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ABSTRACT

We introduce the notion of forgery-resilience for digital signature
schemes, a new paradigm for digital signature schemes exhibiting
desirable legislative properties. It evolves around the idea that, for
any message, there can only be a unique valid signature, and ex-
ponentially many acceptable signatures, all but one of them being
spurious.

This primitive enables a judge to verify whether an alleged forged
signature is indeed a forgery. In particular, the scheme considers an
adversary who has access to a signing oracle and an oracle that
solves a “hard” problem, and who tries to produce a signature that
appears to be acceptable from a verifier’s point of view. However,
a judge can tell apart such a spurious signature from a signature
that is produced by an honest signer. This property is referred
to as validatibility. Moreover, the scheme provides undeniability
against malicious signers who try to fabricate spurious signatures
and deny them later by showing that they are not valid. Last but not
least, trustability refers to the inability of a malicious judge trying
to forge a valid signature.

This notion for signature schemes improves upon the notion of
fail-stop signatures in different ways. For example, it is possible
to sign more than one messages with forgery-resilient signatures
and once a forgery is found, the credibility of a previously signed
signature is not under question.

A concrete instance of a forgery-resilient signature scheme is
constructed based on the hardness of extracting roots of higher
residues, which we show to be equivalent to the factoring assump-
tion. In particular, using collision-free accumulators, we present
a tight reduction from malicious signers to adversaries against the
factoring problem. Meanwhile, a secure pseudorandom function
ensures that no polynomially-bounded cheating verifier, who can
still solve hard problems, is able to forge valid signatures. Security
against malicious judges is based on the RSA assumption.
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1. INTRODUCTION

Digital signature schemes are designed to be the digital equiv-
alent of handwritten signatures, i.e., to authenticate a message or
data by binding it with an attachment, called the signature. A sig-
nature is thus a proof that the message has been produced by the
signer. This concept appeared as early as the invention of public-
key cryptography, by Diffie and Hellman [10]. Later, Goldwasser,
Micali, and Rivest [13] formally defined a cryptographic digital sig-
nature scheme is.

Nowadays, digital signatures have become one of the most im-
portant primitives in cryptography and are being deployed in many
security protocols. Their significant became even more evident as
the volume of online transactions and electronic documents seem
to be getting larger than ever. While they were developing, law-
makers have expressed underlying concerns about the legal conse-
quences of these signatures. One of the fundamental legal issues
raised is that in case of a successful forgery, how can an innocent
signer prove that he or she was not involved in producing the forged
signature.

For many cryptographers, this was not a concern because the
security of a signature scheme is based on some intractability as-
sumption stating that solving a particular computational problem
is hard, for instance. Consequently, it is infeasible to carry out a
“successful forgery” by means of cryptanalytic techniques under
that particular intractability assumption. This is the case for classi-
cal digital signatures where the security is guaranteed by the hard-
ness of factoring [3, 7], discrete logarithm [12, 20], or lattice-based
problems. Note that although non-repudiation is offered by classi-
cal digital signature schemes, it only deals with the case where a
possibly malicious signer has actually signed a signature, but later
on refutes it and claims that he or she never produced that signa-
ture. Indeed, it does not stop a successful forgery carried out by an
adversary.

From a legislative point of view, forgeries do exist, although they
are very hard to produce! Hence, dealing with the consequences of
possible, but barely occurring, forgeries remains a big concern for
legislative authorities and has fostered the felt need for accommo-
dating more powerful adversaries, who can solve a hard problem,
such as factoring. Moreover, our widely deployed intractability
assumptions are mostly considered based on our current compu-
tational capabilities. Whereas lawmakers would ideally want to
build their legislative infrastructure more robustly that would last
for a much longer period of time and not based on the computa-
tional power of computers, something that appears to be changing
every decade.

In the case of a successful forgery caused by solving an instance
of a hard problem, one could naively say that all previous signa-
tures are still valid but we should stop from signing from now on.



Unfortunately, this approach will not work unless there is a time-
stamp attached to the signatures. Otherwise, a signer with an RSA
public key published will have no means of disavowing the future
forged signatures and will be held responsible for the contents of
the messages as the signatures do not contain any information about
the date of creation. Another too easy way out of the problem is to
discredit all the signatures produced, in the past or future, under
the intractability assumption of the solved “hard” problem! In this
senario, dishonest signers will be given the opportunity to deny the
authenticity of messages they have signed, freeing themselves from
the potential responsibility their content induces.

Waidner and Pfitzman took a better approach and proposed the
notion of fail-stop signatures [21, 22, 32]. A fail-stop signature
protects the signers from the possibility that an adversary may be
able to forge their signature by means of cryptanalytic techniques.
The motivation behind the naming is that a signer is able to de-
tect a forgery and prove it has happened and, as a result, is able to
‘stop’ the scheme from ‘failing’, that is, being vulnerable to forg-
eries. However, fail-stop signatures inherit some limitations that
one would ideally want to alleviate. For instance, with a pair of
private and public key, a signer can only sign one message and not
more. Furthermore, once a forgery is found, the credibility of pre-
vious signatures goes under question.

We propose the notion of forgery-resilient signature schemes
which enable a judge to verify whether an alleged forged signa-
ture is indeed a forgery or a valid signature. We then instantiate the
first forgery-resilient signature scheme.

1.1 Fail-stop signatures and their limitations

To the best our knowledge, fail-stop signatures, introduced by
Waidner and Pfitzman [32] and followed by other researchers [2, 9,
26, 27, 29, 30, 31], account for the only attempt to address the legal
issue of digital signature schemes when considering the possibility
of forgeries resulting from cryptanalysis. They can be considered
as variants of the one-time signature scheme [15] where, given a
key, only one message can be signed, although some compression
techniques allow us to sign more messages with one pair of keys [2,
21]. In case of a forgery, the adversary has found a solution to a
supposedly hard problem. Given this forgery, the legitimate signer
can combine his or her signature with the forged signature and pro-
duce a solution to the same instance of the hard problem. Hence,
the scheme allows a legitimate, polynomially bounded, signer to
prove that a forgery has taken place. We note that security in fail-
stop signature schemes is information-theoretic, i.e., forgers are as-
sumed to be computationally unbounded.

Fail-stop signatures are instantiated using the notion of bundling
homomorphism: a one-way function with the particularity that for
any value from its range, there are exponentially many and equally
likely elements from its domain that map to this value. To guar-
antee that the adversary does not output the signer’s signature, the
set of possible signatures computable by the signer should be small
compared to the set of all possible signatures computed by the ad-
versary. On the other hand, a dishonest signer should not be able
to produce signatures which can later be proved to be forgeries.
Note that unconditional security against both the signer and the
verifier cannot be achieved for the same reason that one cannot
design a commitment scheme that is both statistically hiding and
statistically binding without requiring further interaction between
parties. Therefore, the security of the verifiers in fail-stop signature
schemes against a dishonest signer can only be based on a compu-
tational assumption. Concretely, it assumes that finding collisions
on the underlying bundling homomorphism leads to the solution of
a hard computational problem.

As was eluded to earlier, fail-stop signatures suffer from a num-
ber of limitations. The first limitation concerns the credibility of
valid signatures. Although each signer is able to detect and prove
forgeries, the credibility of all previous signatures comes under
question once a forgery has taken place. Moreover, you can no
longer sign a message once there is a forgery, even if you have
never used your key to sign a message. That is, the system “col-
lapses” once a forgery is realized. Furthermore, the signer has to
generate one pair of private key and public key for each message
she wants to sign. We refer the interested reader to a complete ref-
erence on fail-stop signatures [21, 22].

