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Abstract

Interest in anonymous communication over distributed hash tables (DHTs) has increased in recent
years. However, almost all known solutions solely aim at achieving sender or requestor anonymity
in DHT queries. In many application scenarios, it is crucial that the queried key remains secret from
intermediate peers that (help to) route the queries towards their destinations. In this paper, we satisfy this
requirement by presenting an approach for providing privacy for the keys in DHT queries.

We use the concept of oblivious transfer (OT) in communication over DHTs to preserve query privacy
without compromising spam resistance. Although our OT-based approach can work over any DHT, we
concentrate on communication over robust DHTs that can tolerate Byzantine faults and resist spam. We
choose the best-known robust DHT construction, and employ an efficient OT protocol well-suited for
achieving our goal of obtaining query privacy over robust DHTs. Finally, we compare the performance
of our privacy-preserving protocols with their more privacy-invasive counterparts. We observe that there
is no increase in the message complexity and only a small overhead in the computational complexity.
Keywords:Distributed hash tables, Query privacy, Spam resistance, Oblivious transfer

1 Introduction

In the digital society, our online activities are persistently recorded, aggregated, and analyzed. Although
worldwide electronic data privacy laws and organizations such as EFF [1] and EPIC [2] try to challenge
this pervasive surveillance through policies and protests, privacy enhancing technologies (PETs) are key
components for establishing a suitable privacy protection mechanism from the technology side. The in-
terest in developing novel PETs is increasing for a variety of reasons, ranging from the desire to share and
access copyrighted information without revealing one’s network identity, to scalable anonymous web brows-
ing [29–31, 35, 50]. In this paper, we study privacy in the peer-to-peer (P2P) paradigm, a popular approach
to providing large-scale decentralized services.

In the P2P paradigm, distributed hash tables (DHTs) [38,41,47,54] are the most common methodology
for implementing structured routing. Similar to hash tables, a DHT is a data structure that efficiently maps
keys onto values that are stored over a distributed overlay network. However, unlike hash tables, DHTs can
scale to extremely large number of key-value pairs as the mapping from keys to values is distributed among
all peers. In order to obtain a value associated with a key, a requester (a sender) in a DHT routes the key
through a small fraction of the network to reach the receiver that has stored the value. DHTs can also handle
continual arrivals and departures of peers, and small-scale modifications to the set of peers do not disturb
the mapping from keys to values significantly.

In a DHT, privacy may be expected for the sender, the receiver or the queried key. Ensuring the
anonymity of senders and requesters in DHTs has received considerable attention in the privacy commu-

1

ar
X

iv
:1

10
7.

10
72

v2
  [

cs
.C

R
] 

 3
 A

pr
 2

01
2



nity [29–31, 35, 50]. Privacy of the queries / keys, i.e., keeping the keys secret from intermediate peers that
route the queries towards their destinations, is also equally important: in many scenarios such as censor-
ship resistance, this query privacy constitutes a necessary condition for sender and requestor anonymity. In
this paper, we present a practical approach to obtain privacy for queries in robust and spam-resistant DHTs
where a fraction of peers may behave maliciously.

1.1 Contributions

Almost all anonymity solutions for DHTs try to provide anonymity to a sender or a requester in a DHT
lookup, upload or request. It may also be necessary that the queried key remains secret from peers that
route the corresponding requests in some situations. We call this property query privacy. In this case, an
intermediate routing peer should be able to suggest a next peer or a set of next peers without determining
the key being searched for. Example application scenarios for this property can be protection against mass
surveillance or censorship, preventing tracking and data-mining activities on users requests, and providing
opportunities to access material that is socially deplored, embarrassing or problematic in society.

Recursive routing and iterative routing are the two approaches to route information in DHTs. In the
recursive routing approach, obtaining query privacy looks infeasible, if not impossible. This results from
the fact that the intermediate router itself decides to which peer to forward a request. Assuming that every
peer is under the control of an individual, it is always possible for the controller to figure out the next peer
for the request. On the other hand, query privacy in iterative routing, which is also a commonly used routing
approach over robust DHTs, can be trivially obtained if every peer sends its complete routing table to the
requesting peer. The requester can then determine the next peer itself and send the request. However, this
solution may make it significantly easier to mount spamming attacks in the systems: a malicious sending
peer can easily gather a significant amount of routing information, and use it to determine and target peers
that hold specific keys.

We instead use the oblivious transfer (OT) primitive [17,37]. Given a peer holding a database, OT allows
a requester with a key to obtain a database entry associated with the key, such that the requester does not
get any information about other database entries and the database owner does not learn the requester’s key.
Therefore, OT perfectly fits our requirements of obtaining query privacy without divulging additional routing
information. We use the OT protocol by Naor and Pinkas [32] in the best-known robust DHT constructions
by Young et al. [52, 53] (their RCP-I and RCP-II protocols) to obtain our goal of query privacy in robust
DHTs. Importantly, our query privacy mechanism does not increase the message complexity of the RCP-I
and RCP-II protocols and an increase in the computation cost is also not significant. We elaborate on our
exact choice of OT protocol in Section 4.3, and discuss robust DHT constructions in Section 2.

The employed OT protocol [32] is a simple indexed OT protocol, where the database contains index-
value pairs and a requester inputs an index. However, a query for a routing table entry is an interval mem-
bership (or a range) query and not an index query. Therefore, to prevent a requesting peer from obtaining
any additional information, we could have employed the concept of conditional OT (COT) [15] and used the
interval-membership strong COT (I-SCOT) protocol by Blake and Kolesnikov [8]. However, the I-SCOT
protocol is expensive in terms of both computation and communication. We observe that by releasing the
upper and lower bounds of a routing table entirely to the requester, large improvements can be made. There
is no information in these range boundary values for a malicious requesters in terms of spamming as they
do not convey any information regarding the identities of the key owners. However, given this information,
the requester will know the desired entry (index), allowing the use of OT instead of the more complex COT.

