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ABSTRACT

While many social graphs are directed by nature, applica-
tions that use social graphs are often evaluated on undi-
rected versions of these graphs. Manipulating a social graph
in this manner, however, may change important properties
like the mixing time, a critical parameter for applications
such as Sybil defense and anonymous communication. In
this paper we measure the mixing time and behavior of
several directed graphs and their undirected counterparts.
Counter-intuitively, we find that some directed graphs are
faster mixing than their undirected counterparts, whereas
the general pattern is that directed graphs are slower mix-
ing than undirected ones. To relate to the applications sug-
gested in the literature, we measure how directionality of
edges in several social graphs impact these applications, and
find that evaluation on the undirected graphs always over-
estimates the security provided by these schemes.

Categories and Subject Descriptors

C.2.0 [Computer Communication Networks]: General
– Security and Protection; C.4 [Performance of Systems]:
Design studies

General Terms

Security, Design, Experimentation

Keywords

Social networks, Sybil defenses, Mixing time, Measurement

1. INTRODUCTION
Many graphs in general, and social graphs in particular,

are directed by nature. However, applications built on top
of social networks, including Sybil defenses [1, 3, 10, 11,
12, 26, 28, 29], information routing and dissemination [5,
13, 14], and anonymous communication [18, 2] require mu-
tual relationships which produce undirected graphs. When
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undirected graphs are used as testing tools for these applica-
tions to bring insight on their usability and potential deploy-
ment, directed graphs are converted into undirected graphs
by omitting edge directions [1, 12, 26, 17] or by augmenting
the underlying social graph [28, 16].

For example, Cai and Jermaine [1], Lesniewski-Laas and
Kaashoek [12], Yu et al. [28], Viswanath et al. [26], Mohaisen
et al. [17], and Mittal et al. [16], among others, have altered
directed social graphs by either omitting edge directions en-
tirely or by considering a connected subgraph in which an
edge is established between two nodes if it is symmetric (i.e.,
an edge that exists in both directions). It has been claimed
that the fraction of edges added by this process is small,
since the majority of edges among nodes are already sym-
metric (e.g., see section 9.1 in [12] and section 5.1 in [26]).
Also, it has been claimed that the majority of nodes remain
in the largest connected component when considering edges
in the undirected graph only if they are symmetric in the
directed one [28, 16]. Furthermore, in most of these works
it has been either explicitly argued [12, 1, 17] or implic-
itly assumed [28, 16] that converting a directed graph to an
undirected graph will not significantly influence the graph
structure nor the mixing time, the length of the random walk
needed to randomly reach every node in the graph with prob-
ability proportional to the degree distribution. The quality
of the mixing time has been a crucial property in these sys-
tems, where security and performance of them are based on
the mixing time. In particular, most of these applications
assume “fast-mixing” social graphs for their operation.

Unfortunately, it is not clear how the process of altering
these graphs affects the quality of their mixing time. Al-
though, the intuition is that directed social graphs (for which
the mixing time is well-defined) would have different—and
potentially slower—mixing time than undirected graphs. Mo-
tivated by the lack of prior work on this problem, we inves-
tigate mathematical tools for measuring the mixing time of
directed social graphs and its associated error bounds. We
use these tools to measure the mixing time of several bench-
marking directed social graphs and to understand the dif-
ference in the mixing time quality between directed graphs
and their undirected counterparts. We then measure how
this difference impacts two applications built on top of so-
cial networks: a Sybil defense mechanism and an anonymous
communication system.

The property used in both applications addressed in this
paper is the mixing time of social graphs, where these graphs
are assumed to be “fast-mixing”. Characterizing the mixing
time by a single parameter using the second largest eigen-



value modulus (SLEM) method [22] or by the mixing time’s
mathematical definition, which is shown in Eq. (2), is insuf-
ficient to capture the richer mixing behavior and patterns
of social graphs [27, 17]. Since this mixing behavior is the
actual property utilized by many applications built on top of
social networks [27], we measure it by computing the mean
of the mixing time for walks originated from several sources
in a social graph.1 To achieve that, we use tools from the
fixed point theory [7] to closely estimate the mixing time of
directed graphs and its associated error bound. This estima-
tion process is needed because, to the best of our knowledge,
the literature provides no method for computing a closed-
form expression of the stationary distribution of walks on
directed graphs—which is required for computing the mix-
ing time.
In order to make our results relatable to other works in

the literature, we experiment with directed graphs that are
widely used in this context for evaluating systems built on
top of social networks. By converting directed graphs to
undirected ones, and measuring the mixing time of both
cases, we find that undirected graphs are generally faster
mixing than directed graphs. We also find that evaluation
of the aforementioned systems on undirected graphs always
overestimates the security of these systems.
Finally, while it might be possible to use directed graphs

for building certain applications on top of social and other
networks, in this work we emphasize that we do not advo-
cate the use of these graphs for such applications. We rather
examine a method that is widely used in the literature for
modifying graphs and using them to verify the effectiveness
of certain security and privacy applications. We highlight
the difference in the mixing characteristics of both types of
graphs, directed and undirected, and explore how this dif-
ference influences the performance and security guarantees
of these applications in a “what-if” scenario. In particular,
we address the following questions. What is the quality of
the mixing time property in the directed graphs? What
would be the performance of these applications if the di-
rected graphs with their original property are used instead
of the altered graphs? What security guarantees do these
applications provide using the original property in the di-
rected graphs before altering them? How do these guaran-
tees compare to the guarantees claimed on the undirected
counterparts?