1.2 Our Contribution

We propose forgery-resilient signature schemes that live up to
their name and are resilient against forgeries, that is, not only forg-
eries are detected and stopped (as in fail-stop signature schemes),
but also one can continue using the signature scheme, so the credi-
bility of previous signatures is not questioned. Moreover, we do not
limit the number of signatures to one per key. Furthermore, once
a forgery has occurred, all valid signatures produced by an honest
signer are still recognized as such, even if they were produced after
the forgery.

Then, we provide a concrete instance of a forgery-resilient signa-
ture scheme whose security is based on the assumption that factor-
ing an RSA modulus is hard when considering strong primes. Our
instantiation evolves around the idea that, for a message, there can
only be a unique valid signature, whereas there are exponentially
many acceptable signatures, all but one of them being spurious sig-
natures.

Forgery-resilient signature schemes consider an adversary who
has access to two oracles, a signing oracle and an oracle that solves
a “hard” problem, and who tries to produce a signature that appears
to be acceptable from a verifier’s point of view. However, a judge
can tell apart such a spurious signature from a signature that is pro-
duced by an honest signer. We refer to this ability of the judge as
validatibility of a signature scheme. Moreover, the scheme consid-
ers malicious signers who try to fabricate spurious signatures and
refute them later by showing that they are not valid and are results
of a forgery. In a forgery-resilient signature scheme, a polynomially
bounded signer cannot do so, even with the knowledge of spurious
signatures produced by a third-party, and we refer to this property
as undeniability against a malicious signer.

We shift the ability to prove forgeries from the signer to a judge,
as in the end the matter has to be settled by a judge. Note that
this change of responsibility is the core reason why we can keep
on signing even after a forgery. Moreover, previous honestly com-
puted signatures are not questioned even after a forgery is discov-
ered. Hence, considering a judge can be thought of as the price to
pay to overcome the limitations of fail-stop signatures. In order to
be able to carry out his task, the judge is given a validation key for
each signer. Although judges, as legal authorities, can be assumed
to be honest, we still consider the unlikely scenario that a judge
tries to make use of the verification key to forge a valid signature.
Trustability refers to the notion where a malicious judge is unable
to misuse his or her power to forge valid signatures.

It should be noted that malicious judges are not given access to
the solver oracle, i.e., we assume no collusion between the judge
and the adversary for undeniability. That is because, as it will be
discussed later, the verification and validation keys together (al-
most) uniquely determine the secret key. Therefore, preventing
judges from computing that key requires the secret key to be *“hid-
den” by another computational assumption, which can always be
broken if the judge accesses the solver oracle.



The idea behind the proof is to allow, for every message, an ex-
ponential number of acceptable signatures, i.e., signatures that are
correct with respect to the public key. However, we require that
only one of those is valid with respect to both the public key and
the validation key of the judge. In order to determine whether a
forgery has taken place, the judge not only runs the usual valida-
tion using the public key of the signer, but also runs a subroutine
using the validation key associated to the signer’s private key. This
later subroutine either asserts the validity of the signature or shows
that it is indeed a spurious signature resulted from cryptanalysis.

In fail-stop signatures, the credibility of all signatures is ques-
tioned after a forgery because the signer’s private key is not bound
to any value that correctly maps to the public key. Forgery-resilient
signature schemes bind the signer to a single possible private key
that will map to the validation key and to the public key. As a result,
even after a forgery, the judge can distinguish between a signature
produced honestly by the signer from a spurious one.

Fail-stop signature schemes consider unbounded adversaries to
be able to deal with forgeries and, consequently, can only sign one
message. It is clear that this is not an acceptable restriction when
the scheme has to deployed in real systems. We take a different ap-
proach and consider adversaries who have access to an oracle that
solves instances of hard problems, such as factoring. Indeed, the
motivation behind this line of research was to answer the question
of what happens if the underlying security assumption, factoring
or discrete logarithm for instance, of a digital signature scheme
is broken. Hence, we consider adversaries who are polynomially
bounded but can solve instances of the factoring problem, for in-
stance. Albeit this setting is close to considering unbounded al-
gorithms in practice, it still allows us to use primitives that stand
secure against powerful adversaries when some limitations like on
the number of queries that are made [1].

1.3 Overview of our Construction

For our scheme, we assign two functions for the signer that asso-
ciate the private key to the public key and to the validation key, re-
spectively. Consider the Rabin function [24], f(z) = 2? mod n,
whose invertibility is known to be equivalent to the problem of fac-
toring the modulus n. As a consequence of the Chinese Remainder
Thm (CRT), this function maps four integers to a single one. We
use a generalization of the Rabin function, f(z) = 2° mod n, for
a c that divides the order of the group Z;, . Then, using a result from
number theory due to Frobenius [11], we prove that this function
actually maps c integers to a single value. Note that although fac-
toring gives the ability to compute c-th roots, the number of them
is exponential when the size of c is polynomial. Therefore, even
with knowledge of the factorization, a polynomial-time algorithm
cannot compute them all.

Our construction uses two instances of this function. In particu-
lar, two different factors of the order are employed, one will be used
to compute the public key and the other will serve for the compu-
tation of the validation key. Since that function maps an exponen-
tial number of elements to a single one, recovering the secret key
from the public key, even when the factorization of the modulus is
known, is highly unlikely. Conceptually, acceptable signatures are
constructed from any of those candidate secret keys while the valid
one can only be produced using the key that is held by the signer.
Nevertheless, in order to distinguish that secret key from the oth-
ers, we show that only one key can be valid with respect to both the
public and validation keys.

One drawback of our scheme is that the verification key’s size
grows linearly with the number of messages the signer is allowed
to sign. This is not a concern in practice since those keys only serve

in case of forgery.

We also introduce a stronger security property for accumulator
schemes, that is still satisfied by some existing proposals [2], that
we name strong collision-freeness. We use such an accumulator
scheme to stop malicious signers from disavowing the public ran-
domness included in each signature. Furthermore, we make the
signer generate this randomness by means of a pseudorandom func-
tion.

1.4 Outline

The rest of the paper is structured as follows. Section 2 pro-
vides the necessary background and the factoring intractability as-
sumption. Whereas, Section 3 is devoted to formally defining the
notion of forgery-resilient digital signature schemes. We then ded-
icate Section 4 to our concrete instantiation of the first forgery-
resilient digital signature scheme. In Section 5, we focus on ana-
lyzing the security of the scheme, prove its correctness, soundness,
undeniability, and validatibility. We leave the definition of strongly
collision-free accumulators, our construction’s proof of trustability,
and the efficiency analysis to the Appendices.

2. PRELIMINARIES

This section is devoted to setting the necessary background for
this paper. We start by a formal definition of classical digital sig-
natures. We then continue with the definition of pseudorandom
functions and finally finish with listing the number theoretic results
and assumptions.

Throughout this paper, a function f(s) is said to be polynomial
in s if there exists a constant ¢ € N such that f(s) is O(s¢). Sim-
ilarly, f(s) is said to be negligible if, for every ¢ € N, f(s) is
O(s™°). For simplicity, we use the notation f(s) = negl(s) to
express that f is negligible in s.

