
HAL Id: hal-00878242
https://hal.science/hal-00878242

Submitted on 29 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimized Distributed Implementation of Multiparty
Interactions with Observation

Saddek Bensalem, Marius Bozga, Jean Quilbeuf, Joseph Sifakis

To cite this version:
Saddek Bensalem, Marius Bozga, Jean Quilbeuf, Joseph Sifakis. Optimized Distributed Implemen-
tation of Multiparty Interactions with Observation. AGERE! @ SPLASH 2012: 2nd International
Workshop on Programming based on Actors, Agents, and Decentralized Control, Oct 2012, Tucson,
Arizona, United States. pp.89-98. �hal-00878242�

https://hal.science/hal-00878242
https://hal.archives-ouvertes.fr

Optimized Distributed Implementation of
Multiparty Interactions with Observation ∗

Saddek Bensalem1 Marius Bozga1 Jean Quilbeuf1 Joseph Sifakis1,2

1 UJF-Grenoble 1 / CNRS VERIMAG UMR 5104, Grenoble, F-38041, France
2 RISD Laboratory, EPFL, Lausanne, CH-1015, Switzerland

{bensalem,bozga,quilbeuf,sifakis}@imag.fr

Abstract
Using high level coordination primitives allows enhanced
expressiveness of component-based frameworks to cope
with the inherent complexity of present-day systems de-
signs. Nonetheless, their distributed implementation raises
multiple issues, regarding both the correctness and the run-
time performance of the final implementation. We propose a
novel approach for distributed implementation of multiparty
interactions subject to scheduling constraints expressedby
priorities. We rely on new composition operators and seman-
tics that combine multiparty interactions with observation.
We show that this model provides a natural encoding for
priorities and moreover, can be used as an intermediate step
towards provably correct and optimized distributed imple-
mentations.

Categories and Subject DescriptorsF.1.1 [Theory of Com-
putation]: COMPUTATION BY ABSTRACT DEVICES;
C.5 [Computer Systems Organization]: COMPUTER SYS-
TEM IMPLEMENTATION; C.2.4 [Coputer Systems Orga-
nization]: COMPUTER-COMMUNICATION NETWORKS

Keywords multiparty interaction, priority, observation, con-
flict resolution, distributed systems

1. Introduction
Correct design and implementation of computing systems
has been an active research topic over the past three decades.
This problem is significantly more challenging in the context

∗ The research leading to these results has received funding from the Euro-
pean Community’s Seventh Framework Programme [FP7/2007-2013] un-
der grant agreement no. 248776 (PRO3D) and no 257414 (ASCENS) and
from ARTEMIS JU grant agreement ARTEMIS-2009-1-100230 (SMECY)

[Copyright notice will appear here once ’preprint’ option is removed.]

of distributed systems due to a number of factors such as
non-determinism, asynchronous communication, race con-
ditions, fault occurrences, etc. Model-based developmentof
such applications aims to ensure correctness through the us-
age of explicit model transformations.

In this paper, we focus on distributed implementation for
models defined using the BIP framework [3]. BIP (Behavior,
Interaction, Priority) is based on a semantic model encom-
passing composition of heterogeneous components. Thebe-
haviorof components is described as an automaton extended
by arbitrary data and associated functions written in C. BIP
uses an expressive set of composition operators for obtaining
composite components from a set of components. The oper-
ators are parameterized by a set ofmultiparty interactions
between the composed components and bypriorities, used
to specify different scheduling mechanisms between inter-
actions1.

Transforming a BIP model into a distributed implemen-
tation consists in addressing three fundamental issues:

1. Enabling concurrency. Components and interactions
should be able to run concurrently while respecting the
semantics of the high-level model.

2. Conflict resolution. Interactions that share a common
component can potentially conflict with each other.

3. Enforcing priorities. When two interactions can execute
simultaneously, the one with higher priority must be exe-
cuted.

We developed a general method based on source-to-
source transformations of BIP models with multiparty in-
teractions leading to distributed models that can be directly
implemented [8, 9]. This method has been later extended to
handle priorities [10] and optimized by exploiting knowl-
edge [6]. The target model consists of components repre-
senting processes and Send/Receive interactions represent-
ing asynchronous message passing. Correct coordination is

1 Although our focus is on BIP, all results in this paper can be applied to
any model that is specified in terms of a set of components synchronized by
interactions with priorities.