1.1 Contributions
In this paper we make two primary contributions. First,

we investigate tools for measuring the mixing time of di-
rected graphs, and use these tools to measure the mixing
time of four directed social graphs, before and after graph
conversion. We show the significant impact of edge direc-
tionality on the mixing time. Second, we study the impact of
the quality of the mixing in these graphs, with and without
edge directionality, on two applications from the literature,
namely a Sybil defense and an anonymous communication
system. Both applications rely on the mixing time and its
quality in social graphs for their operation. In total, both of
our contributions are motivated by a widely-used method in

1Notice that this abuse of notation is only to simplify the
exposition of our results. The reader should keep in mind
that the mixing time is the maximum walk length to reach
close to the stationary distribution from any source in the
graph; see section 3 for details and (2) for the definition.

the security community for altering graphs without paying
attention to how this impacts the underlying property in the
original graph and security guarantees of applications built
on top of them.

1.2 Organization
The rest of this paper is organized as follows. In section 2

we introduce the related work. In section 3, we investigate
a method for efficiently computing the mixing pattern in di-
rected graphs, and a method for bounding the error due to
estimating the stationary distribution of such graphs. In sec-
tion 4 we review the datasets and the method used for their
preprocessing. In section 5, we outline the first part of our
findings by measuring the mixing of several social graphs,
before and after omitting directionality of their edges. In
section 6, we investigate the impact of the difference in the
mixing time on Sybil defenses and anonymous communica-
tion systems. Our concluding remarks appear in section 7.

2. RELATED WORK
To the best of our knowledge, there is no prior work on

measuring the mixing time of directed graphs. Although,
several works measure the mixing time in undirected graphs
generated by omitting directions in naturally directed graphs [6,
17]. As such, there is no prior work on examining how the
difference in the mixing time in naturally directed graphs
and their undirected counterparts affects the performance
of social network-based designs. On the other hand, there
has been several works on designing systems on top of social
graphs that exploit the mixing characteristics and other so-
cial network properties. Some of these works alter directed
graphs to undirected ones using the methods mentioned in
section 1. In the following, we review some of these works.

2.1 Measurements of The Mixing Time
The “fast-mixing” property of social graphs has been uti-

lized for building social network-based Sybil defenses and for
reasoning about their security guarantees. However, none of
the authors of these defenses considered measuring the mix-
ing time in social graphs directly. To address this issue,
Mohaisen et al. [17] and Dellamico et al. [6] measured the
mixing time of several social graphs. Mohaisen et al. [17]
neglected edge directions entirely by following prior works
which argued or assumed that altering graphs in that way
will not affect social graphs and their properties [12, 26, 28].
Accordingly, all social graphs including directed ones are
considered undirected [17]. Dellamico et al. [6] measured
the mixing time of four large social graphs, and while they
used some directed graphs it is unclear what techniques they
used for computing their mixing time; suggesting that a con-
version of the graph as in other works [17, 26, 12] was likely
performed before measuring the mixing time.

2.2 Systems Exploiting the Mixing Time
The significance of the mixing time of social graphs is be-

cause of two categories of applications that use it for their
operation: Sybil defenses, and anonymous communication
Systems. Sybil defenses that utilize social networks include
SybilGuard [29], SybilLimit [28], SybilInfer [4], SumUp [25],
GateKeeper [24], Whanau [12], and X-Vine [16], among others—
a summary and comparisons of most of these works can be
found in the recent work of Haifeng Yu [27]. All of these
defenses require social networks to be “fast-mixing”, infor-



mally meaning that a short random walk originated from
any honest node in a social graph is sufficient to reach every
honest node in the graph with a probability proportional to
the node’s degree. The fast mixing property is required in
all of these designs for both performance and security rea-
sons [27].
Anonymous communication systems on top of social net-

works include “anonymity in the wild” [18] and Drac [2].
In section 6 we elaborate on “anonymity in the wild” [18]
and a Sybil defense (called SybilLimit [28]), which we use to
demonstrate our results and findings.

2.3 Prior Work and Graph Preprocessing
The pre-processing methods of directed graphs in the prior

literature motivate this work. While some directed social
graphs are used to demonstrate Sybil defenses in many of
the above works, they are converted to undirected graphs
by entirely neglecting edge directions [1, 12, 26] or by con-
sidering largest connected component with symmetric edges
only [28, 16]. Each method alters the social graphs differ-
ently. While the first method is likely to add edges to guar-
antee symmetry of edges in the resulting graph, the second
method is likely to trim nodes to ensure that no asymmetric
edges are in the resulting graph—trimmed nodes are con-
nected to other nodes in the graph with asymmetric edges.
We observe that both methods may result in a well mixing

graph from a graph that violates the mathematical defini-
tion of the mixing time (i.e., a graph for which no mixing
time is defined; see section 3 for more details on the mathe-
matical definitions). In both methods, the original directed
graph might be weakly connected for which no mixing time
is defined, yet adding additional edges or removing nodes
would make it mix well. This observation has two impli-
cations. First, comparing the mixing time of graphs after
processing them to the mixing time of the original graph
using either of the two methods might not be possible. Sec-
ond, by violating the mathematical definition the ultimate
result might be obvious and uninteresting: certain nodes in
a weakly connected graph will never be visited and the mix-
ing time of the directed graph is likely to be larger than the
modified graphs.
To this end, we limit our discussion to the case where

the largest strongly connected component (SCC) is used to
represent the directed graph. We note that the largest SCC
of a graph includes the graph produced using the second pre-
processing method. Furthermore, we note that a comparison
between directed and undirected graphs produced using the
first method only makes sense when the original directed
graph has the SCC property. We mainly use the first method
of pre-processing, and lightly discuss the second method,
when comparing directed and undirected graphs in terms of
mixing and performance of applications on social networks.