An algorithm is said to be PPT, PPT for short, if its running time
is polynomial in the size of its inputs. When the output of an al-
gorithm is fully determined by its inputs, we say that it is deter-
ministic, otherwise, we say that it is probabilistic. Generic PPT
algorithms are denoted by A, while computationally unbounded
adversaries are denoted by A.. If an algorithm A can query an
external O, it will be denoted A®. An algorithm may also have
access to a special oracle, referred to as Ohard, that takes as input
an instance of a problem P € FNP!, which is assumed to be hard,
and returns a solution to this problem.

2.1 Number Theoretic Background

We call a prime number p a strong prime if p = 2ap’ + 1 and
p’ > 2ais also a prime number. We then consider a PPT algorithm
Gen that, on input a security parameter 1% and two integers a and
b of bit-size o, generates two random strong primes p = 2ap’ + 1
and ¢ = 2bq’ + 1, such that |log, p’'| = |log, q¢'| = Ce(k)/2,
where, for any security parameter k& € N, (k) denotes a func-
tion that represents the recommended (bit-)size of the RSA mod-
ulus n = pq. Gen outputs n = pq along with p and gq. A popu-
lar choice to match 80-bit security against factorization is to take
(e (80) = 1024. However, we take the equations of Lenstra and
Verheul as a reference [16] for selecting parameter and key sizes
and use /F(80) = 1184.

When n is an ¢-bit long integer, multiplication in Z;, is per-
formed with time complexity O(£?) while exponentiation modulo

'FNP is the class of function problems of the following form:
Given an input z and a polynomial-time predicate P(z,y), if there
exists a y satisfying F'(z, y), then output any such y, otherwise out-
put L. Also, note that, without loss of generality, we could restrict
our oracle to solve problems in NP.



n is performed in time O(£®). o(-) denotes the Euler totient func-
tion.

When implied by the context, we omit writing explicitly mod n
for calculations modulo n.

DEFINITION 1. Let us consider a PPT algorithm Apact who
takes as input a,b,n = pq, such that p, ¢, ® =1 /2, and (® = 1) J2p
are prime numbers, and outputs p and q. The factoring assumption
states that for any such Aract, we have

VYa,b € N*: Pr [(p7 q) + AFACT(lk,n7 a,b)
’(n,p, q) + Gen(lk,a, b) | = negl(k).
The probability is taken over the random coins of Gen and AracT.

DEFINITION 2. Let Arsa be a polynomial-time algorithm who
takes as input a,b,n = pq, such that p, ¢, ® =1 /20, and ® = 1) J2p
are prime numbers, and outputs an element from 75;. We further
let e be an integer co-prime with o(n). We say that the RSA as-
sumption holds in 7.}, if

Va,b e N*: Pr [g — Arsa(1*,m,a,b,e,h = g%)

’ (napzq) <_Gen(1k’a’b) :negl(k)

e ERr Z;(n),g ERr Z:l

The probability is taken over the random coins of Gen and Aract
as well as the random choice of e and g.

Such RSA moduli were used by Naccache and Stern to con-
struct a public-key cryptosystem [17]. We also refer to the work
of Groth [14] that makes a more detailed treatment of the factor-
ization of such numbers by Pollard’s rho method [23] and other
generic factoring algorithms such as the general number field sieve.
Note that the subsequent attack of Coron et al. [8] restricts the set
of parameters for which the assumption holds.

In Z7, every element has a unique a-th root if and only if we
have gcd(a, ¢(n)) = 1. In fact, this ensures the correctness of the
RSA cryptosystem. However, when a and ¢(n) are not coprime,
there exists many a-th roots as stated by the following theorem.

THEOREM 1. If a divides the order of a group, then the number
of elements in the group whose order divides a is a multiple of a. If
the group is cyclic, then this number is exactly a.

Note that Z;, is not cyclic when n is an RSA modulus. How-
ever, the next theorem proves that the number of a-th roots of any
element in Z, is exactly equal to a in the class of RSA moduli we
consider in this paper, i.e., product of two strong primes.

THEOREM 2. Let n = pq be an RSA modulus such that p and
q are strong prime numbers, i.e., p = 2ap’ + 1, ¢ = 2bq’ + 1.
Ifged(a,q — 1) = ged(b,p — 1) = 1, then for any y € Zy, the
equation g =y mod n has exactly a solutions.

PROOF. Let CRT : Z; — Z, X Z; denote the isomorphism
induced by the CRT. By applying CRT, if g is a solution to the
equation ¢ =y mod n, then (gp, gq) = (¢ mod p,g mod q)
is a solution to the two equations

(9p)* =y mod p, )
(9¢)* =y mod q. 2

On one hand, recalling that Zj is cyclic, we can apply Thm 1
to deduce that Equation (1) has exactly a solutions (remember that
©(p) = ap’). On the other hand, we have that gcd(a, ¢(q)) = 1

as a is coprime with 2, b, and ¢’ by assumption. Consequently,
Equation (2) accepts only one solution. As there exist a tuples
of the form (g,,g,) satisfies Equations (1) and (2), by applying
CRT !, we deduce that the number of a-th roots of y in ZZ is
exactly a. [J

As it is the case for the classical Rabin function, we can rather
easily prove that extracting an a-th root of an a-th residue in Z;,
is equivalent to factoring with an even lower reduction gap (for the
case of Rabin it is equal to 1/2). Assume an adversary Aot Who, on
input an a-th residue y € Zj,, outputs an z s.t. z* = y (mod n).
We now construct an adversary against factoring Aract that has
access t0 Aot AracT picks a random z1 € Z} and computes
y = z{ mod n. It then calls upon Aot On input y and gets 2.
When z1 # 2, Aract computes ged(x1 — 2, N), a non-trivial
factor of N. Since the equality 1 = x> holds with probability
27 % we obtain

Pr[Aract wins] = (1 — 27%) Pr[Aoot Wins]. (3)

2.2 Pseudorandom Functions

Informally, a pseudorandom function (PRF) is a function which
cannot be distinguished from a uniformly chosen random function
by any algorithm that is allowed a certain number of evaluations of
that function.

DEFINITION 3. Let F': I x D — R be a family of functions
from D to R indexed by keys taken from the set IC. Let R : KxD —
R be a family of random functions from D to R indexed by keys
taken from the set KC. We say that F is a family of pseudorandom
functions if it satisfies the following properties.

1. There exists a PPT (in \) sampling algorithm that outputs a
random element of K.

2. For every K € K and every x € D, Fx(x) is computable
by a polynomial-time algorithm (in \) .

3. For every PPT distinguisher D, interacting with a black-box
implementing either Fi or Rk, for a randomly chosen K,
and outputing a bit b, we have

Pr[D"%(1%) = 1] — Pr[D™x (1%) — 1]| = negl(N).

The probabilty is taken over the random choice of K € K
and the random tape of D.

In the sequel, we will restrict ourselves to fixed-input-length
PRFs: the number of queries the distinguisher is allowed to make is
bounded by a value N. Such a primitive has the advantage of being
implementable by an encryption scheme that is provably indistin-
guishable from the ideal cipher with respect to adversaries limited
to N queries to the encryption oracle. For instance, the block cipher
KFC [1] is a good candidate for our PRF.

2.3 Classical Digital Signature Schemes

The message space is denoted by M, the signature space by S,
the public key space by P/C, and the private key space SK. A digi-
tal signature scheme is composed of the three following algorithms.

