrids, since a

generic model (Random Walk) is built using input from many different sources, such as

friendship links, preferred items, and even tags (not considered in this work).

For readability, we show here the final equations for the definition of the adjacency

matrix here, but leave the detailed derivation for Appendix A. Given a feature

available in the collection, and its associated enumerated set image
, the elements of

this matrix
() may be defined using two alternative formulations, depending on

whether explicit (equation 11) or implicit (equation 12) information is available:

→

 ()

→

()
 (11)

 { }| |

→

 (⃗)

→

(⃗)
 (12)

Once the matrix has been defined, it is possible to compute the recommendations

by means of a Random Walk based recommendation algorithm [KONSTAS et al., 2009],

and some of its variations. In the application to RW algorithms to recommendation, users

and items are considered as the nodes of the state graph. The nodes are linked to each

other by a probability of going from node () at some state or time to the

adjacent node at the next state, i.e., (). These probabilities define the transition

matrix , and are calculated based on the values of the matrix as follows:

 (|)

()

∑
() | |

 (13)

where D is the set of nodes of the graph. Besides users and items, other components can

be included in the state graph, such as tags, genres, etc, resulting in further variations of

the basic RW recommendation approach. Based on the above matrices, the probability

distribution of states at a given time t associated to the RW is defined by:

 () [() () | |()]

 (14)

where () [(()|) (()| | |)] represents the probability vector of being

at node at time . The fact that () depends only on the states at time , as

determined by transition probabilities, provides the basis for recursive definition of ():

 () ()

 ()
(15)

where is the identity matrix.

Random Walk with Restarts (RWR) introduces a probability of restarting from the

original state, no matter what the current state is. This is formulated by modifying how

the state transition probabilities are computed, in this case:

 () () () (16)

 (

)

where is the identity matrix and the probability of restarting is represented as .

Therefore, the corresponding vector according to the -th column in the RWR

approach would be [⏟

], with 1’s only in the -th position.

Moreover, if , we obtain the standard RW. In fact, the higher the value is, the

higher is the probability to restart at the departure state, i.e., in that case, () .

The personalization matrix defined in this way allows to use personal user tastes during

the random path, since a bias towards the starting node is introduced by using this matrix.

In [KONSTAS et al., 2009], it is shown that the performance of a recommender

system using the RWR method is improved when the extra knowledge provided by the

users’ social activity is used. Because of that, we propose a modification in the way the

matrix is computed, by including all other users who also evaluated the same item. In

our approach, each component of is computed by means of the following expression:

()

∑ { ()}
 {

()

()

 (17)

We denote this approach as Personalized Random Walk with Restart (PRWR). Using

the Personalized approach, and assuming that elements in each column have a non

zero value (i.e., ∑ { ()}), the resulting vector would be

 [

] (18)

Thus, we introduce the probability to restart at some state as a uniform weight for

each user taking into account their relative importance in the user set. The assigned

values distribute the restart probability uniformly among all the users who have evaluated

the item, as opposed to just the target user.

3. EXPERIMENTAL COMPARISON

We report in this section the results obtained in empiric observations with the different

recommenders described in the previous section. We shall first describe the experimental

methodology, and then, the details and results of the conducted experiments, which

encompass different considerations regarding the test set. In particular, firstly, we have

used a test set containing only users with social context (social evaluation) and, secondly,

a test set where half of the users have an empty social context, and the other half have a

non-empty one (collaborative-social evaluation).

3.1 Experimental Setup

This section shows the specific details about the dataset used in our experiments, the

different metrics included in the study, and the chosen configurations for the involved

recommenders.

3.1.1 Dataset

The experiments we report here are conducted on the Filmtipset dataset provided for the

CAMRa Challenge [SAID et al., 2010]. Filmtipset is Sweden’s largest online social

community in the movie domain, with more than 80,000 users. It contains a wide range

of user and movie information that could be exploited to make predictions of users’ tastes

and provide movie recommendations.

The Filmtipset dataset contains explicit information about movies, such as film genres

and featuring actors. It also contains personal information about the users, such as their

social contacts and their movie reviews. Finally, it also has implicit information like the

frequencies with which a user watches a film of a specific genre, or makes reviews of a

specific person. The CAMRa dataset is quite unique in its kind, as a publicly available

resource, in the range and variety of user data provided. In particular, to the best of our

knowledge, it is as of today among the only three public datasets (see Section 4)

including both user preference data and social relationships, thus, meeting the

requirements for the experimental work in our research. Of all the available data in this

dataset –different types of reviews, comments, favorites, etc – we focus in our

experiments on the exploitation of explicit preferences and social links, as the most

general and representative type of data in similar information systems.

Figure 1 shows the entity/relationship model of the Filmtipset dataset. The tables

marked with an asterisk (*) are those provided in the original dataset. Additionally, we

have included the following tables: Status, ReviewRatingType, RatingType, Movies,

People, PeopleRoles, Lists, and Genres, to generate a database with referential integrity

to optimize queries in the computation process. We note that, in order to create the

Movies table, we take into account existing relationships with all those tables of the

Filmtipset dataset containing movies, as shown in Figure 1. That is, the Movies table

includes information from all tables but Friends, Users, and PersonComments tables. We

proceed in the same way to create the People, Genres, and Lists tables.

Figure 1. The entity/relationship model of the CAMRa 2010 Filmtipset Social Recommendation

dataset. Tables with (*) are those provided with the dataset.

With the pre-processed data, we build and evaluate the recommenders explained in

Section 2 using the metrics and parameters specified in the following sections.

3.1.2 Metrics and Methodology

We compute several standard accuracy metrics from the Information Retrieval field,

which are being increasingly adopted by the Recommender Systems research community:

Precision, Recall [BAEZA-YATES & RIBEIRO-NETO, 1999], and Normalized

Discounted Cumulative Gain (NDCG) [JÄRVELIN & KEKÄLÄINEN, 2002] at top

positions 5, 10 and 50. These evaluation metrics capture the accuracy in matching the

user’s interests when she is presented with an item ranking. The chosen ranking cutoff

positions are standard in common practice in IR. They are suitable in the RS context as

well, where it seems sensible to assume that the top positions of recommendations are

more frequently examined by users, and items beyond, e.g., position 50, are rarely

accessed in common real scenarios [WANG, HAWK, TENOPIR, 2000; JANSEN &

SPINK, 2003; CARTERETTE, 2011]. Note that, in contrast with the typical experimental

setup in Information Retrieval, Recommender Systems’ false positives might be

overestimated, since the items not rated by the user are considered as non relevant, where

in reality, we may only say the preference of the user for such items has not been

observed in the system –i.e., their relevance or non-relevance is unknown to the system,

when in fact, those items could be good and serendipitous recommendations. For this

reason, we report recall along with precision. To compute the measures listed above we

used trec_eval
3
, a public program distributed in the scope of the Text Retrieval

Conference (TREC) to evaluate retrieval system results by using the standard NIST

procedures.