Private information retrieval (PIR) [13] is a weaker form of OT, where more information may be revealed
than asked for; e.g., sending the complete routing table is a trivial PIR protocol. PIR protocols can be less
costly than OT in terms of computation, but the risk of spamming persists with all non-OT PIR protocols,
and hence we avoid them.
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Outline The rest of the paper is organized as follows. In Section 2, we survey the literature on robust
DHTs. Section 3 describes our system model, while Section 4 overviews the cryptographic tools used in our
constructions. In Section 5, we present the robust communication protocols that preserve query privacy. In
Section 6, we analyze and discuss performance and systems issues. Finally, we conclude in Section 7. We
include a detailed description of the employed OT protocol in Appendix A.

2 Background and Related Work

Malicious behaviour is now common over the Internet. Lack of admission control mechanisms in DHT
systems make them particularly vulnerable to these malicious (or Byzantine) attacks [45, 49]. Such attacks
can not only pollute the data that is available over DHTs [25], but also poison the indices by creating fake
data identifiers [26]. They may further create Sybil identities and disrupt communication between well-
behaving peers by spamming. The concern is quite serious, since large-scale P2P systems in existence
today (e.g., Azureus or Vuze DHT [18] or KAD DHT [46]) see millions of users every day. Along with
the basic file sharing application, there are proposals for using P2P systems to re-implement the Domain
Name System [48], mitigate the impact of computer worms [3] and protect archived data [20, 51]. These
applications would benefit from tolerance against Byzantine behaviors. As a result, a number of solutions
have been defined that can provably tolerate Byzantine faults over P2P systems (e.g., [5–7,19,22,23,33,42,
52]). Due to the popularity of DHTs, the majority of these solutions are built to work over DHTs and the
resulting constructions are called robust DHTs.

In robust DHTs, malicious attacks are generally dealt with using the concept of quorums [4–7, 19, 22,
33, 42]. A quorum is a set of peers such that a minority of the members suffer adversarial faults. Typically,
it consists of Θ(log n) nodes where n is the total number of nodes in the underlying DHT. A DHT quorum
replaces an individual DHT peer as the atomic unit and malicious behaviour by an adversary is overcome by
majority action; e.g., the content may be stored in a distributed and redundant fashion across members of a
quorum such that it cannot be polluted by a small fraction of host peers. Poisoning attacks can be mitigated
by having peers belonging to the same quorum validate routing information before it is advertised. If a peer
violates the protocol, then it is possible to remove it from the quorum, which effectively removes them from
the system.

Protocols using quorums are split between those that use iterative and those that use recursive ap-
proaches. When sending a request using the recursive approach, a sending peer contributes one message
(its request), while its DHT has to generate O(log n) messages. In the iterative approach, a sending peer has
to contribute an equal number of message as its DHT. Consequently, while dealing with Byzantine faults,
the iterative approach is more common than the recursive approach as the former provides better protection
against the spamming attack than the latter.

The common way such quorums are utilized is as follows: a requestm originating from a peer p traverses
a sequence of quorums Q1, Q2, . . . , Q` until a destination peer is reached. A typical example is a query
for content where the destination is a peer q holding a data item. Initially p notifies its own quorum Q1 that
it wishes to transmit m. Each peer in Q1 forwards m to all peers in Q2. Every peer in Q2 determines the
correct message by majority filtering on all incoming messages and, in turn, forwards it to all peers in the
next quorum. This forwarding process continues until the quorum Q` holding q is reached. Assuming a
majority of correct peers in each quorum, transmission of m is guaranteed.

Unfortunately, this simple protocol is costly. If all quorums have size η and the path length is `, then
the message complexity is `η2. Typically, for a DHT of n nodes, η = Θ(log n) and, as in Chord [47],
` = O(log n), which gives O(log3 n) messages; this is likely too costly for practical values of n. Saia and
Young [42] mitigate this problem using a randomized protocol which provably achievesO(log2 n) messages
in expectation; however, the constants in their protocols are prohibitively large.
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Peers u, v, and w are in the routing table (RT ) of peer p on a DHT. Correspondingly, in an quorum topology with
p ∈ Q1, u ∈ Q2, v ∈ Q3 and w ∈ Q`, quorums Q2, Q3, and Q` are linked to quorum Q1 in its RT . Thick lines
signify inter-quorum links. Each quorum has size η = Ω(log n) and must have strictly fewer than 1/3 faulty peers.

Figure 1: Quorum Topology over DHTs

Recently, Young et al. [52] demonstrated that the problem can be solved using threshold cryptogra-
phy [14]. Using a distributed key generation (DKG) protocol over the Internet [24] and a threshold digital
signature scheme [9], they design two robust communication protocols, RCP-I and RCP-II, that respectively
require O(log2 n) messages and O(log n) messages in expectation. Importantly, these protocols can tol-
erate adversarial peers up to any number less than 1/3 of a quorum in the asynchronous communication
setting and less than 1/2 of a quorum in the synchronous communication setting. They also do not require
any trusted party or costly global updating of public/private keys outside of each quorum. The protocols
work in the elliptic curve cryptography (ECC) based discrete logarithm setting, and its security is based
the gap Diffie–Hellman (GDH) assumption [11]. The paper also includes results from microbenchmarks
conducted over PlanetLab showing that these protocols are practical for deployment under significant levels
of churn and adversarial behaviour. We find this work to be the most up-to-date solution for robust and
spamming-resistant communication in DHTs and use it as a starting point towards query privacy.