Keygen(1*) — (pk, sk).

A PPT algorithm for generating the pair of public and private
keys (pk, sk). It takes as input a security parameter A € N written
in unary form.



Sign(sk, m) — o.

A PPT algorithm that takes as input a message m € M and
a private key sk, and outputs a signature o € S. Note that this
algorithm may be either probabilistic or deterministic.

Verify(pk, m,o) — b.

A deterministic polynomial-time algorithm that outputs 1 when
o is a correct signature of a message m with respect to the public
key pk. Otherwise, it outputs 0.

The standard security model for such a scheme is the existential
unforgeability under the adaptive chosen message attack model in-
troduced by Goldwasser et al. [13]. In summary, it considers an
adversary fed with the public key pk who is assumed to have ac-
cess to a signing Oracle Os;gn that she can query as many times as
the signer can sign. This oracle has the ability to compute the sig-
nature of any message chosen by the adversary whose final goal is
to produce a valid signature (i.e., one that passes the validation) for
a message he did not submit to Os;gn. If no polynomially bounded
adversary is able to produce that signature except with probability
negligible in A, then the signature scheme is secure.

3. DEFINITION OF FORGERY-RESILIENT
DIGITAL SIGNATURE SCHEMES

Like classical digital signature schemes, a forgery-resilient sig-
nature scheme is composed of the classical key generation algo-
rithm, run by an authority (acting as a trusted third party TTP), the
signing algorithm, run by the signer, and the acceptance algorithm,
run by verifiers. Additionally, in order to show that a forgery has
occurred, a judge is given a validation key which is used to assert
the validity of a signature. A corresponding validation algorithm
has thus to be defined. Considering practical scenarios, one can
consider the judge as a TTP.

DEFINITION 4. A forgery-resilient digital signature scheme is
composed of the following five algorithms.

1. Setup(1%,1*) — param: generates the parameters of the
scheme and a trapdoor information that is discarded. This
algorithm runs in polynomial-time in its inputs and is exe-
cuted by the authority.

2. KeyGen(param, 1V) — (sk, pk, vk): is a PPT protocol run
by the signer and the judge that generates three keys which
will be used to produce N signatures. At the end of the proto-
col, both parties obtain a public key pk that is later published
and the signer obtains a private key sk while the judge ob-
tains the validation key vk. We also assume the existence
of two predicates computable in polynomial-time ¥ and V'
such that V(sk, pk,vk), resp. W' (pk,vk), returns 1 if and
only if the triplet (sk,pk,vk), resp. the pair (pk,vk), is a
valid output, resp. partial output, of KeyGen. Anytime the
predicate V' is not satisfied, the judge outputs |, meaning
that the key generation failed, and no public key is published.

3. Sign(sk, m) — o: computes the signature o of the message
m € M, the message space in polynomial-time (in \). When
this operation runs correctly, o is said to be a valid signature
of the message m.

4. Accept(pk, m,o) — b € {0, 1}: is an algorithm that yields
1 if the signature o of the message m is acceptable with
respect to pk. Otherwise, it returns 0. A pair (m, o) that
passes the acceptance test is said to be acceptable.

5. Validate(vk, pk,m,o) — b € {0, 1}: returns O if the sig-
nature is spurious and 1 if it is valid. This algorithm is used
by the judge in case of a dispute between parties to determine
whether the alleged forgery (m, o) is a spurious signature or
a valid one.

We require such a scheme to be correct and sound (Properties 1 and
2, resp.). Moreover, forgery resilience induces that the algorithms
should satisfy undeniability and validatability (Properties 3 and 4,
resp. ).

1. Completness. The scheme is said to be complete if for every
a, \ we have

Accept(pk,m, o) =1,
"1 Validate(vk, pk,m, o) = 1

param < Setup(1%,1%)
(sk, pk,vk) < KeyGen(param, 1%)
m €e€r M
o « Sign(sk,m)

P

where the probability is taken over the random coins of Setup,
KeyGen, and Sign (when it is probabilistic) along with the
choice of m.

2. Soundness. This property states that every valid signature
is acceptable. So, if 3 denotes the space of signatures, we
require that for every o, A

Accept(pk,m,0) =0
Pr A
Validate(vk, pk,m,c) =1

param < Setup(1%,1%)
(sk,pk, vk) < KeyGen(param,1V) | =0,
merM, oERX

3. Undeniability. We require that no polynomially bounded
signer can produce an acceptable signature that is not valid
even when she has an oracle access that, on query, returns
a pair composed of a random message and a spurious sig-
nature for it. Concretely, we denote by Oforge an oracle ini-
tialized with the public key pk to which the adversary asks
for spurious signatures of adaptively chosen messages. Nat-
urally, the adversary is not allowed to output a signature for
a message that was submitted to OForge. In other words, for
all naturals o, A and every polynomial-time algorithm A,
we have

Accept(pk,m*,c*) =1,
Validate(vk, pk,m*,0*) =0
param ¢ Setup(1%,1?)
(sk, pk, vk) < KeyGen(param, 17)
(m*,0%) = Ay (sk, pk)

Pr

with the probability taken over the randomness of Setup,
KeyGen, and A,.

4. Validatability. We say that the scheme is validatable against
adversaries able to solve instances of hard problems if for
any polynomially bounded adversary who has access to an
oracle Onarg that can solve problems lying in FNP (which
may be equivalent to an NP-Complete problem), and to a
signing oracle Osign to which she can submit N adaptively
chosen messages, it holds that for all naturals o, A and every



PPT algorithm AOsign:Ohard

P Accept(pk,m*,c*) =1
" Validate(vk, pk,m*,o*) = 1

param ¢ Setup(1%,1%)
(sk, pk,vk) < KeyGen(param,1V) | —27¢
(m*7 0*) P AOSign«Ohard (pk)

is negligible, where the probability is taken over the random-
ness of all the probabilistic algorithms.

5. Trustability. We say that the scheme is trustable if no mali-
cious judge, modeled as a polynomially bounded adversary
who has knowledge of both public and validation keys and
has access to a signing oracle Osign, to which she can sub-
mit N adaptively chosen messages, can output a valid signa-
ture on a message not submitted to Osign. In other words, we
require that

Accept(pk,m*,0*) =1
Y| Validate(vk, pk,m*,0*) = 1

param ¢ Setup(1%,1*)
(sk, pk, vk) < KeyGen(param, 1V)
(m*,0*) ¢ A% (pk, vk)
is negligible, where the probability is taken over the random-

ness of Setup, KeyGen, Osig, (if Sign is probabilistic), and
A

P

In contrast to fail-stop signatures, once a forgery occurs, it does
not put honestly produced signatures under question. This is a con-
sequence of the correctness requirement as the judge is the one de-
ciding the validity of the signatures. However, in fail-stop signa-
tures, the proof of forgery was computed by the signer. Moreover,
we require stronger properties here as the signer should not be able
to produce spurious signatures once a forgery happens. We do not
explicitly specify that the signer does not have the validation key
vk. Indeed, this is not a requirement for our construction and the
signer may be able to compute vk from sk.

Moreover, we could have given the signer the ability to obtain
valid forgeries. However, as the undeniability property will only be
considered in conjonction with validatibility, the probability that a
forger manages to produce a valid signature is negligible. There-
fore, when considering secure forgery-resilient schemes, the prob-
ability that the signer obtains such a signature is negligible. More-
over, we show in Appendix D that giving the adversary the access
to an oracle implementing the Validate algorithm does not affect
the security of the scheme.