3. DIRECTED GRAPHS’ MIXING TIME
Informally, conditions required for defining the mixing

time in undirected and directed social graphs are quite sim-
ilar. Random walks on a graph have a stationary distribu-
tion that is used for bounding these walks’ distribution if
the graph is connected. In order for the mixing time to be
well defined on a directed graph, it needs to be a strongly
connected component (SCC). In an SCC, there exists a path
between every pair of nodes. Computing the SCCs of a
graph in linear time is done using Tarjan’s algorithm [23],

which we use in this work. We use the largest SCC (in size)
as a representation of each directed graph and measure its
mixing time (see justification in section 2). In this section,
we present theoretical tools we need for measuring the mix-
ing time of directed graphs. We define the mixing time for
directed and undirected graphs in section 3.1, estimate the
stationary distribution in section 3.2, and bound the error
in our measurements due to the stationary distribution es-
timation in section 3.3.

3.1 Defining Directed Graphs’ Mixing Time
Let G = (V,E) be a directed and strongly connected

graph, where |V | = n and |E| = m. Let A = [aij ]
n×n

be the adjacency matrix of G, where aij = 1 if there is an
edge from node vi to node vj in G (denoted by vi → vj),
and 0 otherwise. Let deg(vi)

− be the out-degree of node
vi. We define the transition probability matrix P = [pij ]
where pij = 1/deg(vi)

− iff vi → vj , and 0 otherwise. In a
clean matrix form, P = (D−)−1A, where D− is a diago-
nal matrix in which the ii-th element is defined as

∑
j aij .

The stationary distribution, π, of random walks on G, is
defined formally as a distribution that is invariant to tran-
sition probability. That is, π = πP. Unlike the stationary
distribution of an undirected graph, which is characterized
in a closed form in terms of the degree distribution (This is,
π = [deg(vi)/2m]1×n for 1 ≤ i ≤ n), the stationary distri-
bution in directed graphs has no closed-form expression.

Formally, π is defined in Theorem 1 (which also applies to
the case of undirected graphs as well).

Theorem 1. Let P be the probability transition matrix
of a Markov chain that is aperiodic and strongly connected,
defined on a graph G. Then,

lim
t→∞

Pt = P∞ (1)

where P∞ in (1) is defined as an (n×n) matrix of identical
rows, where each row equals to π, the stationary distribution
of every walk on G.

Same as in undirected graphs, the mixing time of a directed
graph G is defined as:

T (ǫ) = max
i

min{t : |π − πiP
t|1 < ǫ}, (2)

where πi is the delta distribution of 1 concentrated at
the i-th position in a (1 × n) probability vector represent-
ing the probability distribution when starting a walk from
node vi, and | · |1 is the total variation distance defined as
1

2

∑
j |π(j)−πt

i(j)| (where πt
i = πiP

t). Notice that the mix-

ing time of the entire graph, as defined in (2), is the longest
walk starting from the worst initial distribution to reach the
worst reachable part of the graph [27] and to achieve a fixed
total variation distance from the stationary distribution π.

While the mathematical definition in Eq. (2) is necessary
to characterize the mixing time of the entire graph, richer
patterns of mixing are expressed by the distribution of the
mixing time obtained after t-step walks starting from dif-
ferent initial distribution in the graph. This distribution
can be further characterized by the mean or median ǫ at a
given walk length t. Both of the mean and median of the
mixing time are usually far from the “worst-case scenario”
expressed in Eq. (2) [17], and are usually representative to
the quality of the mixing property required for the opera-
tion of Sybil defenses [27]. In this work, we are interested in



both characterizations of the mixing time: the distribution
(mean and median) and the worst case as per the definition
(maximum).

3.2 Estimating the Stationary Distribution
Computing π as in Eq. (1) is only theoretically possible,

since it requires computing Pt, where t → ∞. Even when
setting t to some large number that is an order of magnitude
of the size of the graph (e.g., 106 for 1000 nodes graph), the
process becomes both time and space inefficient for typical
social graphs due to their large size. In part, this inefficiency
is due to losing sparsity of P as t grows thus requiring mul-
tiplication and storage of a non-sparse large matrix (Pt).
This inefficiency turns into infeasibility as the size of the
graph grows to a few thousands of nodes, which is smaller
than benchmarking directed graphs used in this study. Ac-
cordingly, other methods are required for computing π, or a
good estimate of it. In the following we devise such method
without modifying the structure of P.
We observe that regardless of the initial distribution, ev-

ery walk on a strongly connected graph ultimately converges
to the stationary distribution π. We could further make the
total variation distance between the ideal (unknown) sta-
tionary distribution and the distribution of a random walk
beginning from an arbitrary node in the graph arbitrarily
small. In other words, given an arbitrary initial distribu-
tion πi and the transition matrix P of a strongly connected
graph, we can compute πℓ

i = πiP
ℓ such that |πℓ

i − π|1 < δ,
where δ is close to 0, for some large walk length ℓ.
The convergence of πℓ

i to π is a guaranteed property of
aperiodic Markov chains on connected graphs [22]. With-
out knowing π, one can use π′ = πℓ

i as an estimate for π,
for some large ℓ. Such π′ is sufficient to measure a very
close estimate of the mixing time of directed graphs, and
to serve the purpose of our measurement in understanding
the difference between the mixing patterns in directed and
undirected graphs. Notice that computing πℓ

i = πiP
ℓ does

not require computing Pℓ. We can iteratively compute πℓ
i

using a vector-matrix multiplications of πi and P by observ-
ing that πℓ

i = πℓ−1

i P, where we can benefit from the sparsity
of P. In our measurements, we set πi to a uniform distri-
bution (i.e., πi = [1/n]1×n) and ℓ to a large number that
makes error in our measurements arbitrarily small. In the
following subsection, we elaborate on the method we use for
setting ℓ.