The evaluation methodology we used in our experiments is the following: for each

user, a recommender is requested to provide a preference score for every item in the test

set, except for those items already included in the user’s (training) profile; from these

scores, a ranking is generated, the items are sorted in descending preference score order.

In Appendix B, a detailed analysis of the number of generated ties by this strategy for

each recommender is provided.

3.1.3 Configuration of the Recommenders

We evaluated different neighborhoods for the user-based recommender, ranging from 3

to 300. For the sake of clarity, in each situation, we have selected the best performing one

–by which we mean the one with highest performance with respect to more metrics– and

denoted it as UB. For comparison purposes, Figure 2 summarizes the performance results

obtained for each neighborhood size for precision and recall at 10 –a similar trend is

observed for other cutoffs and performance metrics. In contrast with previous

experiments reported using error-based metrics such as [HERLOCKER, KONSTAN,

RIEDL, 2002], in this situation, smaller neighborhoods seem to provide better accuracy

(higher precision and recall) than larger ones. Thus, in the rest of this section, a

neighborhood size of 5 will be used.

3
 http://trec.nist.gov/trec_eval/

Figure 2. Performance evolution of user-based method depending on the neighborhood size (k).

Friends popularity recommender is taken as a baseline and named as FriendsPop, the

pure social recommender is denoted as PureSocial, the similar users popularity

recommender as SimPop, and the personal social recommender Personal. The latter

recommender is evaluated using an attenuation coefficient of and a level

(see equation 9). Additionally, the matrix factorization method SVD is also included in

the experiments, where the dimension of the latent space varies from 50 to 200.

For this experiment, we also tested different implementations of random-walk

algorithms (see Section 2.4) according to our previous work [DIEZ et al, 2010]. More

specifically, the random walk method was built using the set of features { },

where is the relation defined by the reviews received by each item; is the relation

defined by the ratings given to the items in the collection; and is the binary relation

defined as whether a user has indicated an item as favorite or not. According to our

previous work, the best performing RW was the one involving the feature , i.e.,

reviews, with the vector ⃗ { }, and is denoted as RW. The best performing random

walk method with restarts employs a restart probability of 0.3, and uses also the feature

 and ⃗ { } parameters; we denote it as RWR. Finally, the personalized version is

denoted as PRWR, which makes use of the same feature and weights than the previous

models, but using the personalized matrix defined in equation 17.

The other hybrid is denoted as Combined where, as with the user-based method,

different neighborhood sizes have been considered in addition to the user’s friends, and

only the best performing one is reported.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

3 5 10 15 50 100 150 200 300
k

P@10 Recall@10

3.2 Social Evaluation

Table I shows the performance results obtained by the recommenders described in

Section 2 for the test set provided in the social track of the CAMRa challenge [SAID et

al., 2010]. As explained previously, in the test set provided in the dataset, all users have a

non-empty set of contacts –at least two friends. Later on we will extend our study to a

situation where the social network coverage is only partial.

As expected, the baseline for the social-based recommenders (friends’ popularity

recommender) is outperformed by the pure social recommender. However, the analogous

collaborative recommender SimPop outperforms SVD in terms of precision, performing

worse however in terms of recall. Nevertheless, SimPop always performs better than its

social counterpart (FriendsPop).

Personal recommender is the best performing algorithm under different metrics,

despite its simplicity. We presume this behavior is due to the relatively high value of ,

which causes the social tree of every user to spread along several nodes.

Results from the best performing random-walk algorithms according to previous work

[DIEZ et al, 2010] are also included in the table. RW algorithms perform very well in

comparison with other social-based recommenders (leaving aside the personal social

recommender). However, there is no clear winner among them, since depending on the

evaluation metric, RW performs better than RWR, and vice versa.

The performance of the evaluated hybrid approaches varies dramatically: while

Combined is able to achieve better performance than UB and PureSocial for many

different metrics, there are other situations where it obtains worse performance than their

corresponding baselines.

Table I. Summary of the results for the social evaluation (i.e., original challenge test set). Best

recommenders in bold. Best recommenders for each type, in italics.

 P@ Recall@ NDCG@

 Model 5 10 50 5 10 50 5 10 50

User

Based

UB 0.085 0.072 0.045 0.022 0.034 0.099 0.088 0.083 0.082

SimPop 0.062 0.063 0.041 0.005 0.011 0.061 0.066 0.068 0.070

SVD 0.044 0.038 0.033 0.007 0.015 0.054 0.044 0.041 0.048

Social

Based

PureSocial 0.062 0.057 0.053 0.015 0.032 0.149 0.064 0.064 0.094

FriendsPop 0.001 0.001 0.004 0.000 0.000 0.033 0.001 0.001 0.011

Personal 0.370 0.344 0.233 0.143 0.226 0.513 0.408 0.414 0.449

Hybrid
RW 0.080 0.070 0.066 0.013 0.024 0.107 0.082 0.077 0.095

RWR 0.063 0.056 0.057 0.016 0.029 0.110 0.068 0.066 0.090

PRWR 0.043 0.044 0.059 0.007 0.017 0.122 0.047 0.048 0.085

Combined 0.084 0.077 0.073 0.017 0.035 0.168 0.086 0.085 0.119

We observed that some of these algorithms are sensitive to the minimum number of

users who have evaluated the current item in order to compute the predicted score. Some

of the recommenders may produce their predictions using a very small number of users,

and, thus, decrease their performance. Both collaborative algorithms and social-based

algorithms can be sensitive to this parameter which, from now on, we will refer to as

overlap threshold value. It is defined as the minimum number of neighbors which

should have rated the current item in order to consider the current recommendation as

valid. Table II shows the results when this threshold is set to 2, that is, whereas Table I

shows results where only one neighbor is required to have evaluated the item the

prediction aims at, Table II shows results where at least two neighbors are required. In

this setting, we obtain a significant improvement for all the algorithms. FriendsPop and

RW recommenders are not included in this table because they do not include such a

constraint in their definitions, although we plan to include it in the future.

Table II. Summary of the results for the social evaluation when overlap threshold is 2. Best

recommenders in bold. Best recommenders for each type, in italics.