4. INSTANTIATING A FORGERY-RESILIENT

DIGITAL SIGNATURE SCHEME

In this section, we present our concrete proposal of a forgery-
resilient digital signature scheme. Throughout this section and the
following one, we assume the existence of a strongly collision-free
accumulator scheme. In short, an accumulator scheme is said to
be strongly collision-free if it remains collision-free even if the ad-
versary obtains the witness of an element that was not in the accu-
mulated set (see Appendix B for a proper definition and an explicit
construction.).

Setup(1%,1%).
The setup algorithm first picks an a-bit odd prime number a and
an a-bit odd positive integer b such that gcd(a,b) = 1. Then, it

generates an RSA modulus n = pq by choosing two random prime
numbers p’ and ¢’ such that p = 2ap’ + 1 and ¢ = 2b¢’ + 1
are also prime numbers. We further require that ¢(n) > N. It
also picks an integer e < ¢(n) such that ged(e, ¢(n)) = 1. In
parallel, the algorithm sets the accumulator key for a collision-free
accumulator scheme by calling AccKey(1*) — (Kac, -). For the
sake of simplicity, we let a’ = ae and b’ = be.

The message space of the resulting scheme is M = Z,,. The
param (n, a, b, e, Kycc) is published.

KeyGen(param, 1V).
The protocol runs as follow:

o The signer picks arandom index K foraPRF F' : Z(n) —
Zr,.

e The signer computes g; = Fk (i), fori = 1... N, and then
Y = gf' and v; = gf/. He then sends the list of v;’s to the
judge. After that, the signer accumulates the set of y;’s, i.e.,
he calls upon Acck,. (y1,--.,yn) — (2z,aux).

e The signer picks g € Zj, at random, computes y = ga/ and
v = gb/, and transmits the last value to the judge.

o The predicate ¥’ for the judge’s verification consists of check-
ing whether y® = v°. If the last equality does not hold, then
he outputs L.

The scheme’s keys are set to sk = (g, K, aux), pk = (a, b, e,n,y, 2),
and vk = (v, v1,...,vn). Atthe end of key generation, the signer
sets a state counter ctr to 0.

Sign(sk,m).

The signer first starts with incrementing its state counter by one:
ctr = ctr + 1. He then recomputes ger = Fx(ctr) and let
Yetr = gé’t/r After that, it computes the witness of yct by calling
WK e (Yetr, 2, AUX) — Weer. At last, given the message m € M, he
computes g, = g™ - g% ™. He releases the pair (gm, Yetr, Wetr) a5
his signature.

Accept(pk,m, o).
Given a signature 0 = (gm, Yetr, Werr) ON @ message m, the ac-

cept algorithm checks whether EvalAuthg, . (Yetr, Wetr, Zace) = 1
m, b+m

and gy, = ¥yl

Validate(vk, pk, m., 0% = (Gm, , Yx))-

The validation algorithm first calls Accept(pk, m., o). If the
signature is not acceptable, it yields 0, meaning “not a forgery”.

Once the signature has been proven to be acceptable, it checks
whether there exists an 4, 0 < ¢ < N, for which the following
equality holds y® = v2. If no index is found, then the algorithm
stops and outputs 1, which means “forgery”. After that, Validate
tests the equality gf,; = vf*mvm. If it holds, the algorithm outputs
1, which means “not a forgery”, and that the signature is valid.
Otherwise, it outputs 0 in which case the signature is spurious.

4.1 Reducing the size of the Validation Key

While we assume that the judge can behave maliciously, we
might consider a scenario in which he behaves honestly given its
position as a legislative authority. In this settings, we can adapt our
construction and sacrifice trustability to obtain a validation key of
constant size. That is, we proceed by replacing the list of v;’s by
K and updating the Validate algorithm accordingly. It is clear that



other properties that trustability are still valid in this context as they
do not depend on the validation key.

4.2 Online Judges

Alternatively, we could make the rather constraining assumption
that the judge is online and reachable whenever the signer wishes
to compute a signature. In this scenario, the construction simplifies
in a way that instead of generating the v;’s from a PREF, they could
be purely random. Then at each signature, the signer sends the
signature along with the corresponding v; to the judge (Note that
the channel is not necessarily secure). The later alerts in case of
a detected forgery. A more detailled treatment of this variant will
appear in the full version of the paper.

S. SECURITY ANALYSIS

This section is devoted to showing the correctness of the scheme
we propose in Section 4 and its security. Due to lack of space, we
leave the proof of trustability to Appendix C.

5.1 Correctness and Soundness

THEOREM 3. The scheme defined in Section 4 is correct and
sound. Furthermore, given yc there exists exactly one valid signa-
ture (Gm , Yetr) for every message m.

PROOF. First, note that the first step of Validate is to check
whether the signature it receives is acceptable and outputs 0 if it
is not the case. Hence, every non-acceptable signature is rejected
by Validate and the scheme is sound.

We also have to show that any signature produced by the Sign
algorithm passes the Accept test. Clearly, from the signature algo-
rithm we haveg,, = g™ - g% ™. By raising both sides to the power
of @’ = ae, we obtain

(Ll a/ m a/ b+m m m
g = (g ) ‘(gcu) =y -yl )

which corresponds to the equation of the Accept algorithm.
Now, recall that a valid signature passes the Validate algorithm,
i.e., such a signature verifies

’ 7\ ™M s\ b
G = (gb ) . (gcbtr) =0 v &)

We now show that this signature is unique with respect to yctr.
Assume that there exists two distinct valid signatures (gm., Yetr)
and (g;m yctr) for a message m (gm # g;n). From Equations (4)
and (5), we deduce that g%, = ¢/% and ¢, = ¢/2. Letz =
Gm - gin*. Note that since g, # gin, we should have z # 1,
2% = 1, and 2** = 1. This implies that the order of x divides
both ae and be. As ged(a,b) = 1, it must be that ° = 1. Since
ged(e, p(n)) = 1, we deduce = = 1 This contradicts the assump-
tion, so there can only exist one gp,. [

5.2 Undeniability: Security against Malicious
Signers
The following theorem formalizes the fact that in order to pro-

duce a spurious signature, the signer needs to compute the factor-
ization of the RSA modulus.

THEOREM 4. Ifthe factorization assumption holds (Definition 1)

and the accumulator scheme is strongly collision-free, then the scheme

described in Section 4 is undeniable.
PROOF. Let A, be a malicious signer that queries OForge to Ob-
tain 3 = {(mlla (gm’1 ) yia wi))a ceey (méa (gmz7y27 wé))}v a list

of pairs message and spurious signature. Recall that .4,, is success-
ful when it outputs a spurious, i.e., acceptable and not valid, sig-
nature (g,+,y", w*) on a message m* that was not submitted to
OForge. We use the game methodology to separate different cases
depending on the accumulated value contained in the adversary’s
spurious signature.

e Game 0. This is the original game played by A,

e Game 1. In this game, we deal with the event F; that an
adversary wins by producing an acceptable signature such
that y* is neither in X nor in {y1,...,y~}. That is, we
are considering adversaries who, in order to produce an ac-
ceptable signature, defeat the security of the accumulator
scheme. In other words, the adversary succeeds in producing
a pair (y*, w*) such that EvalAuthg,  (y*,w”*) = 1.

