
A Model-Driven Approach to Teaching Concurrency 
M A N U E L C A R R O , Universidad Politecnica de Madrid and IMDEA Software Institute 

A N G E L H E R R A N Z and JUL IO MARI NO, Universidad Politecnica de Madrid 

We present an undergraduate course on concurrent programming where formal models are used in different 
stages of the learning process. The main practical difference with other approaches lies in the fact that the 
ability to develop correct concurrent software relies on a systematic transformation of formal models of inter­
process interaction (so called shared resources), rather than on the specific constructs of some programming 
language. Using a resource-centric rather than a language-centric approach has some benefits f or both 
teachers and students. Besides the obvious advantage of being independent of the programming language, 
the models help in the early validation of concurrent software design, provide students and teachers with a 
lingua franca tha t greatly simplifies c ommunication a t t he c lassroom a nd d uring s upervision, a nd h elp in 
the automatic generation of tests for the practical assignments. This method has been in use, with slight 
variations, for some 15 years, surviving changes in the programming language and course length. In this 
article, we describe the components and structure of the current incarnation of the course—which uses 
Java as target language—and some tools used to support our method. We provide a detailed description of 
the different outcomes that the model-driven approach delivers (validation of the initial design, automatic 
generation of tests, and mechanical generation of code) from a teaching perspective. A critical discussion on 
the perceived advantages and risks of our approach follows, including some proposals on how these risks can 
be minimized. We include a statistical analysis to show that our method has a positive impact in the student 
ability to understand concurrency and to generate correct code. 

1. INTRODUCTION 

Teaching concurrent programming a t the undergraduate level is a challenging task. 
Reasonably enough, early courses offer a simplified, n onreactive, i nput-output view 
of computation. Students often face interaction and temporal issues for the first time 
in a concurrency course, and many of them find i t d ifficult to vi sualize concurrent 

The authors were partially supported by grant S2009TIC-1465 PROMETIDOS-CM from the Madrid 

´ regional government. J . Mari ˜no and A. Herranz were additionally supported by Spanish MINECO grant 
TIN2009- 14599-C03-03 DESAFIOS10. M. Carro was also supported by Spanish MINECO grant 
TIN-2008-05624 DOVES. 



execution. This can lead to early frustration and negative atti tudes toward the subject. 
To add to this difficulty, concurrency is seldom taught in the lower-level undergraduate 
curriculum [Feldman and Bachus 1997], which makes some departments reluctant 
toward it. However, it is now clear (as advanced by Yeager [1991]) that concurrent 
programming is of utmost importance. 

Well-known issues regarding the development of concurrent software also appear 
when teaching the subject, for instance, the intrinsic difficulty of testing and debugging 
concurrent code, which makes black-box approaches of limited applicability. While 
it is hard for instructors to assess the correctness of even simple programs (and to 
grade them!), it is even harder for students to do so. Also, there is unequal support of 
concurrency in programming languages. The first language chosen for the introductory 
courses might not be suitable for concurrency and introducing a new one for just one 
subject is usually out of the question. 

These observations led us to develop a teaching method based on formal models, 
which has been in use essentially untouched for 15 years. Its distinguishing feature 
is that the code relevant for process communication and synchronization is obtained 
by systematic transformation of a formal model of interprocess interactions that is 
programming language-independent. In 1997, Ada95 [Taft et al . 2001] was the common 
programming language used in most of our courses and the method used two idiom-
based transformations, one for protected objects and another one for rendez-vous. Java is 
the current choice and three idioms are used: one for synchronized methods, another one 
using our own implementation of locks and conditions, and a third one using the JCSP 
[Welch et al . 2007]1 library. Using language-independent formal abstractions allows us 
to factor out some issues and spend less time explaining language specific details. 

Beyond language independence, model-based development helps in the early vali­
dation of concurrent software design, provides students and teachers with a lingua 
franca tha t greatly simplifies communication at the classroom and during supervision, 
and helps in automatically correcting assignments. Of course, there are some risks in a 
na ı̈v´e application of the model-driven approach, and a number of assessment activities 
have been developed to minimize them. 

We are not aware of any other undergraduate course on concurrent programming 
following a similar approach. Unfortunately, a gap between formal methods and the 
early courses in Computer Science still persists. However, we hope that some factors, 
like the availability of model-checking tools and their impact on the teaching of concur­
rency, regardless of the teaching method (see, for instance, Ben-Ari [2009]), will help 
in correcting this situation. Also, there is a renewed interest in discussing the chal­
lenges of teaching concurrency, exemplified by recent workshops such as the Workshop 
on Teaching Concurrency2 and the Workshop on Curricula for Concurrency and Paral­
lelism [Steele and Saraswat 2009; Saraswat and Bruce 2010]. Many of the contributions 
in these (and other) workshops emphasize points with which our experience agrees: 
the need for tool support [Ben-Ari 2004; Sadowski et al . 2011], the natural connection 
between concurrency and data abstraction courses [Grossman and Anderson 2012], the 
need for safe idioms to avoid error-prone features of programming languages [Carro 
et al. 2004; Grossman and Anderson 2012], and others. Also, a number of concurrency-
related courses have begun to introduce more or less explicitly the model-based tag 
(e.g., the undergraduate concurrency course a t Stony Brook3 and the course described 
in Brabrand [2008]), following a trend in other software construction disciplines. 

1 J C S P is a Java library that provides a concurrency model integrating Hoare’s CSP and Milner’s π-calculus. 
See http://www.cs.kent.ac.uk/projects/ofa/jcsp/. 
2TeaConc2006: http://www.uninova.pt/gres/teaconc2006/. TeaConc2007: http://www.uninova.pt/teaconc2007/. 
3http://www.cs.sunysb.edu/undergrad/cse courses/cse375.html. 

http://www.cs.kent.ac.uk/projects/ofa/jcsp/
http://www.uninova.pt/gres/teaconc2006/
http://www.uninova.pt/teaconc2007/
http://www.cs.sunysb.edu/undergrad/cse


Read Evens 

BBSel 

Fig. 1. Bounded buffer with selection: components. 