 P@ Recall@ NDCG@

 Model 5 10 50 5 10 50 5 10 50

User

Based

UB 0.110 0.092 0.042 0.027 0.044 0.099 0.117 0.108 0.092

SimPop 0.062 0.063 0.041 0.010 0.023 0.082 0.066 0.068 0.070

Social

Based

PureSocial 0.277 0.257 0.216 0.134 0.214 0.535 0.309 0.321 0.415

FriendsPop 0.001 0.001 0.004 0.000 0.000 0.033 0.001 0.001 0.011

Personal 0.374 0.347 0.238 0.151 0.237 0.542 0.414 0.422 0.466

Hybrid Combined 0.274 0.269 0.203 0.114 0.210 0.497 0.300 0.324 0.391

This gain in performance, however, is not obtained without cost. Figure 3 shows the

loss in user coverage suffered by some algorithms when the overlap threshold is

increased. We define the user coverage as the amount of users for which the system is

able to produce a recommendation. This concept is related to the prediction coverage

described in [HERLOCKER et al., 2004], but focused on users instead of items. User

coverage, in contrast with item (or catalog) coverage, may have a large impact when

comparing different recommender’s performance, since some methods may obtain better

accuracy at the expense of reducing the proportion of users able to receive

recommendations. For instance, in a typical recommendation scenario, the user coverage

should be 100%, but since recommender systems typically deal with very sparse data, it

may be the case that some users cannot be recommended any item.

In our experiments, we observe that, except in a few cases (where coverage loss is

zero, and the improvement is positive), the rest of the recommenders either lose coverage

while gaining performance, or improve nothing at all; there is, however, no clear relation

between both variables. This observation reinforces the one presented in [HERLOCKER

et al., 2004], where the authors claim that “coverage must be measured in combination

with accuracy” in order to avoid strange behaviors in recommendation. Item coverage

was also measured in the experiments, and similar results were obtained. An additional

measure, hitrate, is also included in the figure. It is computed as the percentage of users

with at least one correct recommendation. Note that this measure is equivalent to the

success metric, as defined in TREC; besides, this metric requires an additional parameter,

namely the maximum number of documents to look up for the correct recommendation.

In our experiments, we set this parameter to 50, since we compare these values against

nDCG@50. We can observe in the figure how this metric provides an adequate balance

between coverage and performance, since the better the performance, the more likely this

metric obtains a higher value (R
2

= 0.8096, coefficient of determination for an

exponential fit).

Figure 3. Comparison of performance gain (NDCG@50) versus user coverage and hitrate gain.

The design of the CAMRa dataset, and more specifically, the selection of test users as

provided in the challenge’s social track, in which the above results are observed, is

representative of online applications, in which every target user has a non-empty list of

contacts (see Figure 4). This is the case of social-centric systems such as Facebook,

Linkedin or Twitter, but in many social media applications, such as Delicious or Last.fm,

the social network coverage is only partial –some users use it, some do not. In fact, the

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

-0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00

P
e

rf
o

rm
an

ce
 g

ai
n

User coverage gain

R² = 0.8096

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

P
e

rf
o

rm
an

ce
 g

ai
n

Hitrate gain

Filmtipset dataset belongs to this case: considering the set of all users, more than 10,000

out of about 16,500 users do not have any friends in the system. The number of contacts

per user follows a power law distribution, where the average number of friends per user is

0.74 and the mode among users (with at least one friend) is 1. If we take this dataset as

representative of social media systems, the presence of contacts by itself does not

guarantee the accuracy of social recommendation, and intermediate cases, where social

data is available but not enough to support optimal recommendation, would rather seem

to be the norm. We, therefore, consider such common real situations in our study, where

there is a mixed degree of participation in social networking. For this purpose, we

simulate an alternative scenario by adding an equal amount of users without friends to the

test set, as we describe next.

Figure 4. Friends distributions among the users composing the original test set of the social track.

Note how a logarithmic regression line fits almost perfectly the distribution. The total number of

users is 439, the maximum number of friends is 14 and the minimum is 2.

3.3 Collaborative-social Evaluation

For our second experiment, we add an equal number of test users as was included in the

original test set (i.e., 439 users), randomly sampled among users having no friends. We

also keep the same ratio of test ratings per user as in the original data split. Results for

this new test set are shown in Tables III and IV. Like in the previous evaluation, we can

observe that using a higher overlap threshold improves the performance of all the

recommenders. In general, the relative performance of the recommenders is quite similar

to that presented in Section 3.2, since for some metrics the user-based recommender

outperforms PureSocial when no threshold is set, whereas PureSocial increases its

0

2

4

6

8

10

12

14

16

n
u

m
b

e
r

o
f

fr
ie

n
d

s

performance notably when this threshold is increased. Once again, Personal is the best

performing algorithm in both situations.

The behavior of hybrid recommenders, however, is substantially different: Random

Walk recommenders no longer outperform simple social-based recommenders; and

Combined obtains better performance than both their baselines (UB and PureSocial)

when no threshold is used. When a higher overlap threshold is used, combined

recommenders do not get as close to the baselines as in the other evaluation.

Table III. Summary of the results for the collaborative-social evaluation and an overlap threshold

of 1. Best recommenders in bold. Best recommenders for each type, in italics.

 P@ Recall@ NDCG@

 Model 5 10 50 5 10 50 5 10 50

User

Based

UB 0.054 0.052 0.036 0.021 0.036 0.126 0.060 0.062 0.080

SimPop 0.042 0.042 0.030 0.011 0.025 0.100 0.043 0.046 0.060

SVD 0.028 0.026 0.020 0.012 0.017 0.050 0.029 0.030 0.038

Social

Based

PureSocial 0.055 0.050 0.047 0.013 0.029 0.132 0.053 0.054 0.082

FriendsPop 0.001 0.001 0.004 0.000 0.000 0.028 0.001 0.001 0.009

Personal 0.369 0.342 0.230 0.139 0.222 0.510 0.403 0.409 0.443

Hybrid

RW 0.023 0.021 0.030 0.004 0.008 0.078 0.026 0.025 0.048

RWR 0.023 0.021 0.030 0.004 0.008 0.078 0.026 0.025 0.048

PRWR 0.023 0.021 0.030 0.004 0.008 0.078 0.026 0.025 0.048

Combined 0.055 0.053 0.049 0.008 0.012 0.080 0.059 0.062 0.097

Table IV. Summary of the results for the collaborative-social evaluation for an overlap threshold of

2. Best recommenders in bold. Best recommenders for each type, in italics.

 P@ Recall@ NDCG@

 Model 5 10 50 5 10 50 5 10 50

User

Based

UB 0.090 0.073 0.029 0.045 0.065 0.100 0.103 0.099 0.088

SimPop 0.042 0.042 0.030 0.011 0.025 0.100 0.043 0.046 0.060

Social

Based

PureSocial 0.270 0.249 0.209 0.132 0.209 0.523 0.298 0.310 0.403

FriendsPop 0.001 0.001 0.004 0.000 0.000 0.028 0.001 0.001 0.009

Personal 0.372 0.345 0.235 0.147 0.235 0.538 0.409 0.417 0.460

Hybrid Combined 0.185 0.173 0.121 0.093 0.154 0.331 0.207 0.218 0.258

Coverage analysis explains the different performance of social and hybrid

recommenders. Figures 5a and 5b show the relation between precision and coverage in

the two evaluations conducted, first with respect to the user coverage metric (Figure 5a),

and then with respect to the hitrate metric (Figure 5b). In both figures, we group the

recommenders according to their source of information: social (PureSocial, FriendsPop,

Personal), collaborative (UB, SimPop, SVD), and hybrid (RW, RWR, PRWR, Combined).