We construct an adversary Aacc against the accumulator scheme
as follows. The challenger performs AccKey to generate
K, for the adversary A,.c who generates N, a, b and ex-
ecutes KeyGen for A, hence perfectly emulating .4,’s en-
vironment. Aacc also simulates Oforge by picking a random
g, submitting y%, = g& to its own oracle for obtaining its
witness wZ,, and computing g5, = g™ - g:2t™. In the end,
it returns the pair (g, Y, W) as the forged signature. By
construction, this pair is an acceptable signature if the wit-
ness wg, satisfies EvalAuth. At the end of A,’s execution,
Aace outputs (y*,w*) which verifies with AuthEval when
Ay, wins, ie., Pr[A,. wins] = Pr[A, wins|E;]. How-
ever, under the hypothesis that the accumulator is strongly
collision-free, the probability above is negligible.

e Game 2. In a second step, we take care of the case in which
the adversary is outputting a spurious signature for which
y € {y1,...,y:} and denote this event F2. That is, we
consider that the malicious signer is making use of the aux-
iliary information to produce the spurious pair. Let 7 be the
index such that (y;,w}) = (y*,w"). Using the equation

! * *
of the Accept algorithm, we can write g;% = y™ y™ 1P

’
and gfr:,_ = ym;y;.ml*—b
yi)m*_m; (mod n). Setting © = g+ ~g;b}, c=y-y;, and
s

. So, we derive (gm~* - g;L})a =(y-

§ = m* — mj, we obtain the equation z* = ¢° (mod n).
Since 0 € Z/, gcd(a,d) = 1. We can use the extended
Euclidean algorithm to obtain two integers 3 and -y such that
~ya + S0 = 1. Then, we can construct an efficient adver-
sary which is able to extract a-th roots of random elements in

77, using the equality ¢ = ¢7*1P% = (a:ﬁ . co‘)a (mod n).
By (3) we obtain
Pr[ A, wins|Ez] = Pr[Aroot Wins]
1
= m Pr[AracT wins].

Since 27¢ is negligible then, under the factorization assump-
tion, the probability of .4, winning with E’» occurring is neg-
ligible.

e Game 3. In this last game, we have y* € {y1,...,yn}.
That is, the y contained in the spurious signatures matches
one of the ones that are released for the honest signatures, let
us assume that it matches y;. In such a case, we construct
an adversary against factoring. Following the factoring as-
sumption, Aracr, first calls Gen to obtain n to factor and
uses KeyGen to generate the key material. It then calls A,



on input sk = (g, K,aux) and pk = (y,z). It gets the
spurious pair (m*, g;,+) such that gni% = y™ yb. Then,
Aract simulates the Sign algorithm of .4, with state ctr = ¢
and computes the signature of the message m* under the key
(g9,9: = Fk(i)). We denote this signature (gm+, y;). As the
scheme is correct, this signature is acceptable and valid, in
contrast to the spurious pair, SO g+ = ym*yf . Hence, we
obtain gy« = g (mod n).

Since only one of the two signatures is valid, we must have
gm* 7 G- As ged(a, g — 1) = 1, we deduce that g, =
gm+ (mod q). Hence, Aract recovers the factorization of n
by computing ¢ = gcd(gm* — g+, n) s0 we have

Pr[A, wins] = Pr[AgacT wins],

which is negligible under the factorization assumption. []

5.3 Validatibility: Security against Powerful
Forgers

We now formalize the security against a polynomially-bounded
forger who can break any hardness assumption.

The idea is the following. We consider a variation of the scheme
in which the signer generates each g; randomly and independently
from the others. We then show that in this scheme no adversary
can produce a signature that turns to be valid except with probabil-
ity less than or equal to 27 %. Then, we come back to our original
scheme in which the g;’s are generated pseudorandomly. If there
exists an adversary who is able to produce a valid signature with
non-negligible probability then she can be transformed into a dis-
tinguisher for the PRF. The following lemma formalizes the fact
that if the values g1, ..., g, of the scheme described in Section 4
are chosen randomly, then any (even computationally unbounded)
adversary is not able to produce a valid signature.

LEMMA 1. Assume that the KeyGen algorithm of Section 4 is
modified as follows. The values g1, ..., gn are chosen following a
uniform distribution and independently from each other. Then, no
adversary, even computationally unbounded, can produce a valid
signature, except with probability 2~ .

Note that this lemma is stated considering a computationally un-
bounded adversary. Obviously, it remains true when we consider a
polynomially bounded adversary with access to problem solvers.

PROOF. Without loss of generality, we assume that the adver-
sary makes N queries to the signing Oracle. First note that the
adversary can recover the factorization of N, so that she can com-
pute by herself a such that pPrimey) — o (mod N)acc. Hence,
the only useful information that the signer reveals about sk is pk
and N valid signatures ((gmy,%1),- -, (gmy,yn)) on the mes-
sages mi, ... my. Using only one signature, say the i-th, the set
of possible keys given this information is

SKi = {(g,gi) € 2y
={gg) ez

We note that, by the last two equations of the set SIC;, the second
element of the tuple, g;, is completely determined by the choice of
g. Hence, the cardinality of S/C; is equal to the number of solutions
to the equation g* = y. As a consequence of Thm 2, we have that
|SK;| = a > 2%. Note that the description of SK; only depends
on the choice of g so the adversary can discard all the other SIC;’s

for j # i.

a a m b
9 =Y%9 =Yi,9m; =9 'gi}

9" =Y,9¢ =i, 9} = gm, 'g’m}

We must now find out how many of these acceptable keys out-
put a valid signature for a message m«. As ¥, gm,, and K are
fixed, the valid signature is unique (due to Thm 3). We thus need
to analyze the number of pairs (g, g;) that produce that valid sig-
nature. By definition of valid signatures such a pair should satisfy
the equalities gm, = ¢™* - ¢¢, g% = y;, and g0 = FK(’L) Note

that the first equality can be rewritten as g = (gm* g; )

As ged(a, b) = 1, the last two equations imply that there is only
one solution for g;. Once this g; is found, there exists only one
possible g that satisfies the first equation. So, there exists only one
key pair that produces valid signatures. Since there are at least 2%
acceptable keys and one valid key, uniformly distributed among
the set of acceptable keys (g is randomly chosen by the signer), the
probability that an adversary recovers the valid key is bounded by
27« d

Now, we are ready to prove the main theorem regarding the val-
idatibility property of our scheme.

THEOREM 5. The construction proposed in Section 4 is vali-
datable against polynomial-time adversaries who have access to
an oracle to solve the factorization problem.

PROOF. Let us consider the adversary A% who tries to pro-
duce a valid signature in one of the following two settings.

e Gamey. In the first setting, the adversary is interacting with
the real scheme.

o Game;. In this case, the PRF Fx of the signer is replaced by
picking random elements from Z;;.

We consider an algorithm D who only outputs 1 when 4o wins
the game. Otherwise, it outputs 0. As the PRF is indistinguishable
from a random function, we have

Pr[D(AZ™) — 1] — Pr[D(AS™) — 1]| = negl(\).