Section 2 provides a high-level description of the model-driven methodology we apply, 
emphasizing the differences between an ideal method that would be applied for real 
software development and the actual method for classroom usage. Basic information 
on the course structure is given. Section 3 summarizes the different outcomes obtained 
from the use of formally specified resources, and Section 4 dissects those outcomes to 
analyze the pros and cons of the model-driven approach from a teaching perspective. 
Section 5 is a statistical analysis to show that our method has a positive impact in 
the students’ ability to understand concurrency and to generate correct code. Section 6 
concludes the article. 

2. TEACHING A RESOURCE-CENTRIC MODEL-DRIVEN DEVELOPMENT 

Ideally, enough time should be devoted to teaching all the stages of the software devel­
opment cycle, which in our case is centered around the notion of a concurrent shared 
resource (Section 2.2). It is, of course, not necessary to teach the workflow activities 
in the order in which they happen: It may be pedagogically more fruitful to s tar t with 
problems that appear at the end of the development cycle and show how taking correc­
tive actions at its beginning (such as thorough analysis and careful design) can reduce 
trouble later on. 

Besides this general consideration, constraints regarding time and student back­
ground force us to adapt our teaching strategy, skip over some parts, and transform 
others (namely, the design phase) into a closely related activity. 

2.1. Architectural Components 

The approach we propose is part of a development methodology that was first presented 
in Carro et al . [2004] and that we summarize here. In our proposal, a concurrent system 
is made up of two different classes of components. 

—A set of active components (processes) that react to the external world (e.g., reading 
sensors and acting on physical elements) and interact through calls to operations of 
a concurrent shared resource. 

—A concurrent shared resource, which can be seen as a concurrent abstract data type 
whose operations implement changes to some object s tate (which can, therefore, 
be used to communicate processes) and take care of synchronization by means of 
suspending the caller process. In some sense, they resemble some of the character­
istics of the classical capsules for C++ [Gehani 1993]. Resources act as the unique 
communication and synchronization point between processes. 

These two types of components (portrayed in Figure 1) mark a clear separa­
tion of concerns: Processes (Prods, Evens, and Odds) interact with the world (Read, 



Analysis 

Mechanical 
code 

generation 

Processes 
with external 
operations 

Design 
validation 

De 
ac 

Processes 
with resource 

operations 

Resource 
specification 

sign 
tivities 

Fig. 2 . Sketched workflow for a development approach based on shared resources. 

Write), but they do not synchronize directly with each other; synchronization happens 
through suspension/resumption of calls to the methods of the shared resource (BBSel). 
Processes, therefore, do not suspend/resume voluntarily; in fact, processes have no no­
tion of being or not being suspended; therefore, we can reason with a single process 
as if it were a purely sequential computation. On the other hand, a shared resource 
implementation will check whether conditions for method calls to proceed hold, but 
they have no direct knowledge of what the processes exactly do. 

Processes can have private data and acquire data from the outside, but any commu­
nication among processes happens necessarily through the shared resource. Processes 
commonly take some decisions on external data and the outcome of the interaction with 
the shared resource, therefore featuring some (limited) algorithmic behavior, while 
shared resources often perform limited bookkeeping. 

2.2. A Development Workflow with Shared Resources 

Figure 2 sketches the stages of the workflow we use. After an initial analysis phase, 
which aims a t identifying necessary concurrency, necessary sequentiality, and coarse­
grained interactions between components, processes are identified together with the 
data that they need to communicate. External operations and their call protocols act as 
a basis on top of which an initial skeleton of the processes can be built with the help of 
some common sense and simple rules (e.g., if two external operations have to be called 
always in sequence, it makes sense to call them both from the same process). Process 
skeletons are then enriched with operations on the shared data. These operations are 
necessary to coordinate the processes and to transfer data among them through the 
shared resource. Finally, the shared resource itself is specified by: 

—stating its operations and their types; 
—identifying the local variables (i.e., the state) of the resource; 
—defining the synchronization conditions for the operations in the resource (i.e., when 

the operations can proceed). Unlike what happens in some programming languages, 
these conditions (also called operation guards) can depend on both the internal re­
source state and the values of the parameters of the operations; 

—defining the effect of successfully completed operations on the state of the resource 
and on the output parameters of the operations. 



The code is derived from the processes and the shared resources as follows. 

—Translating the processes into the target language. This is usually an easy task, 
since they are designed as sequential computations with no resorting to peculiarities 
of particular programming languages. 

—Translating the shared resource to the target language. This needs capabilities to 
express conditional synchronization between processes and to ensure the absence of 
race conditions in the access to the data encapsulated by the resource. The translation 
of the synchronization primitives can be made mechanically, as their semantics is 
kept simple by design. This translation was presented in detail in Carro et al . [2004] 
with Ada as the target language. Note that we are not concerned here with the 
translation of data structures and sequential components: In our experience, and 
because they are also described using a specification language, coding patterns can 
be applied in many cases. 

During this process, it may be necessary to revisit previous stages (marked with 
dashed arrows) if inconsistencies are found at any moment of the development, but 
especially when fully validating the design. 

2.3. Shared Resources and Shared Memory 

We want to note that we are not committing to any particular implementation mecha­
nism for the shared resource. Although the word shared may suggest using constructs 
devised for shared memory architectures (e.g., monitors [Hoare 1974] or similar), mes­
sage passing can be used by implementing the shared resource as a separate process 
that communicates with the rest of the processes in the system [Carro et al . 2009]. 

In this case, the semantics of the shared resource and the simplicity of the process 
language make it possible to write wrappers around the code of the resource opera­
tions to hide the use of messages/channels. The resource would then receive messages 
corresponding to calls to operations, act accordingly on private variables implement­
ing the shared resource state, and send messages back with the result of finished 
operations—but in a fashion completely transparent to the client processes. 

2.4. Resource-Centric Design 

In the design stage, shared resources must be understood as passive4 components 
that encapsulate data with well-defined interface and semantics. The most relevant 
properties of the shared resources are as follows. 

—Serializability. For any set of simultaneous invocations of several of its operations, 
there is an equivalent sequential execution of the same operations, which, starting 
from the same initial state, leads to the same final s tate . In other words, any correct 
implementation of a shared resource must guarantee the absence of race conditions. 

—Conditional synchronization. Besides mutual exclusion in the access to the resource, 
a process invoking an operation suspends when its guard evaluates to false. Once 
the guard holds, the call to the operation is allowed to proceed. We do not establish 
when it actually proceeds if several enabled operations compete. 