Privacy in communication over DHTs has also been under consideration over the last few years [29–31,
34, 35, 50]. However, most of these PETs concentrate on sender (or requester) privacy, and generally aim
at a scalable anonymous web browsing system: a future replacement for Tor [16]. Our aim in this paper is
different; we want to achieve privacy for keys in DHT queries (or query privacy). Nevertheless, we observe
that our query privacy mechanism can further enhance anonymity in almost all of the above PETs. Our
approach is also significantly better in terms of message complexity than redundant routing [34], where a
requester makes multiple queries to confuse an observer.

3 System Model and Assumptions

In this section, we discuss the quorum-based DHT system model, and the adversary and communication
assumptions that we make in our protocols. As we develop our anonymity solution on top of robust com-
munication protocols by Young et al. [52], our model is nearly the same as their model.

For ease of exposition, we do not consider the link failures and crash-recovery mechanism in that work,
which in turn follows from the underlying DKG architecture [24]. However, our protocols indeed work even
under these assumptions without any modification.
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3.1 Adversary and Communication Assumptions

We work in the asynchronous communication model (unbounded message delays) with Byzantine faults.
However, to ensure the liveness of the protocols, we need the weak synchrony communication assumption
by Castro and Liskov [12], which states that the message delay does not grow longer indefinitely. Note that
this assumption arrives from the underlying robust communication protocols and is unrelated to our privacy
preserving mechanism.

In a P2P system, each peer is assumed to have a unique name or identifier p and an IP address paddr. Peers
p and q can communicate directly if each has the other in its routing table (RT ).

Similar to the majority of anonymous communication networks [16, 29, 30, 35], we do not assume a
global adversary that can control the whole network and break anonymity by observing all communication
by every peer. Such an adversary seems impractical in large-scale geographically distributed DHT deploy-
ments. However, we assume that our partial adversary knows the network topology and controls a small
fraction of the DHT peers. Following prior works [39, 40, 43, 52, 53], we consider around 10% of all peers
to be under adversarial control. The adversary cannot observe communication at the majority of nodes;
however, it may try to break query privacy, spam honest nodes, or disrupt the communication by actively
attacking traffic that reaches peers under its control.

We assume that the 10% adversarially controlled nodes are spread out evenly over the DHT, and strictly
less than 1/3 of the peers in any quorum are faulty which is the best possible resiliency in the asynchronous
setting. This bound on the adversary is possible using mechanisms like the cuckoo-rule developed by Awer-
buch and Scheideler [6], which restricts the adversary from acquiring many peers in the same quorum. Fur-
ther, all faulty peers in a quorum may be under the control of a single adversary, and collude and coordinate
their attacks on privacy, safety and liveness.

Finally, our adversary is computationally bounded with security parameter κ. We assume that it is
infeasible for the adversary to solve the GDH problem [11] in an appropriate setting for signatures and the
decisional Diffie–Hellman (DDH) problem [10] in another setting for OT.

3.2 Quorums

In a variety of approaches used to maintain quorums, one may view the setup of quorums as a graph where
peers correspond to quorums and edges correspond to communication capability between quorums. This is
referred to as the quorum topology in the literature. Figure 1 shows how quorums can be linked in a DHT
such as Chord [47].

We assume the following four standard invariants [52] are true for the quorum topology under consider-
ation:

Goodness. Each quorum has size η = Ω(log n) and must have strictly fewer than 1/3 faulty peers.

Membership. Every peer belongs to at least one quorum.

Intra-Quorum Communication. Every peer can communicate directly to all other members of its quo-
rums.

Inter-Quorum Communication. if Qi and Qj share an edge in the quorum topology, then p ∈ Qi may
communicate directly with any member of Qj and vice versa.

To the best of our knowledge, no practical implementation of a quorum topology yet exists. However, as
indicated in the literature [5–7, 19, 33], maintaining the above four invariants looks plausible in real-world
DHTs.

In a DHT where the above four invariants are maintained, the general communication mechanism in
Young et al. [52] works as shown in Figure 2. Assume that a peer p wants to send a query m associated
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A peer p sequentially communicates with Q1, Q2, and so on, until it reaches Q` who owns the searched-for key.

Figure 2: Iterative Communication in Robust DHTs using Quorums

with a key that belongs to quorum Q`, which it does not know. The recipients of the request are generally
a set of peers D ⊆ Q`. Peer p requests authorization from peers in its quorum Q1. These authorizations
are based on a rule set [19] that defines acceptable behavior in a quorum (e.g., the number of data lookup
operations a peer may execute during a predefined time period). This rule set is known to every peer within
a quorum and is possibly the same across all quorums; it reduces the impact of spamming attacks. Peer p
receives PROOF(Q1) in the form of a signature if authorized. It then sends this to quorum Q2 from its routing
table, which is responsible for the key being searched for. One or more members of Q2 verify the signature
and provides p routing information and a PROOF(Q2) for Q3, which will convince Q3 that p’s actions are
legitimate (i.e., approved by its quorum). The protocol continues until p reach Q`.

As mentioned in Section 2, it possible to achieve robust communication without using any of the above
cryptography. However, use of cryptography provides efficiency and reduce the message complexity by at
least a linear factor. Note that we do not discuss membership update operations for quorums in this paper as
they remain exactly the same as those in previous work [52, 53].

4 Cryptographic Tools

Here, we describe the cryptographic tools that we use in our solution. In particular, we review distributed
key generation, threshold signature and oblivious transfer protocols.
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4.1 Threshold Signatures

The use of distributed key generation (DKG) and threshold signatures in our privacy preserving schemes
comes from the underlying robust DHT architecture. In this architecture, threshold signatures are used
to authenticate the communication between quorums. In an (η, t)-threshold signature scheme, a signing
(private) key sk is distributed among η peers either by a trusted dealer (using verifiable secret sharing)
or in a dealerless fashion (using DKG). Along with private key shares ski for each party, the distribution
algorithm also generates a verification (public) key PK and the associated public key shares P̂K. To sign
a message m, any subset of t + 1 or more peers use their shares to generate the signature shares σi. Any
party can combine these signature shares to form a message-signature pair S = (m,σ) = [m]sk that can be
verified using the public key PK.