By Lemma 1, we know that Pr[Af;mel] < 27“. Therefore, it must
be that | PrlAZ™°] — 27%| = negl(\). The scheme proposed in
Section 4 is, thus, validatable. [
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APPENDIX
A. EFFICIENCY ANALYSIS

Among the five algorithms of our scheme, the setup is certainly
the most expensive operation to perform. Generating strong primes
of the specified form mentioned earlier is done in time roughly
O (€8(N) + (1 4+ a+ £e(N))"). Note that this complexity is in
fact very close to the key generation of RSA with strong primes [25]
and is only done once.

Using some simple optimization techniques, we can drastically
reduce the complexity of modular exponentiations to the power of
a and b by choosing values for a and b with very low Hamming
weight. The security proof of our scheme is based on the size of
a and b and not their Hamming weight. Considering the today’s
factoring algorithms, assuming low Hamming weight for @ and b
does not help the adversary as, in the end, the size of p and ¢ does
not change. Assuming that this choice of a and b does not weaken
the security, one can use the standard ‘square-and-multiply’ tech-
nique and reduce all exponentiations to a, resp. b, to a + Hwt(a),
resp. o+ Hwt(b), modular multiplications, where Hwt denotes the
Hamming weight function.

Using this technique, we claim that signing or accepting can
be performed using one exponentiation, g™ or y™, resp., and a
small number of multiplications. Namely, g&, and gft, can both be
computed exclusively using modular multiplications during sign-
ing. The same applies to the Accept algorithm concerning the com-
putations of g2, and g%,. As for the key generation, it essentially
requires the signer to pick a key for the PRF, a random element,
N invocations of the PRF, and N + 1 modular exponentiations to
the power of b. Using the same trick as above, all these modular
exponentiations can be turned into modular multiplications.

B. CRYPTOGRAPHIC ACCUMULATORS

Accumulators were introduced by Benaloh and de Mare [4] as an
alternative to digital signatures for authenticating a predetermined
set of elements Y. Basically, an accumulator scheme is an algo-
rithm to combine a large set of values into one, short accumulator z
of constant size , such that there is a short witness that a given value
was indeed incorporated into the accumulator. The initial proposal



of Benaloh and de Mare was to use a quasi-commutative hash func-
tion, i.e., a one-way hash function h that satisfies h(h(z, y1), y2) =
h(h(z,y2),y1). Bari¢ and Pfitzman [2] later generalized this def-
inition to not require quasi-commutativity and provided a stronger
notion of security called collision-freeness (Note that almost all ac-
cumulator schemes are still based on a quasi-commutative func-
tion). While in one-way accumulators, the verifier is required to
be unable to produce a witness for an element that is not included
in the accumulator’s set Y correctly verifies with the accumula-
tor, collision-free accumulators consider this impossibility from the
prover point of view, i.e., the adversary is granted the ability to
freely choose the set Y.

In this work, we will need an even stronger security notion for
collision-free accumulators. That is, we consider the existence of
an algorithm that given an eventual trapdoor information, the au-
thenticator z, and an element y not in the set Y that generated z,
produces a witness that makes y being accepted by the verification
algorithm as being accumulated. In these settings, the adversary’s
goal, who is polynomial, is to produce a witness for a value y that
is not in the set Y and has not been queried to the oracle that sat-
isfies the verification algorithm. The scheme is secure if the win-
ning probability of any such adversary is negligible and we call
an accumulator satisfying this notion strongly collision-free. Note
that since unconditionally collision-free accumulators such as [19]
do not admit the existence of an (exponential) algorithm for pro-
ducing a witness of a value that was not accumulated in a set, the
oracle our adversary accesses for strong collision-freeness cannot
exist. Hence, in this case collision-freeness and strong collision-
freeness are equivalent. For this reason, the definition that follows
only deals with computationally secure accumulators.

DEFINITION 5. An accumulator scheme is defined through the
first four algorithms. The fifth one is defined for strongly collision-
free accumulator schemes.

° Achey(l)‘) — (Kace, t). A PPT algorithm that, on input
a security parameter A and outputs an accumulator key Kacc
and a trapdoor information t. For the sake of simplicity, we
assume that the accumulator key uniquely caracterizes a set

Y.

Acck,e (Yo = {y1,-..,yn}) = (2acc, aux). The algorithm
used to accumulate a set Yy, of N values from Y using the
accumulator key Kiec. After its execution, the value zacc
is made public. This algorithm is deterministic and runs in
polynomial-time.

o Wi, (Yi, zacc, aux) — w;. This is the deterministic polynomial-
time algorithm used to generate the witness w; for y;. It out-
puts L, when y; € Y.

e EvalAuthk, . (yi, ws, zacc) — {0, 1}. EvalAuth is a polynomial-

time algorithm that asserts the authenticity of y; with respect
10 Zacc. As such, it takes as input the accumulator key Kacc
and the value to authenticate y; along with its witness w; and
outputs a bit.

Extracty, k.. (zacc, ¥*) — w™*. A special polynomial-time al-
gorithm for producing a witness w* for y* € Y. That witness
has to be correct in the sense that EvalAuth g, (y*, w", zacc) =
1

A strongly collision-free accumulator has to satisfy the following
two properties.

e Correctness. This notion captures the requirement that ev-
ery value that was accumulated in a set can be authenticated.

More formally, we require that for every natural number \
and N,

Pr[3i : EvalAuthk,. (yi, wi, zacc) = 0

(Kace, ) + AccKey(1)
Yo ={y1,...,yn} CrY
(Zace, aux) < Acck, (Yuw)
Wi = Wiyee (Y3, Zace; AUX)

=0,

with the probability being taken over the choice of Yy, and the
randomness of AccKey.

o Strong Collision-freeness. We consider a polynomial-time
algorithm A that has access to an oracle which implements
Extracty k... (+,-) and denote by Yg the list of queries A
submits to its oracle. The accumulator scheme is strongly
collision-free if for every such algorithm A, it holds that for
every natural numbers \ and N

EvalAuthk,. (v, W', zacc) = 1
y' §Z Y, UYEe

(Kace, t) + AccKey(1*)
(Vi /s 0') - AP0 ) ()
(zace, aux) — Accr,. (Yu)

Pr

= negl(A).

Here, the probability is taken over the random coins of A and
AccKey.

Several constructions of collision-free accumulators were pro-
posed and it turns out that most of them can be easily shown to be
strongly collision-free. We mention in particular the collision-free
accumulator based on the Strong RSA assumption due to Bari¢ and
Pfitzman [2] which can easily be shown to be strongly collision-
free using a classical trick by Shamir [28] regarding the difficulty of
computing the e-th root of an element from Z}, given an €’-th root
of the same element when e and e’ are co-prime. After the introduc-
tion of dynamic accumulators by Camenisch and Lysyanskaya [6],
several constructions of accumulators from bilinear pairings such
as [18, 5] were proposed. Writing a proof that these commitments
are also strongly collision-free is not very difficult (In [5], when un-
necessary dynamic addition of elements is discarded, an adversary
against the strong collision-freeness of the scheme reduces to an
attacker against the underlying signature scheme). Due to lack of
space, giving a full proof for the strong collision-freeness of these
accumulators is left to the full version of the paper. We further
recall that Nyberg’s accumulator scheme [19] is strongly collision-
free as it is unconditionally collision-free.

C. TRUSTABILITY AGAINST MALICIOUS
JUDGES

The only property left to demonstrate relates to malicious judges
whose goal is to produce a valid signature on a message that was
not signed by the signer.