—Synchronous invocation. A process invoking an operation is blocked until the post­
condition established by the operation is made true. 

4This has strong implications on the architecture: Two resources cannot communicate directly; they need to 
be connected through an intermediate process. 



Fig. 3 . Processes and bounded buffer with selection shared resource. 

2.5. Example: A Bounded Buffer with Selection 

With the help of the example in Figure 1, we will see how encapsulated data and the 
behavior of operations are specified using shared resources. We consider two types 
of processes: producers (Prods), which insert natural numbers read from the external 
world into the buffer, and consumers, which remove elements from it. In turn, there are 
two types of consumers: those that only want odd numbers (Odds) and those that only 
want even numbers (Evens). Producers suspend if the buffer is full and can proceed 
otherwise. Consumers suspend if the buffer is empty or if the first element in the buffer 
does not match the requested parity. The suspension conditions are not explicit in the 
processes: They are instead encoded in the specification of the shared resource (BBSel). 

The formal specification of shared resources (Figure 3, right, in our example) is 
structured in three par ts : the interface declaration (OPERATIONS), the internal state 
definition (DOMAIN), and the specification of the behavior of operations (PRE-POST). 
The language uses first-order logic formulas with a Z-like mathematical toolkit [Spivey 
1992]. To be more precise, the language we use can, in practice, be seen as a specification 
that admits easily a first-order logic semantics (which makes reasoning with first-order 
logic tools possible) but where the style of specifications stays, on purpose, close to that 
of a single-assignment procedural language. The Z mathematical toolkit can be seen 
as calls to libraries implementing a convenient set of data structures, which makes 
it easy to translate the specification into a procedural/OO programming language. On 
the other hand, and as mentioned elsewhere, the shape of the specification makes it 
amenable to be translated into TLA+ with little to moderate effort (Section 3.1). 

The bounded buffer specification of BBSel declares an interface with two operations 
(ACTION): Put and Get. Put has an input ([i]) formal parameter of type N (naturals). 
Get has two formal parameters: an input parameter (N[i]) to indicate which kind of 
data the consumer wants (0 for even, 1 for odd) and an output parameter (N[o]) where 
the data is returned to the consumer. 



The description of the internal state is given by the definition of the domain of BBSel 
(TYPE). The domain defines the main type (a sequence of naturals in this case, N(N)) 
and an invariant, which must be true before any operation is executed and is required 
to hold after it finishes. In our example, the only invariant is the boundedness of the 
buffer, which is modeled by stating that the sequence length (#self) has to stay below 
a limit. The initial state for the resource (an empty sequence in this case) is specified 
with the formula after the clause INITIAL. 

Three first-order logic formulas are used to specify the behavior of the operations: a 
precondition (PRE), a guard or concurrency precondition (CPRE), and a postcondition 
(POST). 

The concurrency precondition (CPRE) of an operation is a logic formula that, using 
the state of the shared resource (represented by the variable self) and the actual 
operation arguments, states if the operation can proceed. The postcondition (POST) of 
an operation is a before-after predicate that relates the state of the resource and the 
actual arguments before (decorated with superscript “in”) and after (decorated with 
superscript “out”) the operation is executed. Comments in natural language can also 
be added to clarify the intended semantics of the operations. Optionally, a sequential 
precondition (PRE) with the standard meaning can be added for each operation. 

In our example, an invocation to Put can proceed if the buffer is not full (#self < 
MAX), and it modifies the resource state to store the received item at the end of 
the sequence (rout = rin ^ {n}, where “_ ^ ” stands for sequence concatenation). An 
invocation to Get can proceed if the buffer is nonempty (#self > 0) and the element 
candidate to be removed has the same parity required by the process (eo = even = > 
r(1) mod 2 = 0). On success, the buffer is modified to remove its first element (recall 
tha t items were inserted at the end of the sequence). 

2.6. Teaching: The Real World 

Two issues are key in shaping the contents and approach of the course: the background 
of the students and the availability of time. On the one hand, it is necessary that 
students feel comfortable with coding simple sequential algorithms, are able to under­
stand how data abstractions work without having an implementation to consult, and 
are mature enough to understand the problems associated with concurrent execution. 
The course is currently taught in the fourth semester (in the second part of sopho­
more year) of a CS degree.5 At this point, students have gone through two semesters 
of introduction to programming, one semester of algorithms and data structures, and 
two semesters of logic. Given the prior knowledge necessary to follow the course, we 
do not think that it is possible to place this course earlier in the curriculum. On the 
other hand, the course is quite limited in time: It was initially devised to be taught in 
four ECTS units (European Credit Transfer System)6 and is currently reduced to three 
ECTS units (i.e., jus t one-tenth of a semester’s total effort). This results in an average 
weekly effort of 5 hours—two 1-hour lectures and 3 hours of individual practice and 
study. Table I sketches the structure of the course. 

The contents for weeks 1–5 are commonplace in any traditional concurrency 
course, although the concepts (simultaneous execution, mutual exclusion and condition 

5All the course contents (in Spanish) are available a t http://babel.upm.es/teaching/concurrencia. English 
translation of selected materials—including a term project assignment with its solution and several multiple-
choice tests—can be found at http://babel.upm.es/teaching/concurrency. 
6ECTS units are defined as follows: 60 ECTS units is the total time (attending lectures + studying + doing 
homework, etc.) available in 1 year for a full-time student. One ECTS unit is roughly 27 hours of student 
work, and four ECTS is approximately one-seventh of a semester load. 

http://babel.upm.es/teaching/concurrencia
http://babel.upm.es/teaching/concurrency


Table I. Structure of the Course 

week contents milestones 
1 Motivation and course intro. 
2 Concurrency in Java: process creation, provoking a race condition. 
3 Mutual exclusion by busy waiting; Lamport’s protocol. 
4 Semaphore-based synchronization I. Simple synchronization schemes. 
5 Semaphores II. Less obvious schemes and limitations to implement 

condition synchronization. 
6 Shared resources: specification I. 
7 Shared resources: specification II. 
8 Review beforefirst test . First test . 
9 Implementing shared resources in Java: synchronized methods. 