In this work, we refer to a message-signature pair S as a signature. Further, it is possible to verify the
individual signature shares σi using the public key shares P̂K. We assume that no computationally bounded
adversary that corrupts up to t peers can forge a signature S ′ = (m′, σ′) for a message m′. Malicious
behaviour by up to t peers cannot prevent generation of a signature.

Among three known practical threshold signature schemes [9,21,44], Young et al. employed the thresh-
old version [9] of the Boneh-Lynn-Shacham (BLS) signature scheme [11] for their robust DHT design. They
reason that, unlike Shoup’s construction [44], the key generation in threshold BLS signature scheme does
not mandate a trusted dealer, and unlike Gennaro et al.’s construction [21], the signing protocol in threshold
BLS signature scheme does not require any interaction among peers or any zero-knowledge proofs. They
also mention efficiency of the BLS signature scheme in terms of size and generation algorithm as compared
to the other options and employ it to authenticate the communication between the quorums.

4.2 Distributed Key Generation—DKG

As a trusted party is not feasible in the P2P paradigm, the underlying robust DHT architecture also needs a
complete distributed setup in the form of DKG to generate distributed signing keys. An (η, t)-DKG protocol
allows a set of η nodes to construct a shared secret key sk such that its shares ski are distributed across the
nodes and no coalition of fewer than t nodes may reconstruct the secret. In the discrete logarithm setting,
there is also an associated public key PK and a set of public key shares P̂K in DKG for verification as
required for threshold signatures.

For the robust DHT architecture, Young et al. use a DKG protocol [24] defined for use over the Internet.
We continue to use threshold BLS signatures over this DKG setup in our privacy preserving enhancement.

4.3 Oblivious Transfer—OT

The first notion of oblivious transfers was introduced in 1981 by Rabin [37]. A 1-out-of-2 oblivious transfer
(OT) [17] allows a chooser1 p to decide between two messages held by a server2 q. Moreover, OT protocols
also guarantee that the server learns nothing, while the chooser obtains at most one of the messages. The
concept may be generalized to 1-out-of-ν OT, where q holds ν messages from which p may pick only one.
In this work we will use this to obtain the relevant entry of the routing table from a quorum; the use of
oblivious transfers ensures that the query remains secret, while at the same time spamming is prevented,
since a malicious p is guaranteed to receive only a single entry.

We utilize an OT protocol by Naor and Pinkas [32, Protocol 3.1] as it fulfills all our needs; see Ap-
pendix A for an overview. The protocol provides 1-out-of-ν string OT, as we require. It is round optimal

1This is sometimes denoted “receiver” in the OT literature; we use the term “chooser” to avoid confusion with the overall
receiver of message m in the surrounding DHT protocol.

2This is typically denoted “sender” in the OT literature; we use the term “server” to avoid confusion with the overall sender of
message m in the surrounding DHT protocol.
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and requires only one message per party (OT-request from p and OT-response from q), except an OT-setup
message that we may piggyback in the surrounding protocol. Moreover, it requires no zero-knowledge
proofs, and also works in the elliptic curve cryptography (ECC) setting. The computation complexity of the
protocol is dominated by the number of exponentiations; both server and chooser must on average perform
two of these. In addition to the low computational costs, the overall communication amounts to roughly 3ν
group elements.

The construction of Naor and Pinkas allows transfer of group elements; i.e., strings of approximately
256 bits in the ECC setting. This is not sufficient for an entire entry of a routing table. Rather than increasing
the group size or performing multiple OTs, we simply let a peer q symmetrically (AES) encrypt each entry
of the routing table using a random key. The encrypted table is then sent to peer p who uses an OT execution
to obtain the AES key for the relevant entry from peer q.

For protocol RCPqp-I in Section 5.2, we will require a chooser p to run an OT with multiple members of
the same quorum. We could reduce p’s computation by ensuring that all parallel OT instances are verbatim
copies here. This would naturally require that the all servers use the same source of randomness for OT-setup
and for AES keys. This can be achieved easily using a parameterized pseudorandom function (PRF): φ(r, ·).
The private key r required for φ can easily agreed upon as part of a DKG execution, as it should be known
to all quorum members. When the quorum executes an OT instance with chooser p, it may use p’s message
itself as an input to PRF φ. This PRF-based modification does not have any effect on the OT security proof
as all parallel OT instances are verbatim copies.

Other Possibilities A natural question to ask is whether OT is really required, or whether another protocol
could achieve the desired goal more efficiently. Although PIR protocols appear to be an alternative, they are
not an acceptable alternative because they leak routing information. Further, computational PIR protocols
have similar cost as the selected OT protocol [32]. For that matter, most non-trivial PIR is essentially OT as
well.

Theoretically better OT protocols also exist, e.g. Lipmaa’s OT protocol [27], which provides 1-out-of-ν
OT withO(log2 ν) multiplicative overhead on communication (of a single entry). For the proposed protocol
by Naor and Pinkas, the overhead is linear which, in theory, is clearly worse. However, our approach is
better in the present setting when we consider numbers from real-world DHTs. With more than million
peers in a practical DHT, we will have ν ≈ 20. For ν ≈ 20, log2 ν ≈ 20 and linear communication without
any hidden constant is quite acceptable. A generic 1-out-of-2 OT protocol of Peikert et al. [36] requires only
two messages, and roughly five exponentiations per party. However, this is still more than the amortized
cost of the 1-out-of-ν OT of Naor and Pinkas and we do not use it. While we cannot rule out the possibility
of a more efficient protocol, it seems highly unlikely.