We also show the performance of the recommenders for the two analyzed overlap

thresholds (filled vs. unfilled markers).

Figure 5a shows the shift in performance at the expense of coverage when changing

the overlap threshold, since unfilled markers tend to be leftwards (less coverage) or

higher (more performance) than their corresponding filled markers in the two evaluations

performed. We can also observe that, in the social evaluation (top figure), most of the

recommenders obtain the same user coverage, whereas in the second evaluation, social

recommenders have less coverage, although their performance is higher than other

recommendation methods.

Figure 5a. Comparison between user coverage and performance (NDCG@50) for the different

recommenders used in the experiments grouped by its nature: social-based, collaborative-based,

and hybrids. Unfilled markers represent that the overlap threshold has been increased. Top figure

shows the comparison using the original test set, and the bottom one uses the new test set

(collaborative-social evaluation). Coverage ratio has been normalized for comparison purposes.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
D

C
G

@
5

0

User coverage

social 1 cf 1 hybrid 1 social 2 cf 2 hybrid 2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
D

C
G

@
5

0

User coverage

social 1 cf 1 hybrid 1 social 2 cf 2 hybrid 2

Figure 5b presents the coverage results with respect to the hitrate measure. In this

case, social and hybrid recommenders obtain higher values for the social evaluation.

Then, in the collaborative-social evaluation, hitrate values decrease for most of the

recommenders, leading to consistent results with respect to those found using the user

coverage metric.

Figure 5b. Comparison between hitrate and performance (NDCG@50) for the different

recommenders used in the experiments grouped by its nature. See Figure 5a for notation.

Thus, the collaborative-social evaluation confirms the coverage degradation of pure

social methods as the social network gets sparser, as one might expect, providing a

quantitative assessment of the extent of the loss. Furthermore, the results in Figures 5a

and 5b confirm the advantages expected for hybrid approaches: they are the best

performing algorithms among those having high user coverage and hitrate. This

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
D

C
G

@
5

0

Hitrate

social 1 cf 1 hybrid 1 social 2 cf 2 hybrid 2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
D

C
G

@
5

0

Hitrate

social 1 cf 1 hybrid 1 social 2 cf 2 hybrid 2

observation motivates further analysis and elaboration into recommender hybridizations

aimed at maximizing coverage and performance, which we address in the next section.

3.4 Evaluation of Hybrid Recommenders

When aiming to achieve the most accurate performance, while preserving the highest

coverage, it would seem that in the original evaluation there was no reason for

hybridization, since all the algorithms had similar coverage, and social-based

recommenders were the best performing. Thus, in that case, the answer to our problem

would be simple: just use social-based recommenders. This conclusion, however, arises

from a partial experiment, as we explained in the previous section: by design, the test set

favors algorithms using social information. To address that problem, in the second

evaluation, we presented a scenario where hybrid algorithms may prove their usefulness:

collaborative filtering recommenders achieved high coverage, and social-based

recommenders performed well, although with low coverage, and indeed, some of the

evaluated hybrid recommenders obtained good results –although not clearly superior to

collaborative or social recommenders.

In this section, we analyze another hybridization, which combines multiple

recommender systems to produce an output (score) [BURKE, 2002], in contrast to

Combined or RW, where each recommender takes two or more different sources of

information as input. Specifically, we focus on weighted hybrid recommenders, where

the score of each technique is aggregated by a linear combination with a weight 

between 0 and 1 in the following manner:

 () () ()  () (19)

Except for  = 0 and 1, a weighted hybrid algorithm achieves a non-zero coverage for

the entire set of users for which each combined system is able to produce a

recommendation. In general, the optimum weight is derived by examining the

performance when using all possible weight values [BURKE, 2002]. Figure 6 shows the

results for different values of , gradually increasing from 0 to 1 by increments of 0.1. In

this figure, two combinations of recommenders are presented: H1 (UB and Personal, with

an overlap threshold of 2) and H2 (UB and PureSocial, with the same threshold). An

additional hybrid was evaluated, namely, the same as H2, but with an overlap threshold

of 1. As expected, the accuracy for this hybrid is lower and, because of that, its

performance is always inferior to H2. Hence, we omit this result from our analysis. In

summary, these results confirm our previous claim: the gain in coverage (and

performance) when combining collaborative and social information is clear.

Figure 6. Performance of the different static hybrid recommenders evaluated. Top figure shows

NDCG@50, and bottom figure shows P@5. Black dots represent the coverage obtained at each

recommender combination.

Both presented hybrids obtain maximum coverage, since one of the combined

recommenders in every situation is a user-based recommender. The other recommenders

in the combination (PureSocial and Personal) have been chosen because they are purely

social-based recommenders, and have proven to perform very well, although not

achieving high coverage.

3.5 Dynamic Hybridization

The type of hybridization presented above weights the recommenders in a static way.

That is, once the value of  is fixed, recommendations from each technique receive the

same weight, independently of the target user. In this section, we propose to make

dynamic hybrid recommendations: depending on some user characteristics or

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

R1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 R2

C
o

ve
ra

ge

N
D

C
G

@
5

0



(1 - ) * R1 +  * R2

R1=UB, R2=Personal, ovr=2 R1=UB, R2=PureSocial, ovr=2

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 R2

C
o

ve
ra

ge

P
@

5



(1 - ) * R1 +  * R2

R1=UB, R2=Personal, ovr=2 R1=UB, R2=PureSocial, ovr=2

attributes, one of the combined recommenders is given more or less weight. Therefore, in

this case, the value  is fixed for each user rather than for the entire population, aiming to

promote the recommender that is expected to perform best for each particular user, or

equivalently  (). Hence, equation 19 can be rewritten as

 () (()) () () () (20)

The user dependent weight () would be computed as a function of some user

attributes, such as her profile or behavior in the system, i.e., () (). In this

paper, since the hybrids in consideration consist of combinations of collaborative filtering

and social-based recommenders, we propose to use graph-based measures as indicators of

the user strength in the social network. The utilized indicators of the user strength in the

community are: user degree (the number of friends in the social network) and average

neighbor degree (the mean number of friends of each user’s friend), PageRank and HITS

score (measures of connectivity relevance within a social network) [BRIN & PAGE,

1998; KLEINBERG, 1999], betweenness centrality (an indicator of whether a user can

reach others on relatively short paths) [FREEMAN, 1977], and clustering coefficient

(probability that the user’s friends are friends themselves) [WATTS & STROGATZ,

1998].