10 Shared resources with locks and conditions. 
11 Distributed systems and CSP. 
12 Implementing shared resources with the JCSP library. 
13 Review before shared memory project deadline. Shared memory project due. 
14 Review before second test. Second test. 
15 Review before JCSP project deadline. JCSP project due. 
16 Redesign workshop. 

synchronization) are presented in an order that leads naturally to the introduction of 
shared resources in weeks 6–7. 

Weeks 9–12 are devoted to the implementation of shared resources in Java by means 
of the coding patterns mentioned in Section 1 (synchronized methods, locks and con­
ditions, and the JCSP library). The last two are used to develop the term project. A 
redesign workshop (see later in this section) takes place on the last week of the course. 

The assessment activities include two test papers (on weeks 8 and 14), 10 weekly 
short exercises during the first half of the course intended to keep the students engaged 
with the subject, and a term project (turned in in two parts on weeks 13 and 15). The 
contribution of each of these parts to the final grade is as follows: written tests, 50%; 
term project, 40% (20% each part); short exercises, 10%. 

As a result of the structure of the course and the limitations in time, the way in 
which it is taught had to be adapted to the environment. 

—Students do not design a system from scratch. They star t with an existing design 
provided by the instructors; they are asked to implement it and, later, to redesign it 
to adapt it to a change in the requirements. 

—Students do not validate the design. The instructors ensure that the resource and 
the processes together have “good properties.” 

—Students receive tests to check their implementation. Ideally, by following the code 
generation patterns, working, correct executables can be mechanically derived, but 
of course bugs can appear when this process is manual . 

3. PROFITING FROM A FORMAL SPECIFICATION 

We have identified three main outputs obtained from the classroom usage of formal 
models: validation, code generation, and test generation. 

3.1. Validated Design 

The design of the concurrent system that the students receive should be consistent 
with the requirements. Undesirable effects, such as a deadlock in the system, should 
only be caused by an incorrect implementation. In this section, we present how the 
teacher validates its design and ensures that the specifications are consistent. 

The semantics of shared resources is compatible with mature and well-understood 
verification tools. We usually translate specifications and processes into TLA+ [Lamport 
2002] (a combination of the linear-time temporal logic “The Temporal Logic of Actions” 



Help for both instructor and student 

Formal 
resource 

Translation model 
rules 

Help for instructor 

Help for student 

Fig. 4. Formal specification at the center of the development process. 

[Lamport 1994] and Zermelo-Fra¨nkel set theory), although sometimes we have used 
Uppaal [Behrmann et al. 2004] (a combination of timed automaton and timed compu­
tation tree logic). These allow us to automatically validate the design that the students 
will receive. In general, TLA+ is our preferred tool: In some sense, our shared resource 
specification language can be seen as syntactic sugar for TLA, so the translation is not 
very complicated, and TLC, the TLA+ model checker, is very powerful. 

The design is validated in two different scenarios. 

(1) Validation of the shared resource in isolation. Legal, calls to the shared resource can 
be made at any moment. The resource is translated into TLA+ together with a TLA 
formula, which states that legal calls can be performed at any moment. The TLC 
model checker is then used to check that the invariant (including type information) 
is not violated. If the model checker does not detect any problems in this scenario, 
then, regardless of which processes are used, no issues should appear. This is useful 
for generic resources whose design is independent from the calling processes (e.g., 
the selecting bounded buffer) (Figure 4). On the other hand, a negative result (i.e., if 
problems are detected) in a resource whose design depends highly on the processes 
is not definitive. 

(2) Validation of the system. The logic of the processes is encoded into TLA+ and 
combined with the resource specification to explore only the interleavings that the 
real system should allow. In this case, the translation into TLA+ is more involved 
but still mechanizable. One advantage of this validation scenario is that stronger 
invariants can usually be proved. Of course, a positive outcome means that the 
resource design is reliable in the existing scenario. 

Detailed information about the automatic translation of designs (shared resources and 
processes) into TLA+ can be found in Herranz et al. [2009]. 



Fig. 5. Sample BBSel Monitor.java implementation. 

3.2. Mechanical Code Generation 

The most tangible output of the model-driven approach is a piece of code implementing 
the resource’s behavior. The code is obtained by means of coding patterns that transform 
the resource specification into executable code [Carro et al . 2004], possibly adding 
additional properties such as fairness. 

Previous courses based on Ada 95 used two different coding idioms, one for protected 
objects and the other one for rendez-vous. In the current Java-based course, three 
idioms are presented to students. The first one, based on synchronized methods and 
notifyAll () , is quite straightforward and is presented as a way of quickly sketching 
a prototype implementation of the resource because enforcing liveness properties in 
that code is very complex. The other two idioms (locks and conditions and JCSP) are 
more elaborate, but in return, they give the programmer mechanisms to implement 
different liveness and priority policies. These are the ones used for the term project, 
and they result in quite different designs, as the former produces a monitor-like code 
with cascade signaling, whereas the latter implements the resource using a dedicated 
thread that acts as a server for the rest of the system, which allows for different 
message serving strategies, explicit management of channels, and so on. Due to space 
limitations, a detailed presentation of the translation cannot be given here, but we can 
illustrate the essence of the method with one possible implementation for the class 
BBSel (Figure 5). 

The methods implementing the resource operations follow a common scheme, where 
serializability is ensured by enclosing the code in enter/leave blocks.7 The body usually 
has three clearly separate segments: a condition synchronization part , the code that 
establishes the operation’s POST, and the signaling protocol. The first and third parts 

7Note that , while this may impact performance negatively if operations are large, we are in this course 
interested in concurrency and correctness, rather than in parallelism and performance. 



obey a restriction: At most one await is executed in the former and at most one signal 
is executed in the latter. This allows to assert tha t the CPRE holds right after the 
blocking point, sinceMCL: (was “as long as”) the responsibility for checking it falls on 
the signaler.8 The previously described constraints are very helpful in giving the code 
a structure that is easy to follow and understand. Among the advantages of using this 
coding discipline, we can mention (i) efficiency, as there is no need to recompute CPREs 
right after awaking from an await, which could make a drastic difference in an example 
where traversing data structures can affect contention intolerably; and (ii) reasoning 
about the code, as there is a t most one single point (await) where sequential reasoning is 
not applicable, and resumption ensures the operation’s CPRE and the overall resource 
invariant. 