Finally, hiding the range values in routing table entries seems possible, but it is most likely infeasible in
practice. Blake and Kolesnikov [8] provides a 1-out-of-2 conditional OT (COT) based on the greater-than
relation. Their protocol has a blowup of a factor linear in the bitlength of the key. This blowup is needed
in order to compute the greater-than relation. In addition to this, there are two critical issues that must
be solved before COT can be used for hiding the range values: 1) the present work [8] requires a 1-out-
of-ν conditional oblivious transfer 2) the protocols of [8] are only secure against semi-honest adversaries.
Neither seems impossible to solve, but both appear to incur a significant blowup. Nevertheless, as no routing
information is lost through range boundaries, we need not consider these.

5 Adding Query Privacy

Young et al. [52] present two robust communication protocols using quorums and threshold cryptography:
RCP-I and RCP-II. As described in Section 3.2, both these protocols work in the general communication
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architecture shown in Figure 2. They use threshold BLS signatures over the DKG architecture explained in
sections 4.1 and 4.2. In this section, we provide query privacy to the above protocols using the OT primitive
explained in Section 4.3 to define protocols RCPqp-I and RCPqp-II.

5.1 System Setup

We start our discussion by describing the setup required for our protocols. For clarity of description, we also
briefly review routing tables (RT ) in quorum-based DHTs.

Initiation. Before the system becomes functional, the initiator has to choose appropriate groups and other
setup parameters for the BLS signature and OT protocols. Note that there are no trust assumptions
required during this step, as these parameters can be selected from the well-known standards.

Distributed Key Generation. A DKG instance is executed, when a quorum gets formed in DHTs. At
the end of an execution, each quorum Qi is associated with a (distributed) public/private key pair
(PKQi

, skQi
). Note that only those quorums linked to Qi, and not everyone in the network, need

to know PKQi
. Further, every peer p ∈ Qi possesses a private key share (skQi

)p of skQi
. Unlike

the quorum public/private key pair of Qi which must be known to all quorums to which Qi is linked
in the quorum topology, only the members of Qi need to know the corresponding public key shares
P̂KQi

. The private key r of PRF φ(r, ·) required in RCPqp-I can easily be generated during this
DKG execution.

Routing Table Setup. Without loss of generality, we assume a Chord-like DHT [47]. When a quorum gets
formed in DHTs, it determines its neighbors and forms its routing table RT . For a quorum Qi, each
entry of its routing table has the form RT Qj

= [Qj , p, p
′, PKQj

, ts]. In this entry, peer p ∈ Qj and
peer p′ ∈ Qj−1 where quorum Qi links to quorum Qj and Qj−1 in the quorum topology and p and p′

are respectively located clockwise of all other peers in Qj and Qj−1. PKQj
is the quorum public key

of Qj generated using DKG, and ts is a time stamp for when this entry was created. Quorum Qj is
responsible for the identifier space between identities p and p′. RT entries of Qi are set such that the
complete identifier space is covered by them.

5.2 Adding Query Privacy to RCP-I: RCPqp-I

Protocol RCP-I works deterministically. Here, we include a privacy preserving mechanism for queries
in RCP-I using the OT protocol described in Section 4.3. The enhanced protocol (RCPqp-I) appears in
Figure 3, which we outline as follows.

Assume that p ∈ Q1 is searching for a key and the target is a set of peersD ⊆ Q`. Let the search path go
through quorums Q1, . . . ,Q`. Peer p begins by sending a request [p, paddr, ts1] to all peers in its quorum Q1.,
where ts1 is a time stamp. Unlike the original RCP-I, the key corresponding to the intended destination
of the message is not included here. Each honest peer q ∈ Q1 checks if p’s request follows the rule-set as
described in Section 3.2. If there is no violation, q sends its signature share to p, who interpolates those
shares to generate a signature S1 = [p|paddr|ts1]skQ1

. In each intermediate step (i = 2 to ` − 1), p sends its
most recent signature Si−1 and a new time stamp tsi to each peer q ∈ Qi. Since Qi is linked to Qi−1 in the
quorum topology, each peer q knows public key PKQi−1

to verify Si−1. If Si−1 is verified and tsi is valid,
peer q sends back its signature share on [p|paddr|tsi]. Peer p collects the shares to form Si and majority filters
on the routing information for Qi+1. If verification of Si fails, peer p sends all shares back to every party in
Qi, who help p by filtering the invalid shares out. Finally, for Q`, p sends m along with S`−1 to peers in the
target set D in Q`.
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Initial Step: p ∈ Q1 with Quorum Q1

peer p every peer q ∈ Q1

sends a request [p|paddr|ts1] =⇒

⇐=
if the request is legitimate, reply with a sig-
nature share

Intermediate Steps: p ∈ Q1 with Quorum Qi for i = 2 to `− 1
peer p every peer q ∈ Qi

interpolate Si−1 = [p|paddr|tsi−1]skQi−1
us-

ing the received shares and send Si−1 and
a new tsi. Request an OT initiation

=⇒

⇐=

verify Si−1 using PKQi−1
and validates

tsi. If successful, send a signature share,
an OT-setup message, the ranges in RT of
Qi and the entry-wise encryptedRT of Qi

interpolate Si = [p|paddr|tsi]skQi
using the

received shares and verify it using PKQi
.

If invalid, sends all signature shares back.
Send an OT-request for the index corre-
sponding to the searched key

=⇒

⇐=
verify all shares using P̂KQi

and inform p
of valid shares. Send an OT-response

Use the received OT-responses, if any, to
determine the next quorum Qi+1

Final Step: p ∈ Q1 with Quorum Q`

peer p D ⊆ Q`

send S`−1 along with its request m =⇒

Figure 3: RCPqp-I: RCP-I with Query Privacy

It still remains to see how Qi tells p the correct Qi+1 as the next quorum without knowing the key
being searched for. We accomplish this using the OT protocol. Along with Si−1 and tsi, p also sends an
OT-initiation request to every peer in q ∈ Qi. Peer q responds back with the entry-wise symmetrically
encrypted (AES) routing table RT Qi

, the OT-setup message, and the upper and lower bounds of ranges
in RT Qi

. Note that since all quorum members use the same randomness (due to the use of a PRF where
everyone holds the private key), the messages from all honest parties will be the same. Peer p determines
an index inRT Qi

for the next quorum by searching for key in the received ranges and sends an OT-request
for that index. Peer q then computes and sends the OT-response. Using this response, peer p obtains the
symmetric key corresponding to the queried index and decrypts the appropriate entry inRT Qi

to determine
the next quorum Qi+1. Any wrongdoing by Byzantine peers inRT Qi

range tables, encryptedRT Qi
blocks

and OT executions are taken care of by the majority action. As p knows Q2 using its own routing table,
there is no OT involved in the initial step.