More specifically, we apply these measures to set the weight of the social

recommender in the hybrid combination, in such a way that when a user is very socially

relevant (e.g., she has a lot of friends or plays a special role in her community), the

recommendations from the social recommender are made more influential than those

from the user-based CF recommender, and vice versa. That is, for each hybrid

recommender, () is set according to the (normalized) value of each of the above

presented graph-based measures for that particular user.

Table V. Performance results of the two hybrid recommenders tested: H1 (UB and Personal,

overlap threshold is 2), H2 (UB and PureSocial, overlap threshold is 2). The performance of the

dynamic hybrid recommenders is included, as well as the one of the best static hybrid recommender

and of the static with weight 0.5. The performance metrics are NDCG@50 and P@5.

Improvements over the best static are denoted with bold font, and over the static 0.5 with italics.

Statistical significant (p<0.05) performance differences between dynamic hybrid recommender and

static 0.5, best static and both static 0.5 and best static are respectively marked with *, † and ‡.

 NDCG@50 P@5

Hybrid H1 H2 H1 H2

Average neighbor degree 0.301* 0.280* 0.219* 0.199

Centrality 0.296* 0.276† 0.222* 0.188

Clustering Coefficient 0.294* 0.274† 0.211* 0.188

Degree 0.309‡ 0.286* 0.233‡ 0.197

HITS 0.306* 0.284* 0.225* 0.197

PageRank 0.303* 0.289* 0.227‡ 0.200*

Static 0.5 0.266 0.270 0.186 0.189

Best static 0.303 0.287 0.218 0.199

Table V shows the results obtained with the proposed dynamic hybridization

technique. We compare the results from the dynamic hybrid recommendations against

those of the best static weighted hybrid recommender (for a given evaluation metric), and

a static weighted hybrid recommender with =0.5. This value is the natural choice (and

best prior on average) in the absence of information about the recommender systems to

be combined. It is also appropriate when the recommenders are not reliable or, in

summary, there is uncertainty about the output of the recommenders. In the table, we may

observe that, in general terms, dynamic hybrids outperform the best static hybrid

recommender in each situation, or at least, they obtain a very similar performance. It is

important to note that the best static one is different for each combination (namely, =0.9

for H1 and 0.8 for H2), which further highlights the importance of this result, in that the

best static one is not actually a real configuration: the best static configuration would

require manual tuning of , and even so, the table shows the post-hoc best static one,

which a manually tuned  would not even guarantee that such improvement is obtained.

Nonetheless, although no dynamic method is substantially better in every situation, the

PageRank indicator seems to be a safe alternative for both hybrids.

3.6 Discussion

In this paper, we have compared a wide array of recommenders and method

configurations using two different input information sources: the ratings of users and

their social context. Our analysis has focused on the tradeoff between the performance of

each recommender method and its completeness, measured in terms of user coverage

(ratio of users who receive a recommendation) and hitrate (ratio of users with at least one

correct recommendation).

The first issue we have observed is that depending on the experimental configuration,

the results could be biased towards one type of methods or the other. If only users with a

social context are tested (social evaluation, Section 3.2) social-based recommenders

obtain very good results, and the same coverage as non-social methods. However, when

considering users in the evaluation without social context (Section 3.3), the coverage of

the social-based methods decreases, whereas the performance of non-social

(collaborative) recommenders stays low. This situation motivates the definition of hybrid

recommenders which make use of the two information sources (Section 3.4). We have

experimented with different hybridization methods, namely feature combination and

weighted hybrid recommenders according to Burke’s taxonomy [BURKE, 2002]. Other

hybridization methods could be explored, and are left for future work.

Performance of hybrid methods is usually close to (or even better than) that of the

best recommender in the combination. Besides, these methods obtain coverage values as

high as the best recommender being combined. Furthermore, by using indicators based on

graph-based measures we have dynamically modified the weight given to each

recommender in the combination on a user-basis. Results indicate that dynamic hybrid

recommendation outperforms standard hybrids for different combinations of

recommenders (Section 3.5).

A parameter we have found decisive in the tradeoff of performance and coverage is

what we named overlap threshold. It determines the minimum number of neighbors

required to have rated a particular item in order to consider a recommended score as a

valid one. Results show that the larger this parameter is, the higher the performance for

most of the recommenders, but the lower their coverage. This is because the

recommenders have higher confidence in the actual suggestions, but have an additional

constraint: it becomes more difficult to find interesting items for users with odd

preferences.

Our study, thus, covers a range of variables, configurations and parameters, and their

effect on the accuracy and coverage of different recommendation strategies. Further study

focusing on particular points addressed so far, e.g., sensitivity analyses, should be

worthwhile as future work and might bring additional findings, by a more detailed

observation of the dependency and variations in the investigated methods and strategies

with respect to the relevant parameters.

4. RELATED WORK

Social Web systems deal with many different information sources, from user opinions

about services and products, to items attributes and explicit ratings. The importance of

such systems has grown in the last decade. In [KAUTZ et al., 1997], the authors propose

to use different types of social networks (friends, colleagues, and collaborators) within an

organization, in order to guide the search process, disambiguate queries and provide

trusted recommendations by presenting named individuals when explaining suggestions.

As in that work, social networks have been usually employed as a source of trust among

individuals. Works like [O’DONOVAN & SMYTH, 2005] and more recently [JAMALI

& ESTER, 2009], [MA et al., 2009], [WALTER et al., 2009], confirm this point. Other

works, however, embed the social information into traditional CF algorithms in order to

study how many neighbors automatically selected by the collaborative algorithm are

socially connected [LEE & BRUSILOVSKY, 2010].

Information sources available in Social Web systems have, thus, been exploited from

different points of view. Most proposed approaches, however, are only based on two

dimensions of the data, mainly collaborative and social network information, such as

[JAMALI & ESTER, 2010]. There exist, nonetheless, recent works dealing with further

dimensions. In [BELLOGÍN et al., 2010], the authors make a comparative analysis of

different types of recommenders, each of them making use of a different source of

information: tags, ratings, and social links. [KONSTAS et al., 2009] propose a music

recommender that combines tagging information, play counts, and social relations for

making music track recommendations.