There are different choices to implement the condition synchronization block. In the 
simplest case, the CPRE does not depend on any input parameter. Here, a condition 
queue per operation is enough. When some CPRE depends on input parameters of 
the operation, different strategies can be followed. When the conditions depend on 
data types with small ranges, such as in the bounded buffer with selection (Figure 5), 
simple schemes based on instantiating the CPRE and using an array of conditions can 
be used. In the general case, arbitrary data structures to map parameters to condition 
variables can be applied. 

The last section of the code deals with signaling protocols. This is one of the trickiest 
parts, where intuition is often misleading. It may seem that there is a natural signaling 
ordering for get operations to signal calls to put operations that suspended and vice 
versa. However, a systematic study of which CPREs can hold after each POSTs reveals 
the need for other signaling possibilities that might have been overlooked. 

The code that is needed to satisfactorily solve some assignments is admittedly com­
plex and could hardly be correctly produced without applying model-driven develop­
ment. However, their final structure, as generated by the code generation guidelines, is 
homogeneous across all operations with similar requirements and easy to understand. 
Therefore, students can use it as a guide for similar operations in other resources. 

3.3. Automatic Generation of Tests 

Testing is established as an industry-standard way to perform software quality as­
surance. Its relevance in education may be even higher, as it can be used in several 
directions. Using formal specifications to generate tests has been proposed elsewhere 
[Fernandez et al . 1997],9 and we want to highlight the interest of this technique in the 
realm of education and teaching based on formal specifications. 

The tester we generate replays a series of traces, and every trace represents one 
possible legal interleaving of the processes in the system. Every trace is executed 
sequentially by a single thread, which keeps track of the state of the processes it simu­
lates, including local variables. The actual behavior of the operations, as implemented 
by the resource (which, in the usual case, has been coded by a student), is compared 
with the expected behavior according to the resource definition. 

In particular, we check: 

—whether a call to a resource operation that should proceed (i.e., which does not 
suspend) does so effectively and that the return value(s) are the right one(s); 

—whether a call that should suspend does so effectively; 

8Our students use our own implementation of locks & conditions with priority semantics.[Herranz-Nieva 
and Marin˜o 2011] 
9Note that because we are dealing with reactive systems, we are not interested in generating test data (as 
in Offutt et al. [2003]). 



—whether a previously suspended call tha t should resume after the completion of 
another call (which changes the resource state) actually resumes. 

Traces (and, from them, the complete tester) are generated automatically by animat­
ing a representation of the processes and the resource. In our case, this representation 
was written in Prolog and executed by a generic driver (also written in Prolog), which 
explores by means of backtracking the possible states of the system up to a given depth, 
generates traces, and translates them into executable testers. The driver tries to gen­
erate interesting scenarios by exploiting a limited form of partial-order reduction and 
by not generating traces that have nondeterminism in the resumption. 

A typical tester is some 80,000 lines long and executes between 500 and 1,000 dif­
ferent traces. When traces are executed, the tester keeps track of the performed calls 
and the input arguments. This makes it possible to write out a complete trace of the 
calls when a misbehavior is detected. Students can use this trace to find out what was 
wrong with their implementations. 

4. DISCUSSION: PROS AND CONS OF A FORMAL APPROACH 

As can be expected, the use of a formal approach to develop concurrent systems brings 
positive and negative trai ts when compared with other teaching styles, which, to our 
experience and knowledge, tend to focus on describing the concurrency capabilities 
of some language and show how solutions for some selected problems can be coded. 
While, of course, we do show solutions for classical problems, our aim gears more 
toward empowering the students with generic design tools. On the other hand, we do 
not intend to teach foundations of concurrency, and thus we take a pragmatic approach 
and rely on the intuitive understanding of what concurrent programming languages 
can do and how they behave. It is with this setting in mind that we try to candidly 
evaluate the advantages and disadvantages of our approach. 

4.1. Formal Specifications 

Using a formal specification gives the design an unambiguous semantics that replaces 
lengthy explanations to describe the behavior of the system and allows us to apply what 
basically is the same methodology while targeting different programming languages. 

The most apparent disadvantage of our method lies on the difficulty for unskilled 
students to write and understand Z-based formal specifications.10 To overcome this, 
a behavioral interface specification formalism [Hatcliff et al . 2012] could be used. Be­
havioral interface specification languages, such as the Java Modeling Language (JML) 
[Leavens et al. 1999], enable programmers to express invariants and guarantee/ensure 
annotations at code level, a less alien formalism for students. JML, for instance, could 
be easily extended to support annotations to specify that class instances are shared 
resources and that methods have CPREs. 

A subtler problem lies in the combination of a formal approach and a mechanical 
derivation of code and tests. This causes some students not to perceive the dynamic 
nature of concurrent systems and the complexity of the interactions in them. Conse­
quently, they are less likely to understand why the different synchronization patterns 
are implemented the way they are. This is clearly a weak point in our current course. 

4.2. Validated Design 

Because the design is the student’s starting point, it is reasonable to expect that it is 
bug-free; otherwise, the work to be done by the student could be insurmountable. A 

1 0Our students do not have special problems to understand specifications, but we acknowledge that our 
school may be an exception to this norm, as (first-order) logic has always been part of the freshman year. 



correct implementation may face deadlock because the resource specification is wrong, 
and a student unaware of this may try to redo her code once and again to no avail. 
While in some cases it is evident that the resource is right, in other cases it is not so 
clear, and ensuring consistency and some basic properties (e.g., absence of deadlock) is 
of paramount importance. Our approach increases the confidence in the consistency of 
the designs, makes it also possible to attack problems of complexity higher than the 
ubiquitous bounded buffer, and avoids blaming the misbehavior of a student imple­
mentation on an incorrect initial design. 

A drawback is that the translation to TLA+ and the checking of (finite) correctness 
is, as of now, too complex, not completely automated, and, overall, out of reach for the 
average undergrad student. 

4.3. Mechanical Code Generation 

Identifying and applying code patterns reduces the amount of mistakes made by stu­
dents, and when bugs appear, these are restricted to specific code sections. 