Notice that it is also possible for peer p to use OT in the final step while communicating with the target
set D in Q`, if the privacy application demands it. In that case, the target set D only knows that the queried
key is one of its keys, but cannot determine the exact key.
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Initial Step: p ∈ Q1 with Quorum Q1

peer p every peer q ∈ Q1

sends a request [p|paddr|ts] =⇒

⇐=
if the request is legitimate, reply with a sig-
nature share

verify and interpolate received shares to
form M1 = [p|paddr|ts1]skQ1

Intermediate Steps: p ∈ Q1 with Quorum Qi for i = 2 to `− 1
peer p selected peer qi ∈ Qi

select peer q ∈ Qi uniformly at random
without replacement. Send Mi−1 and re-
quest an OT initiation

=⇒

⇐=

For j = i−1 downto 2, verify PKQj−1 us-
ing PKQj and verify M1 using PKQ1. If
successful, send [PKQi−1

]skQi
, the ranges

in RT of Qi and the entry-wise encrypted
(signed)RT of Qi

sends an OT-request for the index corre-
sponding to the searched key

=⇒

⇐= send an OT-response back
If PKQi+1, RT Qi+1

(computed from the
OT-response) and PKQi−1 verifies, com-
pute Mi = [Mi−1|[PKQi−1

]skQi
] and

determine the next quorum Qi+1 from
RT Qi+1

. Otherwise or if there is a time-
out, choose q′i ∈R Qi and repeat

Final Step: p ∈ Q1 with Quorum Q`

peer p D ⊆ Q`

send M`−1 along with its request m =⇒

Figure 4: RCPqp-II: RCP-II with Query Privacy

The correctness of protocol RCPqp-I follows directly from that of protocol RCP-I and we refer the
readers to [53] for a detailed proof. Although the encrypted routing tables (a few kilobytes in size) are sent
in our privacy-preserving approach as compared to the individual routing table entires in RCPqp-I, it does
not affect the message complexity of the protocol. The message complexity of protocol RCPqp-I remains
exactly the same as protocol RCP-I, which is equal to O(log2 n). We discuss the increase in computational
cost and other systems matters in Section 6.

5.3 Adding Query Privacy to RCP-II: RCPqp-II

Protocol RCP-II utilizes signed routing table (RT ) information and reduces the message complexity in pro-
tocol RCP-I by a linear factor (in expectation) using a uniformly random selection of peers in the quorums.
Here, all RT entries are signed separately by the quorum whenever RT s are modified. In particular, every
peer in the quorum, using their DKG private key shares, generates and sends signature shares, which are
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then interpolated to obtain signed RT entries. The OT setup and the OT protocol remain exactly the same
as in RCPqp-I. The enhanced protocol (RCPqp-II) appears in Figure 4, which we outline as follows.

Initially, for simplicity, assume that peers act correctly. The initial step, where p communicates within
its quorum, Q1, remains exactly the same. Each peer in Q1 receives [p|paddr|ts] from p. If the request does
not violate the rule set, then peer p receives signature shares and computes M1 = [p, paddr, ts]skQ1

. Next, p
knows the membership of Q2 which belongs to its RT , and selects a peer q2 ∈ Q2 uniformly at random
without replacement. Peer p sends M1 to q2. The correct q2 verifies M1 using PKQ1, and replies with
[PKQ1]skQ2

and [RT Q3
]skQ2

. Here, [PKQj ]skQi
denotes the quorum public key of Qj signed by quorum

Qi as neighboring quorums know each others’ public keys, and [RT Qj
]skQi

denotes the routing entry for
Qj signed by Qi. Peer p verifies [PKQ1]skQ2

and [RT Q3
]skQ2

, and checks if the time stamp is valid. If
so, p constructs M2 = [M1|[PKQ1]skQ2

]. The idea is to allow some peer in Q3 to verify PKQ1 and M1

using a signature chain. Further, p can check the response from some peer in Q3 in the next step using
PKQ3 included in RT Q3

. This process repeats with minor changes for the remaining steps until p reaches
the destination quorum Q`. If any peer does not respond in the amount of time predefined by the weak
synchrony assumption [12] (as described in Section 3.1) or responds incorrectly, the protocol proceeds by
choosing uniformly at random another peer in the quorum. Note that any attempt by a malicious peer to
return incorrect information is detectable.

It still remains to see how the OT executions for key are performed such that a correct peer qi in Qi can
give routing information for Qi+1 to peer p. For this, peer p sends an OT initiation to peer qi along with
Mi−1. Upon verification of the signature chain, qi replies with [PKQi−1

]skQi
, ranges in RT of Qi, entry-

wise encrypted (signed)RT of Qi, and the OT-setup message. Note that these encryptions are done locally
at peers, and applied on both theRT entires and signatures. Peer p then determines an index corresponding
to the key it is searching for and sends an OT-request for that index. Peer qi then computes and sends an
OT-response. Using this response, peer p obtains the symmetric key corresponding to the queried index and
decrypts the appropriate entry inRT Qi

, checks the signature on the resulting plaintext, and thus determines
the next quorum Qi+1.