The lack of heterogeneous datasets probably explains, among the main reasons, the

relatively small amount of works on Social Web systems that exploit more than the two

aforementioned data dimensions. Nevertheless, recently in [JAMALI & ESTER, 2010],

the authors make use of rating and social data, evaluating their recommenders with two

manually crawled datasets: one from Epinions
4
 (where a reputation system is used and

various product categories are available) and another from Flixster
5
 (the domain of this

dataset –movies– is the same as ours). Both datasets are publicly available, which,

together with the Filmtipset dataset, as analyzed in this paper, may provide a basis for

further research. In fact, the dataset used in this work may have a bigger impact, since it

provides richer information such as the social user context, explicit ratings, temporal

dimension, item reviews, and item attributes (directors/actors/scriptwriters).

It is important to note that as a consequence of combining different sources of

information, recommendation evaluation measures have to be properly adapted, in order

to consider every possible dimension in the recommendation task. As it was pointed out

in [HERLOCKER et al., 2004], it is very important to go beyond accuracy metrics in

order to define proper methodological targets for recommenders to achieve actual utility

for real users. Coverage, novelty, and serendipity are some of the non-performance

4 Epinions.com, General consumer review site, http://www.epinions.com
5 Flixster Inc., Social movie site, http://flixster.com

metrics mentioned by the authors as alternative relevant measures to be considered when

building recommender systems. In this work, we have defined user coverage as the

proportion of users able to receive a recommendation. Recently in [SHANI &

GUNAWARDANA, 2011], the authors have defined what they called user space

coverage, which is an analogous concept to what we define here. They propose an

alternative way for computing coverage, which consists on measuring how rich a user’s

profile should be to receive recommendations, for example, by counting the number of

items a user must rate before receiving recommendations. This recent research, among

others, highlights the importance of this dimension when evaluating recommender

systems, realizing the tradeoff between accuracy and coverage.

5. CONCLUSIONS

Aiming to explore how social context can be used to enhance recommendation, we have

compared an array of different recommender systems under two evaluation scenarios:

one in which only users with social relations are taken into account (social evaluation),

and one where users with no friends are included in the test set (collaborative-social

evaluation). The evaluated recommenders include collaborative filtering algorithms (such

as user-based and similar users’ popularity CF), social recommenders (such as friends’

popularity, personal social, and pure social-based recommenders), and algorithms

integrating collaborative and social information into hybrid recommendation methods

(e.g., Random Walk-based recommenders). In order to uncover and compensate for the

incompleteness of performance evaluations based on accuracy only, we have explored a

new definition of a recently proposed metric to assess the user coverage of

recommendation strategies.

The two considered evaluation scenarios, along with the new metric, have allowed us

to analyze the different behavior of recommenders based on user ratings, social

information, and an aggregation of both types of user information under different

conditions. Our analysis confirms a shortcoming of social-based recommenders, namely

their user coverage degrades when measured in a realistic scenario, that is, when the

system includes users without friends. On the other hand, collaborative filtering

algorithms show a higher user coverage (and lower performance). Therefore, we propose

to use hybrid algorithms for combining the outputs from recommenders based on

collaborative and social information. We show that recommenders using several

information sources (such as those based on Random Walks and hybrids) obtain higher

coverage than pure social-based recommenders.

Different techniques for combining recommenders based on collaborative and social

information have been explored in the experiments. We first used linear (weighted)

combinations of recommenders, observing mixed results: whereas the user coverage

increased, the performance of the hybrid recommender was conditional to the original

performance of each of the combined recommenders, in such a way that in some cases

the hybrid recommender outperformed both baselines or only the worst one. Secondly,

we tested a novel approach to dynamically select the weight of each recommender on a

user-basis, in such a manner that the social-based recommender is weighted more heavily

on socially important users. Results in this direction were positive, outperforming the best

static hybrid in different situations.

The generality of the observations deserves further study by testing them on other

datasets, and heterogeneous ones in particular, where very different information is

involved. Further analysis is required with respect to the collaborative-social evaluation.

We plan to study to what extent the 50-50 proportion between users with and without

social context is a reasonable representation of common social media systems currently in

use. In that situation, the first evaluation performed in this paper would make sense and

the results obtained would hold. Otherwise, if social media systems present different

proportions, then this fact would encourage even further the use of hybrid recommenders.

Further possibilities regarding hybrid recommendation can be explored, such as the

extension of Markov chain-based recommenders (e.g., by using the techniques described

in [FOUSS & PIROTE, 2007], which improve average computing times) and the analysis

of different recommender combinations.

Apart from the weighted hybridization schema, other forms of hybrid recommenders

(switch, cascade, and meta-level) should be investigated. Regarding the evaluated

personal social recommender [BEN-SHIMON et al., 2007], it is possible to investigate an

alternative family of recommenders based on ratings instead of on graph distance. This

new family would be able to suggest items even when social context is not available,

since we may substitute the graph distance between users for a similarity measure, and,

thus, the similarity could be computed based on ratings.

ACKNOWLEDGMENTS

This work was supported by the Spanish Ministry of Science and Innovation (TIN2008-

06566-C04-02), Universidad Autónoma de Madrid (CCG10-UAM/TIC-5877), and the

Scientific Computing Institute at UAM. We gratefully acknowledge the comments of our

reviewers. Their detailed comments and suggestions helped us to improve this article.

APPENDIX

A. THE ADJACENCY MATRIX FOR RANDOM-WALK METHODS

Let us define a set of features { }, and consider an enumerated finite set

 . Then, for all the elements in we define

→ ()

→ ()

 (21)

being () the power set of the set . For example, when , then this set is

 () { }. Moreover, for each feature we define

 |

→

 ()

→

()
 (22)

where
 is the function that assigns to each pair of elements a value from the

enumerated set related to the feature chosen, as defined in (21). The reader should take

into account that the set |
 is restricted to features applicable to (or relate) any

pair of users and items in the collection, such as tags, and implicit/explicit preference.

Now, we define a user (respectively item) partition depending on whether there is a

relation between a particular user (item) and the rest of items (users).

 {
()} {

()}

 (23)

 {
()} {

()}

 (24)

For instance, the set

 represents the subset of users related to the item with

respect to the feature . Once the subsets

 and

 have been defined, it is

possible to obtain the average value of each feature from two points of view:

averaging over all users (equation 25) or over all items (equation 26).

 ̅
()

|

 |
∑

()

(25)

 ̅
()

|

 |
∑

()

(26)

Consider now the active user . For each pair of users , we define the

following set

 , (27)

which represents the items related to user but not to the active user, with respect to the

feature .

Taking into account all the previous definitions, now we can define the adjacency

matrix . Depending on the nature of each feature, we need to distinguish two different

types of relations: explicit and implicit.

Explicit relations case

These types of relations are those that are directly extracted from the features. In this

case the elements of are defined as

→

 ()

→

()
()

 (28)

For example, when we have that

 () () {

 ()

For this feature, we have that

 .