As a drawback, we leave less room for “programming as an art.” We think that this 
is a pity; however, we also feel that the artistic part of programming should only be 
attacked when the “is the design correct?” box has been ticked. Still, there are two tasks 
that require the students to show their programming skills. First, in the translation 
of the sequential part of the specification into code, students have to interpret the 
specification and produce that code. Second, choosing the appropriate code generation 
pattern that covers a given situation needs understanding when these patterns are 
applicable. 

4.4. Automatic Generation of Tests 

Tests are designed to give detailed feedback of errors found and the trace of the calls 
that lead to these errors. For students, errors are revealed as a long and apparently 
uninformative list of calls, but following this series of calls forces students to under­
stand how process interleavings can lead to unexpected results and to gain insight into 
how concurrent processes do behave. 

An obvious negative aspect is the intrinsic incompleteness of the checks performed 
by the testers. This fact leads to a pair of effects. It is often not easy to make students 
fully aware of this lack of completeness, and implementations that pass the test (which 
can become a sort of staple argument) can be wrong. A more pernicious effect is that 
the ability students should have to exercise critical thinking on their own work and 
come up with test cases seems to end up impoverished. Nevertheless, this is a concern 
shared with any programming course. 

5. ASSESSING THE ADVANTAGES OF THE METHOD 

After walking through the positive and negative outcomes of our approach at a concep­
tual level, we will assess now how the use of the proposed method impacts the student’s 
ability from two different perspectives: (i) ability to generate code that meets some 
specifications and (ii) how learning and applying the method impacts understanding 
concurrency. 

The cohort we will use is made up by the students of the spring semester of 2011, 
which provided 63 data points. Although this is not a large population compared to all 
the students of concurrent programming, it contains all the students who were taught 
by the same instructors and had to complete the same tests, homework assignments, 
and term projects. Therefore, we have made the assumption that it is statistically 
significant because no data points in our population are outside the sample we have 
used. Given the high homogeneity of the data source, we think that its quality is good 
enough to draw reliable conclusions from it. 



Table II. Quality of Code versus Use of Methodology 

Method 
No Method 

Accum 

Bad 
0.13 / 8 

0.27 / 17 
0.40 / 25 

Good 
0.24 / 15 
0.37 / 23 
0.60 / 38 

Accum 
0.37 / 23 
0.63 / 4 0 
1.00 / 63 

Table III. Fraction of Students Having a 
Given Quality of Code in Each Use of 

Methodology Class 

Method 
No Method 

Bad 
0.35 
0.43 

Good 
0.65 
0.57 

Accum 
1.00 
1.00 

5.1. Crafting Code 

Our goal here is to find out whether the use of the methodology actually improves the 
quality of the code written by the students. We determined the code quality by sub­
mitting the code to an automatic tester, which executed the resource implementation 
in a series of increasingly complex scenarios that were automatically generated from 
the specification. The behavior of the resource, including process wake-up/resumption 
(Section 3.3), was compared with the behavior expected from the specification dictates. 

We divided the students’ homework into two classes (Bad or Good) depending on 
the number and complexity of tests they passed. Independently, they were classified 
depending on whether they have followed the methodology (Method or No Method). 

Table II shows the contingency table for this analysis. Every cell contains the relative 
frequency of the elements represented by that cell and the total number of elements in 
that cell. Columns Bad and Good contain the data for the cases where the implementa­
tion was determined to perform correctly or not, independently of whether our method 
was followed. Rows Method and No Method, respectively, are related to whether the 
student has followed the course methodology. 

The first conclusion that can be drawn is that (unfortunately) most students chose 
not to follow the methodology when doing the homework (Column Accum). This may 
come as a surprise, but in fact we did not require them to do so: A student who is able 
to write good code without following the methodology can pass the homework tests.1 1 

The relationship between “writing good code” and “following the methodology” cannot 
be directly deduced from that table, as the frequencies refer to students as a whole and 
are, therefore, biased by the number of students who chose to use or not to use the 
method. What we want to answer is “What is the influence of following or not following 
the method on generating good code?” 

This is answered in Table III, where we have normalized rows Method and No 
Method so that the frequencies add up to one in each of them. From there, we can 
deduce that , given a student who followed the methodology, the probability that it 
had a good implementation (65% versus 35%) is higher than that of a student who 
did not follow the methodology (57% versus 43%)—and, of course, likewise for bad 
implementations. 

However, a possibility is that good students (who should tend to write good programs) 
may naturally choose to apply the methodology; therefore, the superior performance 
of students applying the methodology is because they are intrinsically good. There­
fore, we need to determine if the students who apply the methodology are predomi­
nantly good and if those who do not apply the methodology are, in general, performing 
under par. 

To answer this question, Table IV displays the frequencies of students applying or not 
applying the methodology versus how good a student is. The measure of being a good 
student has been obtained by using grades from another separate but related course 
on Data Structures and Algorithms, which is delivered in the immediately previous 
semester. Note that using the grades from the Concurrent Programming course would 

1 1Note that had we not accepted that , we could never have had points to separate students in the Method/No 
Method classes. 



Table IV. Use of Methodology versus Student Quality 

Method 
No Method 

Accum 

Lower 25% 
0.13/8 
0.11/7 

0.24/15 

Mid 50% 
0.10/6 

0.41/26 
0.51/32 

Upper 25% 
0.14/9 
0.11/7 

0.25/16 

Accum 
0.37/23 
0.63/40 
1.00/63 

Table V. Use of Methodology versus Table VI. Use of Methodology versus 
Student Quality, Row Normalized Student Quality, Column Normalized 

Method 
No Method 

Lower 
25% 
0.35 
0.17 

Mid 
50% 
0.26 
0.65 

Upper 
25% 
0.39 
0.17 

Method 
No Method 

Lower 
25% 
0.54 
0.46 

Mid 
50% 
0.19 
0.81 

Upper 
25% 
0.56 
0.44 

Table VII. Code Correctness Table VIII. Code Correctness Table IX. Code Correctness 
Against Method Usage for Against Method Usage for Against Method Usage for 

Students in the Upper Range Students in the Mid Range Students in the Lower Range 

Method 
No Method 

Bad 
0.22 
0.71 

Good 
0.78 
0.29 

Method 
No Method 

Bad 
0.63 
0.43 

Good 
0.38 
0.57 

Method 
No Method 

Bad 
0.17 
0.35 

Good 
0.83 
0.65 

give a biased view of what a good student is (i.e., we need an external oracle to tell 
us whether a student is good or bad). We have divided the students in three separate 
blocks: two containing the 25% of the students with the lower and upper grades (15 
and 16 students, respectively) and a third containing the 50% of the students between 
these two extremes (32 students). 