Similar to RCPqp-I, if required, it is possible for peer p to use OT in the final step while communicating
with the target set D in Q`. The correctness of the protocol follows directly from that of the original RCP-II
protocol, and we refer the readers to [53] for a detailed proof. The message complexity of the enhanced
protocol remains exactly the same as the original protocol, which is equal to O(log n) in expectation. We
discuss the increase in computational cost and other systems matters in Section 6.

6 Analysis and Discussion

As discussed in Section 5, our protocols do not increase the message complexity of their original counter-
parts RCP-I and RCP-II. In this section, we consider the increase in computation due to the query-privacy
mechanism and find it to be nominal. We also analyze possible system-level attacks on our protocols.

6.1 Additions to Computational Costs

Query privacy does not come without some additional computation. However, for our choice of OT, this
increase is insignificant as compared to the computations already done in the original RCP-I and RCP-II
protocols.

In both the RCPqp-I and RCPqp-II protocols, a requesting peer p has to perform only two additional
exponentiations at each privacy-preserving RT entry retrieval, while a responding peer qi in quorum Qi

must perform one additional exponentiation. Peers in Qi also have to perform ν exponentiations for an
OT setup, where ν is the size of RT . However, they can be batch-computed and may also be reused in
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ν requests. In terms of computation, our privacy-preserving mechanism remains exactly the same in both
protocols, RCPqp-I and RCPqp-II. This results from a peer p running the same instance of OT with all
peers in the quorum in RCPqp-I with the help of the PRF-based technique discussed in Section 4.3.

Timing values computed using the pairing-based cryptography (PBC) library [28] indicate that one ex-
ponentiation takes around 1 ms on a desktop machine. Given that the communication time for the original
RCP-I and RCP-II protocols is greater than 3 seconds (refer to Young et al. [52] for a detailed discussion),
the cost of these exponentiations is insignificant. In terms of system load, a DKG execution in RCP-I and
RCP-II on average requires 2 CPU seconds, and a threshold signature generation and verification takes about
6 CPU ms. Therefore, our OT executions do not increase the system load by any significant fraction. Note
that the OT protocol also involves a few group multiplications, PRF executions, symmetric encryptions and
hashes. Their computations take only a few µs, so we ignore these computational costs in our discussion.

6.2 System-level Attacks on Query Privacy

Although OT hides the queried key completely in the cryptographic sense, there can be system-level attacks
that leak some information about the key.

A range estimation attack defined by Wang, Mittal and Borisov [50] that reduces privacy provided in
NISAN [35] could be applied to our RCPqp-I protocol. This attack is based on the fact that the Chord-like
DHT ring is directed and the requesting peer p will not query a quorum succeeding the queried key except
in the first iteration. Therefore, an adversary that can observe the peer p contacting a sequence of quorums
can put them together into a sequence to narrow down on the target range that peer p may reach. In this
attack, the range only extends from the last contacted quorum having an adversarial peer to the largest jump
possible at the end of first iteration. For NISAN, Wang et al. show that if at least 20% of nodes are under
the adversary’s control, the adversary may obtain a significant amount of information about the queried key.
As indicated in Section 3.1, we consider the percentage of peers under the control of a single adversary to
be around 10%. Therefore, although this range estimation attack is possible, it is not particularly effective
in our DHT setting. On the other hand, the curious peers in the intermediate quorums only see requests
approved by one of their neighbors. This, along with the security provided by the OT protocol, ensures that
nothing is revealed about the queried key to the curious intermediate quorums.

As only an expected constant number of peers are contacted per intermediate quorum in our RCPqp-II
protocol, the range estimation attack by Wang et al. [50] is far less effective. However, query privacy for
our RCPqp-II protocol is slightly weaker in terms of the above mentioned curious observer attack. This is
a direct consequence of the use of a signature chain to authorize a request from a peer p: assume a peer qi
from an intermediate quorum Qi. Although qi may not be able to determine quorums from the public keys
in a chain, the length of the chain itself might give peer qi some information about possible key values. This
results from a property of Chord-like DHTs: generally each step brings a requester exponentially closer to
its destination. As an example, a shorter signature chain indicates that a destination quorum is probably
situated away from Qi in the key (or identifier) space, while a length nearly equal to log n indicates that the
destination quorum is probably nearby. This is, however, a weak heuristic attack as path lengths of DHT
requests may vary significantly. Further, it is possible to mislead such a curious adversary by adding a few
fake signatures at the end of the chain. The requesting peer p has to have this done by its quorum Q1.

6.3 Crawling Attacks towards Spam Prevention

As discussed in Section 2, usage of the iterative routing approach significantly improves robustness against
spamming attacks, since a spamming peer has to perform an equal amount of work as the rest of the system.
Young et al. [52] add further protections against spamming in RCP-I and RCP-II by not allowing the
adversarial peer to gather a large amount of routing information. They add the queried keys to requests.
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As a result, an execution of RCP-I or RCP-II leads to the requester p gaining information only about the `
quorums in its path. We concentrate on query privacy in this work and enforce that the queried key should
remain completely oblivious to every intermediate quorum Qi for i ∈ [1, ` − 1]. This may lead to attacks,
where the adversary peer p obtains more routing information; we call these attacks crawling attacks.

In our RCPqp-I protocol, a malicious peer p may try to obtain the entire RT of Qi by querying for
different keys (or RT indices) to different peers in Qi. As a result, the adversary peer p can acquire more
information than allowed by the rule set. It is possible to thwart this supposed attack completely by adding
one communication round: here, p also has to get its OT-request message (which is the same for all peers
in Qi) signed from Qi in the exact same way as its authorization request [p|paddr|tsi]. This ensures that p
can query the quorum for only one key (specifically, one index in RT ), and query privacy of the key also
remains unaffected. This additional one round does not change the message complexity of the protocol. We
do not include this defense mechanism in the protocol described in Figure 3, as repercussions of this attack,
if any, may vary from system to system.