3.3 Determining the Proper Parameters
While one can argue that setting ℓ to a large number

would make the distribution of a random walk of length ℓ
starting from an arbitrary distribution close to the station-
ary distribution—and thus the former distribution can be
used as an estimate of the latter distribution, the distance
between both distributions is required to identify an upper
bound on the error in the measured mixing time. Fortu-
nately, the fixed point theory [7] provides tools to estimate
the required length of the walk ℓ in order to achieve a cer-
tain distance from the stationary distribution (also known
as the “fixed point” distribution). The following definition
and theorem outline the main results needed for bounding
the distance between the estimated stationary distribution,
after ℓ iterations, and the ideal stationary distribution.

Definition 1 (Contraction mapping [7]). Let (X, d)
be a non-empty and complete metric space. A mapping T :

Table 1: The (original) datasets used for deriving
directed and undirected graphs and measuring their
mixing time with their statistics (number of nodes,
number of edges, and the number of strongly con-
nected components).

Dataset # nodes # edges # SCC
Slashdot [9] 77, 360 905, 468 6, 724
Epinion [20] 75, 879 508, 837 42, 176
Wiki-vote [8] 7, 115 103, 689 5, 816
Gnutella [21] 10, 876 39, 994 6, 560

X → X is said to be a contraction mapping if there exists
a real number λ < 1 such that d(T (πx), T (πy)) ≤ λd(πx, πy)
for all πx, πy ∈ X (where d(.) is a metric, or distance, de-
fined on points in the space X; e.g., | · |1).

Theorem 2 (Fixed point theorem [7]). Let (X, d) be
a non-empty and complete metric space and let T be a con-
traction mapping defined on X. For that mapping, there
exists a fixed point π s.t. T (π) = π. To find the fixed point,
an iterative mapping of an initial point πi would result in
a sequence of points π0

i , π
1
i , π

2
i ... ∈ X, where the following

inequality describes their convergence rate to the fixed point:

d(π, πw+1

i ) ≤ [λ/(1− λ)]d(πw+1

i , πw
i ) (3)

Using Theorem 2 and by recalling that the matrix multipli-
cation, which represents random walks on the graph, is a
contraction mapping [7], the following inequality character-
izes the walks convergence rate to the stationary distribution
(at length w + 1):

|π − πiP
w+1|1 = δ ≤ [µ/(1− µ)]|πiP

w+1 − πiP
w|1, (4)

where µ is the second largest eigenvalue of the transition
matrix P. By setting ℓ = t + 1, for large t, we make
µ

1−µ
|πiP

ℓ − πiP
ℓ−1|1 arbitrarily small, and thus make the

distance between π and π′ = πiP
ℓ within an acceptable

range that does not influence the measured mixing time. Us-
ing (4), we bound the error in measurements starting from
any node vj after t steps (using the triangular inequality)
as:

|π − πjP
t|1 ≤ |π′ − πjP

t|1 + |π′ − π|1 (5)

Eq. (5) tells that we can bound the error in the measured
mixing time using the estimated stationary distribution (π′)
and the bounded distance between it and the stationary dis-
tribution in Eq. (4). Since we can make the right hand side
in Eq. (4) arbitrarily small (we make it < 10−15 in our mea-
surements), and since we are interested in a region where the
computed distance is within 10−1 to 10−12; c.f. section 5,
the error due to estimating the stationary distribution is
considered negligible.

4. DATASETS AND DATA PREPROCESSING

4.1 Datasets and Their Prior Uses
We use four datasets in this work as shown in Table 1.

Three of the four datasets represent social networks, whereas
the fourth represents relationships in a peer-to-peer file shar-
ing system. In Slashdot Zoo [9], a directed edge between two



Table 2: The largest strongly connected component
(SCC) of each of the different graphs in Table 1.
Note that the percent in parenthesis of each graph
correspond to the relative size of the largest SCC in
the original graphs.

Dataset # nodes (%) # edges (%)
Slashdot 70, 355 (90.94) 818, 310 (90.37)
Epinion 32, 223 (42.47) 443, 506 (87.16)

Wiki-vote 1, 300 (18.27) 39, 456 (38.05)
Gnutella 4, 317 (39.69) 18, 742 (46.86)

Table 3: The undirected graphs resulting from con-
verting the largest SCCs with statistics in Table 2.
Note that the percent in parenthesis correspond to
the number of added edges to make the directed
graph undirected by having all edges in both direc-
tions. The percent is the number of added edges
divided by twice the total number of edges in the
resulting undirected graph.