THEOREM 6. Ifthe accumulator is strongly collision-free, then
the construction of Section 4 is validatable with respect to the judge
under the RSA assumption.

Due to space constrains, we omit to give a full formal proof of
this result. It shall however appear in the final version of the paper.

PROOF. We let A be a polynomial-time algorithm that takes as
input a public key pk and a validation key vk to output a valid
signature o = (gm, , Y, Wx) ON a message m,. Since a valid
signature is unique, as states Thm 3, it must be that

gm, =g "y ©)



We now consider an adversary Agrsa against the RSA problem.
As described in Definition 2, Arsa takes as input the modulus n
along with the three integers a, b (that divide ¢(n)), and e (that
is co-prime with ¢(n)) and an element A € Zj which e-th root
has to be recovered. Given the algorithm .4 against the forgery-
resilient scheme, we construct Arsa as follow. First, Arsa com-
putes y = h® and v = h®. It then generates the necessary material
for the accumulator scheme, i.e., it uses AccKey to get the accumu-
lator key K acc and picks a random K for the PRF F'. After that, it
follows on the scheme’s KeyGen algorithm and computes the val-
ues to accumulate. In the end, Arsa obtains a valid pair of public
and verification keys that are given as input to .A. After A’s execu-
tion, Arsa gets the signature (gm, , Yx, w4 ) and the corresponding
message M.

As for the proof of Thm 5, we can use the strong collision-
freeness of the accumulator scheme to rule out the case where y, &
{y1,...,y~n}. Therefore, there must exist an index ¢ < N such
that y, = F,“(/(z) Once Arsa recovers this index, it uses Equa-
tion (6) to retrieve the value of ¢g"**. Using the fact that m, and e
are coprime, Arsa computes g using the extended Eucledian algo-
rithm. [

D. ON THE USE OF A vaLIDATE ORACLE

One might wonder what happens if the powerful adversary against
the validatibility property of a forgery-resilient signature scheme
does have access to a Validate oracle, i.e., she can ask the judge to
assert the validity of a signature. We prove that this does not give a
significant advantage.

THEOREM 7 (VALIDATIBILITY WITH A Validate ORACLE).
Let a forgery-resilient scheme with security parameters o and \. If
27% is negligible in )\ then no polynomial-time adversary, who,
along with the signing and solver oracles, is augmented by an ac-
cess to a Validate oracle, defeats the validatibility property of the
scheme with a non-negligible probability.

PROOF. (Sketch) Assume an adversary who has an access to a
Validate oracle against the validatibility of the scheme. We con-
struct a simulator for that oracle as follows. If the adversary sub-
mits a signature obtained from the signing oracle, then the simula-
tor outputs 1. In all other cases, the simulator outputs 0. Due to
the correctness of the scheme, Validate always outputs 1 when the
simulator outputs 1. In the other case, i.e., when Validate outputs
1 and the simulator outputs 0, we obtain an adversary who suc-
cessfully forges a valid signature. However, the validatibility of the
scheme upper-bounds the probability that an adversary produces a
valid signature by 2~% 4 negl(\), which is negligible. Hence, the
probability that the answers from the Validate oracle and the simu-
lator differ is negligible. Using a simple hybrid argument, we can
show that every adversary with an access to a Validate oracle re-
duces to one that does not have such an oracle at her disposal. [

A similar result can be obtained for signers. Since they do not
necessarily know the validation key, it is legitimate to study the
eventual advantage a malicious signer acquires through the opera-
tion of querying the judge for the validity of a signature. Using a
similar reasoning used for the case of verifiers, we derive the fol-
lowing theorem.

THEOREM 8. Consider a forgery-resilient scheme with secu-
rity parameters o and . If there exists a polynomial-time adver-
sary (in A\), who, along with the secret and public keys, has the
ability to query a Validate oracle, and defeats the undeniability
property of the scheme with a non-negligible probability, then we

can construct another polynomial-time adversary who is successful
in defeating the undeniability property of the scheme with a non-
negligible probability without having to query the Validate oracle.

PROOF. (Sketch) In order to show that the signers get no advan-
tage by accessing a Validate oracle, we can show that the result
of the latter can be predicted by constructing a simulator for that
oracle. The simulation is carried out as follows: when the signer
submits a pair (m, o) to the Validate oracle, the simulator returns
whether the pair is acceptable (since the signer gets the public key
as input, it is known to the simulator). That is, the simulator an-
swers 1 when the pair is aceptable and 0 otherwise. For the proof,
we need to consider the cases where the outputs of Validate and the
simulator differ. For the first case, when the Validate oracle outputs
1, i.e., that the signature is valid, then, the simulator never outputs
0, i.e., the signature is not acceptable since every valid signature
is acceptable due to the soundness property. For the other case,
we use the undeniability property (with an empty list as auxiliary
input) to limit the probability that the adversary outputs an accept-
able, but not valid, signature to a negligible value in A. Again,
the simulator and the Validate oracle produce computationally in-
distinguishable distributions and as before, a hybrid argument can
show that the adversary who behaves like the original one but uses
the simulator instead of the Validate oracle produces an indistin-
guishable output. In other words, this adversary wins the undenia-
bility experiment with a probability essentially unchanged, i.e., the
difference between the two winning probabilities is negligible. [

D.1 On Existential Unforgeability of Forgery-
Resilient Signatures

When defining the security properties of forgery-resilient signa-
tures, we have not explicitly demanded that it must be difficult for
a polynomially-bounded forger to construct acceptable signatures.
Clearly, a signature scheme is useless if it is easy to make forgeries,
even if they can be later repudiated. Actually, we can show that the
proposed security definitions imply that forging a signature of any
message, under a chosen message attack, is hard for polynomially
bounded enemies. As a corollary, any forgery-resilient signature
scheme can be transformed into a secure classical digital signature
scheme.

THEOREM 9. Assuming that 2~ is negligible in \, any cor-
rect, undeniable, and validatable, forgery-resilient signature scheme
can be transformed into an equally efficient classical digital signa-
ture scheme secure against existential forgery under chosen-message
attacks in which the Accept algorithm plays the role of the classical
Verify algorithm and the validation key vk is discarded.

PROOF. We start from a successful existential forger .4 who
takes the public-key as input and has access to a signing oracle
Osign for which we consider two winning cases. In the first one,
the adversary wins by producing a valid, and hence acceptable, sig-
nature while in the second case the forgery is only an acceptable
signature. We show that both winning probabilities are negligible.

For the first case, let us define the adversary .A,, against the unde-
niability property of the forgery-resilient signature scheme as fol-
lows. On input the key pair (sk, pk), the adversary runs A with
input pk and uses sk to build the signing oracle Os;gn that answers
A’s signing queries. A, finally outputs the same output as A,
namely (m*,c*). Clearly, the winning probability of A, equals
A’s, which is negligible due to undeniability.

For the second case, we consider an adversary A® against the
validatibility property of the forgery-resilient signature scheme. Re-
calling that Ao has access to a signing oracle Osjgn, we define it as



follows: On input pk, it runs A with input pk and forwards any of
its signing query to Osjgn. As before, Ao outputs the same output
as A (Note that Ao does not query O since A does not have ac-
cess to it.). At last, validatibiliy ensures that the probability of Ao
winning is negligible (recall that 27 is negligible).

We conclude that p4 = negl(\). Hence the scheme is secure
against existential forgery with chosen message attack. [