In our RCPqp-II protocol, similar crawling is possible. The adversary peer p may query different
peers in quorum Qi for different indices to obtain the complete RT for Qi. However, unlike in RCPqp-I,
a malicious peer p has to increase its effort linearly to obtain the complete RT of Qi in RCPqp-II and
crawling is not an effective attack for the malicious peer p.

In both protocols, it is possible for a malicious peer p to alter the queried key while shifting from one
quorum to the next, as there is no link between signed authorizations and the queried keys for privacy
reasons. This may, however, lead to a peer p gaining more knowledge as it can continuously modify its key
to traverse as much of the DHT as possible. This is an even weaker crawling attack than the one mentioned
above, as the adversary has to perform a significant amount of work to gain any information.

Notice that any information gained by the adversary in the above active attacks is still substantially
smaller than information effortlessly available to it when PIR or trivial PIR are used. Finally, it may be pos-
sible to stop the adversary p from gaining any additional information without revealing its key using com-
putationally and communicationally demanding cryptographic primitives such as zero-knowledge proofs or
conditional OT [15]. However, we find that their inclusions are not essential, and may be even impractical,
for DHT-based systems.

7 Conclusion

In this paper, we have introduced the concept of query privacy in the robust DHT architecture. We have
enhanced two existing robust communication protocols (RCP-I and RCP-II) over DHTs to preserve the
privacy of keys in DHT queries using an OT protocol. We reviewed the OT literature and chose a theo-
retically non-optimal but practically efficient (in terms of use over DHTs in practice) OT scheme. Using
this, we built two protocols (RCPqp-I and RCPqp-II), which obtain query privacy without any significant
increase in computation costs and message complexity in practice. Our privacy-preserving mechanism does
not change the underlying protocols’ utility or efficacy in any way, and is also be applicable to other DHT
communication architectures.
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A The Oblivious Transfer Protocol

In this appendix, we provide an overview of the 1-out-of-ν OT protocol of Naor and Pinkas [32]. Security
of the construction is based on DDH in a group G of prime order |G|. The proof of security uses the random
oracle model, i.e. the protocol uses a cryptographic hash function, H , which is then replaced by the random
oracle in the proof. Recall that the goal is for the server, q, to offer ν strings, S1, . . . , Sν , and for chooser
p to obtain the desired one, Sρ, and nothing else. The basic idea of the [32] OT protocol is to let p provide
encryption keys PKi for 1 ≤ i ≤ ν; these are constructed such that p can know at most one of the decryption
keys. The server then supplies p with encryptions of each Si under PKi. Details are included in a protocol
flow below in Figure 5. we now elaborate on the intuition behind the three messages:

17



Setup (for ν invocations)
peer p peer q

⇐=

Pick r ∈ Z|G| uniformly at random and
compute α = gr; for 1 < i ≤ ν pick Ci
uniformly at random inG and computeCri .
Send α and C2, . . . , Cν to p.

Online (single invocation)
peer p requesting Sρ peer q holding S1, . . . , Sν

Pick k ∈ Z|G| uniformly at random and
compute PKρ = gk. If ρ 6= 1 compute
PK1 = Cρ/PKρ. Send PK1 to q.

=⇒

⇐=

Compute PKr
1 ; then for 1 < i ≤ ν com-

pute PKr
i = Cri /PK

r
1 . Pick a random

string R and for 1 ≤ i ≤ ν compute an
encryption of Si, H(PKr

i , R, i)⊕Si; send
all ν encryptions to p along with R.

Compute first PKr
ρ = αk and then

H(PKr
ρ , R, ρ); use this to decrypt the ρth

encryption and output the plaintext, Sρ.

Figure 5: The 1-out-of-ν OT protocol of Naor and Pinkas

1. OT-setup: q picks a random DL instance, α = gr and sends this to p. Moreover, the parties agree on
ν − 1 random group elements, C2, . . . , Cν . It is crucial that p does not know their DL, hence they are
picked by q (who is allowed but not required to know the DL).

2. OT-request: p will supplies PK1 to q; for 1 < i ≤ ν PKi is implicitly set to Ci/PK1. p constructs
PK1 such that PKρ has known DL; however, if p could find the DL of any other key, PKi, p could
solve a DDH problem in G.

3. OT-response: q computes PKr
i = Cri /PK

r
1 for all i. Since the Cri may be precomputed this requires

only a single exponentiation and ν − 1 multiplications. q then picks a uniformly random `-bit string,
R, where ` is chosen large enough (e.g. 200 bits) to ensure that R will be distinct. Finally, for each
1 ≤ i ≤ ν q computes an encryption of Si as Ei = H(PKr

i , R, i) ⊕ Si. R and the Ei are sent to p,
who computes first PKr

ρ = αk and then decrypts to obtain Sρ = Eρ ⊕H(PKr
ρ , R, ρ).

For more details along with the proof in the random oracle model, see [32]. As noted, α and the Cri may
be preprocessed during periods of low computational load. Moreover, the values may be used in multiple
instances of the OT protocol. “Refreshing” r (i.e. α and the Cri ) every ν execution provides an amortized
complexity of two exponentiations per party per OT invocation. The setup message consists of ν group
elements, while the OT-request contains only a single one. Finally, the reply consists of ν Eis plus R;
though strictly speaking, these are not group elements, they may be viewed as such for the complexity
analysis. Hence, overall communications is 2ν + 2 group elements.

We remark that since we are transferring AES keys using OT, we could also directly use (some digest
of) PKr

i , R, i as the AES key. However, such ad hoc optimizations may easily introduce subtle flaws. The
security proof of Naor and Pinkas may easily be invalidated by even a minor optimization, hence, as the
gains are marginal, we prefer the original OT protocol to any ad hoc optimization.
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