Dataset # nodes # edges Added edges (%)
Slashdot 70, 355 459, 620 100, 930 (10.98)
Epinion 32, 223 342, 013 240, 520 (35.16)

Wiki-vote 1, 300 36, 529 33, 602 (45.99)
Gnutella 4, 317 18, 742 18, 742 (50.00)

nodes indicates that the first node tags the second node as
a friend. In Epinion [20], a “who-trust-whom” online social
network, an edge between two nodes indicates that the first
node has tagged the second node as a trusted node. In wiki-
vote [8], a link between two nodes indicates that the first
node has voted for the second node. In Gnutella [21] an
edge between two nodes indicates that is first node (host)
is connected to second one. Notice that we do not advocate
the use of these (interaction) graphs for building Sybil de-
fenses and anonymous communication systems. We use the
fact that these graphs are already benchmarks for testing
such applications to validate our results based on them.
We note that three of these datasets (Wiki-vote, Epinion,

and Slashdot) were previously used for measuring the mix-
ing time [17], two (Wiki-vote and Gnutella) were used for
demonstrating the efficiency of a social network-based Sybil
defense [1], and one (Wiki-vote) was used for analyzing so-
cial network-based Sybil defenses [26].

4.2 Graphs Conversion
In each directed graph, we compute the largest SCC in

order to satisfy the connectivity condition required for mea-
suring the mixing time. The SCC of each graph and its
relative size compared to the original graph are shown in
Table 2. The largest SCC varies in size, and ranges from
as low as 18% of total nodes in the original graph (38% of
edges, as in Wiki-vote) to as high as 90% of nodes (and
edges, as in Slashdot). For each graph, we compute π′ as in
section 3.3, and make the distance to π a negligible factor.
We convert each SCC to an undirected graph. In each

SCC we first exclude self-loops, if any existed. Then, given
the adjacency matrix of the self-loops-free SCC, A, we com-

pute the adjacency matrix of the corresponding undirected
graph as A∨AT , whereAT is the transpose of A and ∨ is an
bitwise logical or operation. The resulting graphs and their
statistics are shown in Table 3. While the graphs before
and after conversion maintain the same number of nodes,
some additional (directed) edges are added to create edge-
symmetry and to produce undirected graphs. The number
of the added edges in each of the undirected graphs as a
percent of the total number of edges ranges from as low as
11%, as in Slashdot, to as high as 50%, as in Gnutella and
Wiki-vote.

4.3 Notes on Graph Conversion
We emphasize several aspects of the method used for graph

conversion in this paper. First, we note that recent works
on social network-based Sybil defenses [12, 1, 26, 16, 28]
have altered social graphs in several ways, some which are
similar to what we used in this paper (see section 2 for more
details). These works and the methods used in them for
altering graphs are the main motivation of this paper. Sec-
ond, obtaining the largest SCC from the directed graph as
used this paper is for a mathematical necessity, despite po-
tentially trimming a portion of the original directed graph
(see Table 1 for details). Third, our method—by first ob-
taining the largest SCC and then converting the directed
graph to undirected—is milder than both literature meth-
ods explained in section 2.

Compared to the first method in the literature [12, 1, 26],
our method ensures that the mixing is well-defined on both
graph types, directed and undirected. Compared to the sec-
ond method [16, 28], our method trims less nodes in the
directed graph, and still brings insight on the difference be-
tween both graph types when used for these applications.

We note that prior work [15] suggests that the majority of
nodes belong to the SCC in large-scale social graphs. Thus,
our findings may apply to these graphs when used by omit-
ting directions according to the first method as well.

5. RESULTS AND DISCUSSION
Now we proceed to measure the mixing time of directed

graphs shown in Table 2 and undirected graphs shown in
Table 3. We consider each graph with and without direc-
tions (as explained above) and compute the stationary dis-
tribution appropriately. For directed graphs we compute the
stationary distribution using the method in section 3.2 and
for undirected graphs we compute it using the method in
section 3.1.

5.1 Methodology
For each graph in tables 2 and 3, we measure ǫ—the total

variation distance between the stationary distribution and
the accumulated distribution—after w steps. We initially set
w to 1 and increase it for a fixed to 50, with steps of 1. A
walk length of 50 is sufficient to characterize the mixing rate
of walks on all graphs we used. Using these measurements,
we then restrict the walk length to 10. A walk of up to
that length is used in the literature for demonstrating the
operation of applications of top of social networks.

For each graph, we repeat this process by beginning from
1000 different nodes as sources of initial distributions in or-
der to capture the pattern of mixing in these graphs. Fi-
nally, to eliminate bias caused by starting from different
initial distributions, we fix each of the 1000 nodes (labels)



used for both measurements. We first randomly select 1000
nodes for experimenting with the directed graphs, and use
them again for estimating the mixing time of the undirected
graph, after graph conversion.

5.2 Main Results and Discussion
The main results of measuring the mixing time are shown

in Figure 1 and Figure 2. Figure 1 plots a comparison of
the mean mixing characteristics between graphs before and
after modifications. We plot the mean ǫ at each walk length,
as we increase the random walk length from 1 to 50. The
mean is computed over all ǫ’s obtained by starting from each
of the 1000 initial distributions (nodes). Figure 2 shows the
maximum ǫ as we increase t, making t the mixing time for
the computed ǫ by definition (see section 3.1).
First, we compare the mixing characteristics across differ-

ent datasets. We notice that different graphs, and regardless
to edge directions, have different mixing characters. For ex-
ample, whereas slashdot and Epinion have similar mixing
pattern, Wiki-vote mixes faster than both of them. Fur-
thermore, we notice that Gnutella mixes faster than all of
the three other graphs, regardless to edge direction.
While some of the difference in the mixing characteris-