Implicit relations case

In this case, we use a weighting vector ⃗ { }| | to make use of various features.

In this way, we are able to adjust the weight assigned to each available feature. Therefore,

we define the elements of as

 { }| |

→

 (⃗)

→

(⃗)

(29)

(⃗) {

 ̅
()

∑ (
)

∑

 ̅
()

Implicit relations take different values depending on whether the user is related to that

particular item, where the assigned value is the average feature value for that item.

Otherwise, the value is an average across the different available features, weighted by

vector ⃗.

In summary, the elements of the matrix may be defined by expression (28) or (29),

depending on the input data available. Moreover, the definition of function
 may

involve other input spaces different to user and items, such as users or items only.

Examples of features defined in these spaces are friendship (() if both

users are friends) or similar item (() ()). Figure 7 shows which sub-

matrices are needed, and how we can combine them in order to create the complete

matrix .

Figure 7. Adjacency matrix and their sub-matrices for the user .

B. ANALYSIS OF THE TIE-BREAKING BIAS IN RECOMMENDER RANKINGS

The experimental results presented in this work are based on the evaluation of rankings

generated by several recommenders. There is, however, an important concern when such

an evaluation is performed, since the use of ranking cutoffs may introduce an

uncontrolled parameter, or bias, depending on how the (possible) ties in the ranking –that

is, two items with the same predicted score for some user– are broken. In this section, we

measure how many ranking ties are generated for several recommender algorithms at

different cutoffs. In particular, we analyze the number of items per user with ties at the

different cutoffs used in this work –i.e., 5, 10, and 50– for the recommenders involved in

our analysis. Furthermore, we compare our results with those reported in [CABANAC et

al., 2010], where the authors compared many different TREC datasets with the trec_eval

program, the same program we have used in our experiments. The authors observed that,

in TREC, the tie-breaking strategy followed by this program is unfair. In the following,

we check whether the results found for TREC appear in the recommender evaluation,

and, in that case, if they are comparable with our results.

Table VI. Average ratio of tied items per user, at different cutoffs for the evaluated recommenders.

 Tied items at 5 Tied items at 10 Tied items at 50

Recommender

type
Min Avg Max

Min Avg Max

Min Avg Max

UB 15.11 130.64 280.83 14.33 130.52 280.83 7.83 128.20 281.39

SimPop 4.50 235.31 736.50 4.50 234.58 736.5 0 224.02 736.50

SVD 0 0 0 0 0 0 0 0.01 0.67

PureSocial 2 50.75 172 0 50.61 172 0 46.51 172

FriendsPop 10 350.20 1057 9 349.91 1052 0 343.13 1012

Personal 0 1.80 65 0 2.53 65 0 8.86 122.50

u u1 um

u Friends

…

…

u
 F

ri
en

d
s

mn

…
Selected Movies

m1

S
el

ec
te

d

M
o
vi

es

u

m1 mn

u1

um

AAu ASu

ASu
T SSu

1 1…0

1

1

…

sm1
…

……

smn

sm1

smn

Combined 2.80 62.20 205.10 2 61.99 205.1 0.10 57.81 205.10

Table VI shows a typically unnoticed result about recommendation rankings. We

observe that those methods, which directly depend on the size of some particular set,

generate more ties in the ranking. This is the case of the SimPop recommender (where the

items are ranked according to the number of users who have ranked each item),

FriendsPop (like the previous one, but only considering the user’s friends), and

PureSocial (again, the number of friends of each user is very important). Several ties are

also observed in the user-based recommender, this might be due to the fact that several

neighbors obtain the same similarity value, along with the discrete scale of ratings, which

makes very likely that different items obtains the same score.

On the other hand, recommenders like SVD and Personal generate very few tied

items. This is probably because the formula used for estimating the preference is not

normalized (Personal) or comes from more complicated equations (SVD). It is also

noticeable that the hybrid recommender Combined provides a lower number of tied items

with respect to one of the recommenders being combined, user-based CF.

In summary, the number of tied items per user in recommender systems is larger than

expected and depends on the recommender under consideration. If we compare these

results with those presented in [CABANAC et al., 2010] we find no direct equivalence

between them, since the number of users (queries) and items (documents) is different.

The conclusion, however, is the same for both: the issue of tie breaking affects the final

results of the systems and, furthermore, it may even influence the final user satisfaction

because of the so-called choice overload effect and item set attractiveness [BOLLEN et

al., 2010].

REFERENCES

ADOMAVICIUS, G., AND TUZHILIN, A. 2005. Toward the next generation of recommender systems: a
survey and possible extensions. IEEE Transactions on Knowledge & Data Engineering, 17(6), 734–749.

BAEZA-YATES, R., AND RIBEIRO-NETO, B. 1999. Modern Information Retrieval. Addison Wesley, 1st

edition.

BALTRUNAS, L. AND AMATRIAIN, X. 2009. Towards time-dependant recommendation based on implicit

feedback. In Proceedings of the 3rd ACM conference on Recommender systems (RecSys’09). ACM, New
York, NY, USA, 423–424.

BARMAN, K. AND DABEER, O. 2010. Local popularity based collaborative filters. In Proceedings of the

International Symposium on Information Theory (ISIT ‘10), 1668–1672.

BELLOGÍN, A., CANTADOR, I., CASTELLS, P. 2010. A study of heterogeneity in recommendations for a

social music service. In Proceedings of the 1st International Workshop on Information Heterogeneity and
Fusion in Recommender Systems (HetRec '10). ACM, New York, NY, USA, 1–8.

BEN-SHIMON, D., TSIKINOVSKY, A., ROKACH, L., MEISLES, A., SHANI, G., NAAMANI, L. 2007.

Recommender system from personal social networks. In Proceedings of the 5th Atlantic Web Intelligence

Conference (AWIC 2007), 47–55.

BOLLEN, D., KNIJNENBURG, B.P., WILLEMSEN, M.C., GRAUS, M. 2010. Understanding choice overload

in recommender systems. In Proceedings of the 4th ACM conference on Recommender systems
(RecSys’10). ACM, New York, NY, USA, 63–70.

BRIN, S., AND PAGE, L. 1998. The anatomy of a large-scale hypertextual Web search engine. Computer

Networks and ISDN Systems, 30(1-7), 107–117.

BURKE, R. 2002. Hybrid recommender systems: survey and experiments. User Modeling and User-Adapted

Interaction, 12(4), 331–370.

CABANAC, G., HUBERT, G., BOUGHANEM, M., CHRISMENT, C. 2010 Tie-breaking bias: effect of an
uncontrolled parameter on information retrieval evaluation. In Proceedings of the Conference on

Multilingual and Multimodal Information Access Evaluation (CLEF 2010). Springer, LNCS 6360, 112–

123.