Let us study rows Method and No Method separately. If the methodology is applied in 
its major part by good students, we would expect the Cell (Method, Upper) to have the 
largest value of the row. Indeed, it is, but the difference with respect to the other cells 
in the same Method row is very small (see also Table V for a row-normalized table). 
Therefore, we can say with high confidence that the use of the methodology seems to be 
quite evenly spread across the range of the students, regardless of their performance. 
In particular, good and bad students do not show opposite tendencies. 

If we now turn our attention into the No Method row, we could, again, expect that 
most bad students do not apply the methodology. Perhaps surprisingly, among those 
students who do not apply the methodology, bad students are the smallest fraction, and 
this fraction is, again, comparable to that of good students. The distribution in rows 
Method and No Method, therefore, confirms that good and bad students do not show 
any particular trend in their use of the methodology. Similar conclusions can be drawn 
from Table VI, which normalizes Table IV by columns: Students in the lower and upper 
part are roughly evenly divided in their use or not of the methodology, with a majority 
of them opting to use it . 

Turning again to Table V, the distribution of cases in rows Method and No Method 
is completely opposite: There is a valley in the mid range in one case and a peak 
in the other case. Given this discrepancy, it seems relevant to study how using the 
methodology impacts the code of a student in each of these populations. 

Tables VII to IX are row-normalized contingency tables of code correctness against 
use of the methodology for the students in each of the ranges. Students in the upper 
range show a clear correlation between good code and use of the method. Students in 
the mid range have a less clear bias, and students in the lower range seem to be the 
odd ones: Trying to apply the methodology, if anything, makes their code less likely to 
be correct. Although we currently do not have a good explanation, we conjecture that 
students in the low range have difficulties when deciding which strategy to apply and 
simply strive to have a working implementation. 



6 

4 

2 

0 

0 2 4 6 8 10 

Average = 6.48 

Fig. 6. Test grades for students who followed the methodology. 

5.2. Understanding Concurrency 

We have focused on the use of shared resources and the term project as drivers of the 
course. The term project is, in general, an exercise of synthesis, and capabilities related 
with analysis are mostly absent, with the exception of tasks related to the redesign 
of process schemes or shared resources. Therefore, additional assessment has to be 
provided to fill in the gaps not covered by the term project. 

We implement these additional checks by using short weekly exercises and multiple-
choice tests. Tests are designed to satisfy several quality indicators [Piontek 2008]. We 
aim at covering knowledge gaps such as the following. 

—The term project often requires an uneven use of the different techniques for code 
generation. Some may be more demanding in terms of the translation of the syn­
chronization preconditions, whereas others regarding the data structures needed to 
store pending operations. 

—The lack of balance between synthesis and analysis. 
—The need to prove that the rationale behind the model transformation is well un­

derstood so that the student can adapt it to a different situation (e.g., a different 
programming language). 

—Very often, questions in our tests originate from mistakes revealed while doing su­
pervision work of the students’ homework. Misunderstandings are used to reinforce 
the weak parts of the course and to help future students. 

We have measured whether applying the method has any effect on the understanding 
of the core concepts of concurrency. We have separated the grades obtained in the 
theoretical test by the students who followed/did not follow the method. The results 
are shown in Figures 6 and 7. Some conclusions can be drawn easily. 

—The minimum grade is higher among the students who followed the method than 
among the group who not, which that is in line with our assumption that the method­
ology tends to avoid mistakes. 

—The general shape of the distribution of those who followed the method leans more 
toward higher grades. Note that the graphics have a different population (as shown 
by the numbers in the vertical axis), but they are scaled to the same height, so the 
physical appearance gives a representation of the relative frequency of every case 



0 2 4 6 8 10 

Average = 6.15 

Fig. 7. Test grades for students who did not follow the methodology. 

in its class. For example, the maximum grade was obtained much more often among 
the students who followed the method. 

—The average grade is slightly higher among the students who followed the method. 

These points lead us to assume that method followers, indeed, performed better on 
the tests a s well. 

6. CONCLUSIONS 

In this article, we presented an undergraduate course on concurrency that makes 
extensive use of formal models. We offered details on the course structure, content, and 
methodology, as well as an analysis of advantages and risks of its adoption. 

A summary of the main features of this article follows. 

—Formal models and semiformal design. The students’ starting point is a semiformal 
specification of the concurrent system they have to implement. 

—Validated design. It is reasonable to expect that the design is bug-free. To ensure 
that it is, we translate the design to the language of an automatic verification tool. 

—Mechanical code generation. Code patterns and idioms are taught to mechanically 
implement correct concurrent programs. 

—Automatic generation of tests and self-assessment. Because coding errors can happen, 
we generate tests from specifications and make them available to allow the students 
to assess their implementation. 

Our long-lasting impression, now backed up by statistical analysis, is tha t an ap­
proach to programming that s tar ts with specifications and tries to deduce programs 
causes students to take longer to program fluently, but they tend to think before pro­
gramming and, consequently, make fewer mistakes. 

Perhaps, one of the merits of our proposal is its ordinariness: The fact that it 
has evolved swiftly over the years without pretending to be experimental, surviv­
ing changes in programming language, course structure, and student populations. We 
expect this work to be useful to instructors in at least two different ways. First, it 
can help those teachers already familiar with the model-driven approach to software 
construction and willing to incorporate it in the undergraduate curriculum to do it 
effectively and avoid some of its pitfalls. Second, it can present the model-driven ap­
proach as a feasible option to teachers concerned about some of the problems of learning 

10 

5 

0 



concurrency in the presence of programming language issues, a large number of stu­
dents, or other challenges. 

ACKNOWLEDGMENT 

The authors wish to thank the guest editors and the anonymous referees for their useful comments on earlier 
versions of this article. 

REFERENCES 

BEHRMANN, G . , DAVID, A . , AND LARSEN, K . G . 2004. A tutorial on Uppaal. In International School on For­
mal Methods for the Design of Computer, Communication, and Software Systems (Revised Lectures) 
(SFM-RT ’04). Lecture Notes in Computer Science, vol. 3185, Springer, 200–237. 