tics across different datasets is attributed to graph density
and size, as shown in Table 2 and Table 3, other crucial
factor of determining the mixing time of these graphs is
their structure. For example, we notice that a graph like
Wiki-vote, shown in Figure 1(b), which has several social
hubs [8], mixes faster than other graphs that do not exhibit
such hubs clearly (e.g., Slashdot in Figure 1(c) and Epin-
ion in Figure 1(a)). Also related to the structure, we notice
that a random graph like Gnutella, shown in Figure 1(d),
mixes faster than other graphs. This is initially not surpris-
ing, since random graphs are good expanders, which are also
fast mixing [19]. The interesting observation, though, is that
the same pattern of“fast-mixing”characteristics is preserved
in Gnutella even when only considering a modified version
of it; a strongly connected component. Furthermore, it is
interesting to see how such expander “notion” applies to di-
rected graphs (where the general notion and mixing time
studies considered undirected expander graphs only).
The context of the graphs may affect their structure, and

thus influence their mixing time. For example, we notice
that two graphs with similar social contexts, like Slashdot
and Epinion, have similar mixing times for longer walks (at
average). This, however, is not shown in any of the other
graphs. This similarity in the mixing pattern is exhibited
clearer with short random walks, as shown in Figure 3.
In these measurements, and as we increase w, we find

all possibilities of comparison exhibited—when comparing
directed to undirected graphs: 1) no difference as in Wiki-
vote graph in Figure 1(b), 2) undirected graphs mix better
than directed graphs as in Slashdot and Epinion graphs in
figures 1(c) and 1(a), and 3) directed graphs mix better than
undirected graphs as in Gnutella in Figure 1(c).
While the two first cases are anticipated, the third case is

surprising. It is unexpected to find that directed graphs mix
better than undirected graphs in general. However, given
that Gnutella has a special structure (originally a fixed de-
gree graph), we hypothesize that omitting directions would
alter the graph structure in unfavorable way to the mixing
time. A potential case would be that adding more edges to
the graph would divert long random walks on the graph. We

further notice that this behavior is reverted when we restrict
the random walk length to less than 10 steps.

Now we turn our attention to measuring the mixing time
per the definition in Eq. (2)—the results are shown in Fig-
ure 2. While the mean computed over all ǫ’s for a given
random walk length is meaningful for the average node—
especially when evaluating systems built on top of social
networks, it does not capture the worst case scenario which
is of interest to the theoretical guarantees proposed in prior
work in the literature that utilizes social graphs [28, 29].
For example, for an anonymous communication system or
asocial defense suggested on top of social networks, it is al-
ways better to prove guarantees with lower-bounds—which
is actually used by Yu et al. in their Sybil defenses [28, 29].
Lower bound guarantees are satisfied by the mixing time in
the definition in Eq. (2), and computed as the maximum
ǫ among all distributions for a given walk length. For the
same experiment above, we plot the maximum ǫ for different
walk lengths in Figure 2.

While some of the patterns exhibited are consistent for
the maximum ǫ in Figure 2 with the patterns in the average
case in Figure 1, we observe that this pattern is switched
in Slashdot and Wiki-vote. Particularly, we observe no dif-
ference in Slashdot, while the undirected Wiki-vote graph
is faster mixing than the directed one, contrary to what is
observed in the average case. Mohaisen et al. [17] argue that
similar cases happen in other graphs, and may not be rep-
resentative to the real mixing nature of these graphs. These
cases happen when a set of nodes are sparsely connected to
the majority of other nodes in the graph, thus slowing the
mixing time of the whole graph [27].

We notice that Sybil defenses and anonymous commu-
nication systems built on social networks rely on shorter
random walks than those shown in our experiments. Typi-
cally, a random walk used in a Sybil defense is in the order
of log n, where n is the size of the graph, which translates
into 10 to 15 for a graph of 100, 000 nodes [28]. We exam-
ine the mixing characteristics of these graphs in the needed
range, for a random walk of proper length for the operation
of these applications. We consider a walk length from 1 to
10 with 1 step increment and zoom-in the prior measure-
ments discussed earlier for longer random walks (with the
same settings as explained before). Interestingly, we find
that all undirected graphs are faster mixing than directed
graphs in that region of walk length, as shown in Figure 3.
Surprisingly, we find that for a walk length of 5—the length
we use for demonstrating impact of the mixing time on ap-
plications on social networks; see section 6—ǫ changes from
0.7 in the directed Gnutella to 0.3 in the undirected one.
This difference, and in other graphs in Figure 3, has a great
significance on social network-based applications.

6. IMPLICATIONS ON APPLICATIONS
In this section we explore the impact of the difference in

the mixing of directed and undirected graphs on potential
applications built on top of social networks that exploit the
mixing time as their operation property. We consider Sybil-
Limit [28] as a state-of-the-art representative work for Sybil
defenses and “anonymity in the wild” [18] as an anonymous
communication system.

6.1 Sybil Defenses
In the following we examine how the difference in the mix-
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Figure 1: The (mean) mixing time of directed graphs before and after omitting directions of edges. Each of
the figures corresponds to the mean of measurements of ǫ that corresponds to the given random walk length
for 1000 different initial distributions of sources in each social graphs.
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Figure 2: The (max) mixing time of directed graphs before and after omitting directions. Note that, by
definition, these figures correspond to the mixing time of the social graph. While it bounds the mixing of
all sources for which the mixing time is measured, it is less strictly representative of the quality needed for
applications such Sybil defenses [17, 27].

ing time of directed and undirected social graphs impacts the
performance of Sybil defenses operated on top of them. To
demonstrate this impact, we choose SybilLimit [28].