CARTERETTE, B. 2011. System effectiveness, user models, and user utility: a conceptual framework for
investigation. In Proceedings of the 34th international ACM SIGIR conference on Research and

development in information retrieval (SIGIR ‘11). ACM, New York, NY, USA, X–X.

CELMA, O. 2008. Music recommendation and discovery in the long tail. PhD thesis, Universitat Pompeu

Fabra, Barcelona, Spain.

DÍEZ, F., CHAVARRIAGA, J. E., CAMPOS, P. G., AND BELLOGÍN, A. 2010. Movie recommendations
based in explicit and implicit features extracted from the Filmtipset dataset. In Proceedings of the

RecSys’10 Challenge on Context-aware Movie Recommendation (CAMRa’10). ACM, New York, NY,

USA, 45–52.

DIJKSTRA, E.W. 1959. A note on two problems in connexion with graphs. Numerische Mathematik, 1, 269–
271.

FERNÁNDEZ, M, VALLET, D., CASTELLS, P. 2006. Probabilistic Score Normalization for Rank

Aggregation. In Proceedings of the 28th European Conference on Information Retrieval (ECIR ‘06), 553–

556.

FOUSS, F., AND PIROTE, A. 2007. Random-walk computation of similarities between nodes of a graph with
application to collaborative recommendation. IEEE Transactions on Knowledge and Data Engineering,

19(3), 355–369.

FREEMAN, L. C. 1977. A set of measures of centrality based on betweenness. Sociometry, 40(1), 35–41.

HERLOCKER, J. L., KONSTAN, J. A., RIEDL, J. T. 2002. An empirical analysis of design choices in

neighborhood-based collaborative filtering algorithms. Information Retrieval, 5(4), 287–310.

HERLOCKER, J. L., KONSTAN, J. A., TERVEEN, L. G., RIEDL, J. T. 2004. Evaluating collaborative

filtering recommender systems. ACM Transactions on Information Systems, 22(1), 5–53.

JAMALI, M. AND ESTER, M. 2009. Using a trust network to improve top-n recommendation. In Proceedings

of the 3rd ACM conference on Recommender systems (RecSys '09). ACM, New York, NY, USA, 181–188.

JAMALI, M. AND ESTER, M. 2010. A matrix factorization technique with trust propagation for
recommendation in social networks. In Proceedings of the 4th ACM conference on Recommender systems

(RecSys '10). ACM, New York, NY, USA, 135–142.

JANSEN, B. J. AND SPINK, A. 2003. An Analysis of Web Documents Retrieved and Viewed. In Proceedings

of the 4th International Conference on Internet Computing (IC ‘03). CSREA Press, 65–69.

JÄRVELIN, K., AND KEKÄLÄINEN, J. 2002. Cumulated gain-based evaluation of IR techniques. ACM
Transactions on Information Systems, 20(4), 422–446.

KAUTZ, H., SELMAN, B., SHAH, M. 1997. Referral Web: combining social networks and collaborative

filtering. Communications of the ACM, 40(3), 63–65.

KLEINBERG, J.M. 1999. Authoritative sources in a hyperlinked environment. Journal of the ACM, 46(5), 604–

632.

KONSTAS, I., STATHOPOULOS, V., JOSE, J. M. 2009. On Social Networks and Collaborative
Recommendation. In Proceedings of the 32nd international ACM SIGIR conference on Research and

development in information retrieval (SIGIR’09). ACM, New York, NY, USA, 195–202.

KOREN, Y. and BELL, R. 2011. Advances in collaborative filtering. In Recommender Systems Handbook, F.

RICCI, L. ROKACH, B. SHAPIRA, P.B. KANTOR, Eds. Springer US, Boston, MA, 145–186.

LEE, D. H. AND BRUSILOVSKY, P. 2010. Social networks and interest similarity: the case of CiteULike. In
Proceedings of the 21st ACM conference on Hypertext and hypermedia (HT '10). ACM, New York, NY,

USA. 151–156.

LINDEN, G., SMITH, B., YORK, J. 2003. Amazon.com recommendations: item-to-item collaborative filtering.

IEEE Internet Computing, 7(1), 76–80.

LIU, F., AND LEE, H.J. 2010. Use of social network information to enhance collaborative filtering

performance. Expert Systems with Applications, 37(7), 4772–4778.

MA, H., KING, I., LYU, M. R. 2009. Learning to recommend with social trust ensemble. In Proceedings of the
32nd international ACM SIGIR conference on Research and development in information retrieval (SIGIR

'09). ACM, New York, NY, USA, 203–210.

MA, H., YANG, H., LYU, M. R., KING, I. 2008. SoRec: social recommendation using probabilistic matrix

factorization. In Proceedings of the 17th ACM conference on Information and Knowledge Management
(CIKM’08). ACM, New York, NY, 931–940.

O’DONOVAN, J. AND SMYTH, B. 2005. Trust in recommender systems. In Proceedings of the 10th

international conference on Intelligent user interfaces (IUI '05). ACM, New York, NY, USA, 167–174.

SAID, A., BERKOVSKY, S., DE LUCA, E. W. 2010. Putting Things in Context: Challenge on Context-Aware

Movie Recommendation. In Proceedings of the RecSys'10 Challenge on Context-aware Movie
Recommendation (CAMRa'10). ACM, New York, NY, USA, 2–6.

SARWAR, B., KARYPIS, G., KONSTAN, J., RIEDL, J. 2001. Item-based collaborative filtering

recommendation algorithms. In Proceedings of the 10th International Conference on World Wide Web

(WWW 10). ACM, New York, NY, USA, 285–295.

SHANI, G. and GUNAWARDANA, A. 2011. Evaluating recommendation systems. In Recommender Systems
Handbook, F. RICCI, L. ROKACH, B. SHAPIRA, P.B. KANTOR, Eds. Springer US, Boston, MA, 257–

297.

SHEPITSEN, A., GEMMELL, J., MOBASHER, B., BURKE, R. 2008. Personalized recommendation in social

tagging systems using hierarchical clustering. In Proceedings of the 2nd ACM Conference on
Recommender Systems (RecSys '08). ACM, New York, NY, USA, 259–266.

WALTER, F. E., BATTISTON, S., SCHWEITZER, F. 2009. Personalised and dynamic trust in social

networks. In Proceedings of the 3rd ACM conference on Recommender systems (RecSys '09). ACM, New

York, NY, USA, 197–204.

WANG, P., HAWK, W.B., AND TENOPIR, C. 2000. Users’ interaction with World Wide Web resources: an
exploratory study using a holistic approach. Information Processing and Management 36, 229–251.

WATTS, D. J. AND STROGATZ, S. 1998. Collective dynamics of ’small-world' networks. Nature 393 (6684),

440–442.