BEN-ARI, M . 2004. A suite of tools for teaching concurrency. SIGCSE Bull. 36, 3 , 251–251. 

BEN-ARI, M . 2009. Teaching concurrency and model checking. In Proceedings of the 16th International SPIN 
Workshop on Model Checking of Software. 6–11. 

BRABRAND, C . 2008. Constructive alignment for teaching model-based design for concurrency. Trans. Petri 
Nets Other Models Concurrency I, Springer-Verlag, 1–18. 

CARRO, M . , HERRANZ, A . , AND MARIN˜O, J . 2009. Concurrent programming. http://ocw.upm.es/lenguajes-y-
sistemas-informaticos/programacion-concurrente. In Spanish. 

CARRO, M . , MARIN˜O, J . , A´ NGEL HERRANZ, AND MORENO-NAVARRO, J . J . 2004. Teaching how to derive correct 
concurrent programs (from state-based specifications and code patterns). In Proceedings of the Teaching 
Formal Methods, Co/LogNET/FME Symposium on (TFM ’04). Lecture Notes in Computer Science, 
vol. 3294, Springer, 85–106. 

FELDMAN, M . B . AND BACHUS, B . D . 1997. Concurrent programming can be introduced into the lower-level un­
dergraduate curriculum. In Proceedings of the 2nd Conference on Integrating Technology into Computer 
Science Education. A C M , 77–79. 

FERNANDEZ, J . - C . , JARD, C . , JE´RON, T. , AND VIHO, C . 1997. An experiment in automatic generation of test suites 
for protocols with verification technology. Sci. Comput. Program. 29, 123–146. 

GEHANI, N . H . 1993. Capsules: A shared memory access mechanism for concurrent C/C++. IEEE Trans. 
Parallel Distrib. Syst. 4, 7, 795–811. 

GROSSMAN, D . AND ANDERSON, R . E . 2012. Introducing parallelism and concurrency in the data struc­
tures course. In Proceedings of the 43rd ACM Technical Symposium on Computer Science Education 
(SIGCSE ’12). A C M , New York, 505–510. 

HATCLIFF, J . , LEAVENS, G . T., LEINO, K . R . M . , MU¨LLER, P . , AND PARKINSON, M . 2012. Behavioral interface specifi­
cation languages. ACM Comput. Surv. 44, 3 , 16:1–16:58. 

HERRANZ, A . , MARIN˜O, J . , CARRO, M . , AND MORENO-NAVARRO, J . J . 2009. Modeling concurrent systems with shared 
resources. In Proceedings of the 14th International Workshop on Formal Methods for Industrial Critical 
Systems (FMICS ’09). Lecture Notes in Computer Science, vol. 5825, Springer, 102–116. 

HERRANZ-NIEVA, A´ . AND MARIN˜O, J . 2011. A verified implementation of priority monitors in Java. In Proceedings 
of the 2nd International Conference on Formal Verification of Object-Oriented Software (FoVeOOS ’11). 
Lecture Notes in Computer Science, vol. 7421, Springer, 160–177. 

HOARE, C . A . R . 1974. Monitors, an operating system structuring concept. Commun. ACM 17, 10, 549–557. 

LAMPORT, L . 1994. The temporal logic of actions. ACM Trans. Program. Lang. Syst. 16, 3 , 872–923. 

LAMPORT, L . 2002. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. 
Pearson Education, Inc. 

LEAVENS, G . T., BAKER, A . L . , AND RUBY, C . 1999. J M L : A Notation for Detailed Design. Behavioral Specifications 
of Businesses and Systems, 175–188. 

OFFUTT, A . J . , LIU, S . , ABDURAZIK, A . , AND AMMANN, P . 2003. Generating test data from state-based specifications. 
Softw. Test., Verif. Reliab. 13, 1, 25–53. 

PIONTEK, M . E . 2008. Best Practices for Designing and Grading Exams. Tech. rep. 24, Center for Research on 
Learning and Teaching, University of Michigan. http://www.crlt.umich.edu/publinks/CRLT no24.pdf. 

SADOWSKI, C . , BALL, T., BISHOP, J . , BURCKHARDT, S . , GOPALAKRISHNAN, G . , MAYO, J . , MUSUVATHI, M . , QADEER, S . , 
AND TOUB, S . 2011. Practical parallel and concurrent programming. In Proceedings of the 42nd ACM 
Technical Symposium on Computer Science Education (SIGCSE ’11). A C M , New York, 189–194. 

SARASWAT, V. A . AND BRUCE, K . 2010. Curricula in concurrency and parallelism. In Proceedings of the ACM 
International Conference Companion on Object Oriented Programming Systems Languages and Appli­
cations Companion (SPLASH ’10). A C M , New York, 281–282. 

http://ocw.upm.es/lenguajes-ysistemas-informaticos/programacion-concurrente
http://ocw.upm.es/lenguajes-ysistemas-informaticos/programacion-concurrente
http://www.crlt.umich.edu/publinks/CRLT


SPIVEY, J . M . 1992. The Z Notation: A Reference Manual. Prentice Hall, Hertfordshire, U K . 
STEELE, JR . , G . L . AND SARASWAT, V. A . 2009. Curricula for concurrency and parallelism. In Proceedings of the 

24th ACM SIGPLAN Conference Companion on Object Oriented Programming Systems Languages and 
Applications (OOPSLA ’09). A C M , New York, 703–704. 

TAFT, T., DUFF, R . , BRUKARDT, R . , AND E.PLOEDEREDER, Eds. 2001. Consolidated Ada Reference Manual. Language 

and Standard Libraries International Standard ISO/IEC 8652/1995(E) with Technical Corrigendum 
1. Springer-Verlag. 

WELCH, P . H . , BROWN, N . , MOORES, J . , CHALMERS, K . , AND SPUTH, B . H . C . 2007. Integrating and extending J C S P . 

In Proceedings of the Communicating Process Architectures Conference (CPA ’07). Concurrent Systems 
Engineering Series, vol. 65, I O S Press, 349–370. 

YEAGER, D . P . 1991. Teaching concurrency in the programming languages course. In Proceedings of the 22nd 
SIGCSE Technical Symposium on Computer Science Education. A C M , New York, 155–161. 