6.1.1 SybilLimit

In SybilLimit, each node samples r edges in the graph
as “witnesses”, where r = r0

√
m, by running r independent

instances of random walks each of length w = O(log n).
Under certain assumptions on the graph’s mixing character-
istics, there is an overwhelming probability that the sam-
pled subsets of honest nodes in the social graph will have
a non-empty intersection, which would be used for suspect
verification. Formally, if the social graph is fast mixing—
i.e., has a mixing time of O(log n)—then probability of the
last node/edge visited in a walk of length O(log n) drawn
from the edge/node stationary distribution is at least 1− 1

n

(Theorem 1 in [28]). Accordingly, by setting r0 properly,
one can use the birthday paradox to make sure that the
intersection between two sampled subsets of edges (by two
honest nodes) is non-empty with an overwhelming probabil-
ity. Furthermore, given that the social graph is fast mixing,
and the number of attack edges—edges that connect Sybil
with honest nodes—is limited, probability for random walks
originated from honest region to dishonest region are lim-
ited. The impact of such “escaping tails” on the operation
of the defense is further marginalized using a “balance con-
dition” which ensures that accepting a suspect would not
cause a spike of the number of accepted suspects via a cer-
tain edge in the graph. Chances of dishonest nodes being
accepted by sampling honest edges is limited, and bounded
by the number of attack edges.
To evaluate the performance of SybilLimit, we use two

evaluation metrics. We use acceptance rate of honest nodes,
which is governed by the mixing characteristics of the so-
cial graph, and the acceptance of dishonest (Sybil) nodes,
which is determined by both the mixing characteristic and
the number of attack edges in the graph.

6.1.2 Results and Discussion

In each directed and undirected graph, we use 1000 ran-
dom nodes as suspect/verifier pairs (total of 499, 500 pairs
of suspect/verifier in each graph). We then run SybilLimit
and compute the average of both metrics of evaluation for
the 1000 random verifiers. To further reduce randomness in
the results and increase accuracy, we perform each exper-
iment three times, by changing the 1000 random verifiers,
and compute the average of the outcomes. In the following
we summarize the main results and findings.

The results are shown in Figure 4 for the average honest
nodes acceptance rate and in Figure 5 for the average of the
total number of accepted Sybil nodes per the given number
of attack edges, as the number of attack edges increases.
In each of the figures, we make several observations. First,
we observe that both metrics, the number of accepted hon-
est and Sybil nodes are strongly correlated with the mixing
characteristics of the different graphs, which is not surpris-
ing since the mixing time is the main property used for this
application. By comparing Figure 3 to Figure 4 we observe
that shorter random walks in faster mixing graphs are suf-
ficient to accept all honest nodes. By comparing Figure 3
to Figure 5 and by fixing the length of attack edges (e.g.,
100), we also observe that the number of Sybil identities in-
troduced at average is strongly correlated with the mixing
time; faster mixing graphs introduce more Sybil identities
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Figure 3: The (mean) mixing time of directed graphs before and after omitting directions for short walks.
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Figure 4: Acceptance rate of the honest nodes (suspects) by honest verifiers in directed and undirected
graphs. Note that all undirected graphs outperform directed, except in Epinion.

for the same number of attack edges.
We find that almost always directed graphs accept less

honest nodes (by honest verifiers) as in Figure 4 and more
Sybil identities (per attack edge) as in Figure 5. For exam-
ple, we notice that for a random walk length 3 SybilLimit
would accept about 95% of the honest nodes when operated
on an undirected graph, where only 90% of these nodes are
accepted when operated on the directed graph. Also, where
operating SybilLimit on an undirected Gnutella graph with
random walk length of 4 would allow accepting 95% of the
honest nodes, it would only allow accepting 75% of the hon-
est nodes on the same graph when considered directed.
An observation in favor of directed graphs is made on

Epinion (in Figure 6(a)) when using walk length of 4. Sybil-
Limit on a directed Epinion graph would accept roughly
95% honest nodes by honest verifiers (at average), whereas
it would accept only 90% in the undirected graph case. We
notice that, a lot more Sybils are introduced per attack edge
for the same case (thrice the number of Sybils introduced per
attack edge in directed graphs).
We notice that introduced Sybils per attack edge are al-

ways more in directed graphs than in undirected graphs as
shown in Figure 5. In some of these cases, the number of
Sybils in directed graphs is three times more than in undi-
rected ones—as in Figure 6(a), whereas other cases have
almost no difference—as in Figure 6(a). Sizable, but not
too large difference happens in the two other cases.

6.2 Anonymous Communication Systems
The idea of mixers over social links is very simple [18]. In

these systems [18, 2], users recruit their social acquaintance
to relay their traffic and to provide anonymity to them. In
the nutshell, each node (user) forwards her own traffic to her
friends, and friends forward that traffic to their friends, and
so on, for a certain number of hops, e.g. w. The number of
hops w is a system-wide parameter, which is determined by

the security level desired in the system. The anonymity is
defined for two parties; the sender and the receiver of traffic
(we follow the same model in [18] for defining the anonymity
of both parties).

6.2.1 Anonymity Measures

For a sender, the anonymity defined in terms of the anonymity
set is n, thus the entropy of the probability distribution of
any node being the sender is log2(n)—same for both directed
and undirected graphs. On the other hand, the anonymity
set for a node being the receiver is determined by the prob-
ability distribution achieved after the fixed number of hops
w used in the system. Let the distribution of the final node
selected in a random walk after w hops be πw

i = πiP
w,

where πw
i = [πw

i (j)]
1×n (πi is an initial distribution). The

anonymity of the receiver of the traffic (the last hop in the
walk) is measured by the entropy Hw, which is given as

Hw = −
n∑

j=1

πw
i (j) log2 π

w
i (j) (6)

Using the entropy in Eq. (6), we define the anonymity set
Aw = 2Hw . The maximum entropy and anonymity set for a
walk on a graph are achieved with the probability distribu-
tion of that walk as it approaches the stationary distribution.

We useHd
w and Ad

w for the average entropy and anonymity
sets in a directed graph, while Hu

w and Au
w are used for the

average entropy and anonymity sets in an undirected graph.
We define the average entropy and anonymity sets for 1000
random walks starting from different sources (see below).

6.2.2 Results and Discussion

Same as when we measured the mixing time and the per-
formance of SybilLimit, we use 1000 initial distributions for
each social graph. An initial distribution at node vi in a
graph of n nodes is a 1 × n probability distribution of 1 at
the i-th entry and 0 otherwise. We increase the length of



200
400
600
800

1000
1200

1400
1600
1800
2000

50 100 150

A
c
c
e
p
te

d
 S

y
b
il 

(t
o
ta

l)

Number of Attack Edges

ep u
ep d

(a) Epinion

200

400

600

800

1000

1200

1400

50 100 150

A
c
c
e
p
te

d
 S

y
b
il 

(t
o
ta

l)

Number of Attack Edges

wiki u
wiki d

(b) Wikivote

100

200

300

400

500

600

700

800

50 100 150

A
c
c
e
p
te

d
 S

y
b
il 

(t
o
ta

l)

Number of Attack Edges

sdot u
sdot d

(c) Slashdot

200

400

600

800

1000

1200

1400

1600

50 100 150

A
c
c
e
p
te

d
 S

y
b
il 

(t
o
ta

l)

Number of Attack Edges

gnt u
gnt d

(d) Gnutella

Figure 5: Acceptance rate of the dishonest (Sybil) nodes by honest verifiers in directed and undirected
graphs. Used walk lengths are 3, 4, 4, and 5 for Wiki-vote, Epinion, Slashdot, and Gnutella, respectively.
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Figure 6: The mean entropy of random walks distributions on graphs before and after omitting directions
for varying walk lengths (Hu

w vs. Hd
w for varying w values).

the random walk w from 1 to 10 with step increments of
1. At each time step we compute the probability distribu-
tion πw(i) of the random walk as w increases, from which
we compute the entropy as in above. We then compute the
average entropy for the 1000 initial distributions (denoted in

Table 4 as Hd
w and Hu

w for directed and undirected graphs,
respectively). We plot the results of the entropy measure-
ments in Figure 6. We observe a consistent pattern with
measurements of the mixing time in section 5 and earlier
results of SybilLimit in section 6.1. We find that walks on
directed graphs have less entropy (at average) than in undi-
rected graphs, for the same walk length. However, in some
cases this difference is not big, indicating that the direction
of edges in the graph may have insignificant impact.
If we set the random walk length to 6 in each graph, we ob-

tain the results of average entropy and average anonymity
sets shown in Table 4. We observe that while the differ-
ence in the entropy is small, one should keep in mind that
the entropy is a sensitive measure, and a small difference
in it would translate into large difference in the anonymity
set. For example, the obtained pairs of entropy for directed
and undirected cases for the same set of graphs, respec-
tively, translate to the following pairs of anonymity sets:
(2411, 6013), (764, 884), (8551, 9891), and (1026, 2759). The
exponentially scaled measures of anonymity demonstrate the
difference in both cases, which is related to the underlying
graphs and their altered structure.

7. CONCLUSION
In this paper we have investigated mathematical tools and

used them for measuring the mixing time of directed social
graphs. Our work is mainly motivated by prior work in the
literature on building social network-based applications and
bringing insight on their operation by neglecting direction of
edges in naturally directed social graphs. These applications

Table 4: The entropy and anonymity set comparison
in directed and undirected graphs for random walk
length w = 6 and for the different datasets.

Dataset Hd
w Hu

w Ad
w Au

w

Epinion 11.236 12.554 2411 6013
Wiki-Vote 9.579 9.788 764 884
Slashdot 13.062 13.272 8551 9891
Gnutella 10.003 11.430 1026 2759

are aimed to build services to improve security aspects of dis-
tributed systems, such as in Sybil defenses and anonymous
communication. We show a consistent pattern in which di-
rected graphs are in general slower mixing than undirected
graphs for the specific parameters recommended by these
applications. Furthermore, we show that these applications
perform relatively poorly when the original property in the
directed graphs is used.

While applications built on top of social networks may
have a great potential in improving the security and relia-
bility of distributed systems, we advocate that researchers
have to pay more attention to the methods used for evalu-
ating these applications. After all, it might not be possible,
nor needed, to build a Sybil defense that accepts 95% or
99% of the honest nodes and to allow a small fraction of
Sybils [27]. We observe that for a gain of 5% in its accep-
tance rate by undermining edge directions, a Sybil defense
may hide a larger unseen cost: three folds the number of
reported accepted Sybil identities per attack edge.

Our final recommendation is that, given most of these
designs are intended for operation on undirected graphs,
it is better to use undirected graphs—plenty of which are
already available—for bringing insight on their operation
rather than massaging directed graphs. Simple alteration



of graphs may greatly affect the underlying properties used
for building such systems.
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