1 2013/10/29

achieved through additional components implementing con-
flict resolution and enforcing priorities between interactions.

In particular, the conflict resolution issue has been ad-
dressed by incorporating solutions to thecommittee coor-
dination problem[12] for implementing multiparty interac-
tions. Bagrodia [1] proposes solutions to this problem with
different degrees of parallelism. The most distributed solu-
tion is based on the drinking philosophers problem [11], and
has inspired the approaches of Pérez et al. [18] and Parrow
et al. [17]. In the context of BIP, a transformation address-
ing all the three challenges through employingcentralized
scheduleris proposed in [2]. Moreover, in [8], we propose
transformations that address both the concurrency issue by
breaking the atomicity of interactions and the conflict reso-
lution issue by embedding a solution to the committee coor-
dination problem in a distributed fashion.

Distributed implementation of priorities is usually con-
sidered as a separate issue, and solved using completely dif-
ferent approaches. For example, in [10], priorities are elim-
inated by adding explicit scheduler components and more
multiparty interactions. This transformation leads to poten-
tially more complex models, having definitely more inter-
actions and conflicts than the original one. In [4, 5, 7], the
focus is on reducing the overhead for implementing prior-
ities by exploiting knowledge. Yet, these approaches make
the implicit assumption that multiparty interactions are exe-
cuted atomically and do not consider conflict resolution. In
a similar line of work, [6] aims at detecting false conflicts,
that is, statically detected but never occurring during execu-
tion. However, this method still relies on conflict resolution
protocols, at least for states where no false conflicts exist.

In this paper, we propose a combined implementation of
the two coordination mechanisms, that is, multiparty interac-
tions and priorities. We propose an appropriate intermediate
model and transformations towards fully distributed models
dealing adequately with both of them. The contribution is
twofold:

1. First, we introduce an alternative observation-based se-
mantic model for BIP. We show that this model is gen-
eral enough to encompass priorities and multiparty inter-
actions and, moreover, to capture knowledge-based opti-
mization as in [6]. Observation-based semantics reveals
two types of conflicts occuring between interactions, that
can be handled using different conflict resolution mecha-
nisms (see below).

2. Second, this model is used in an intermediate step of a
transformation leading to a distributed implementation.
We show thatobservation conflicts, that usually follow
from encoding of priorities, can be dealt more efficiently
than structural conflicts, due to sharing of components
between multiparty interactions. We extend the counter-
based conflict resolution protocols of Bagrodia in order
to handle these types of conflicts. These extensions have

been fully implemented. We report some preliminary re-
sults on benchmarks.

The paper is organized as follows. Section 2 introduces
the main concepts of the BIP framework together with the al-
ternative observation-based composition semantics. Section
3 recalls the principles for distributed implementation ofBIP
models, focusing on conflict resolution by using counter-
based protocols. Section 4 defines the method for distributed
implementation of BIP models with observation and in par-
ticular, the necessary adaptation of the conflict resolution
protocols. Experiments are reported in Section 5. Section 6
provides conclusions and perspectives for future work.

2. Semantic Models of BIP
In this section, we present BIP[3], a component framework
for building systems from a set of atomic components by us-
ing two types of composition operators: Interaction and Pri-
ority. We then present an alternative model based on Obser-
vation that can express Priority. Finally we present a trans-
formation from a component with Observation into a equiv-
alent component with only Interaction.

Atomic Components. An atomic componentB is a la-
belled transition system represented by a tuple(Q,P, T)
whereQ is a set ofcontrol locationsor states, P is a set
of communication portsandT ⊆ Q × P × Q is a set of
transitions.

Interactions. In order to compose a set ofn atomic com-
ponents{Bi = (Qi, Pi, Ti)}i=1,n, we assume that their
respective sets of control locations and ports are pairwise
disjoint; i.e., for any twoi 6= j in {1..n}, we require that

Qi∩Qj = ∅ andPi∩Pj = ∅. We define the global setP
def
=

⋃n
i=1 Pi of ports. Aninteractiona is a set of ports such that

a contains at most one port from each atomic component.
We takea = {pi}i∈I with I ⊆ {1..n} andpi ∈ Pi. If a is an
interaction, we denote bysupport(a) the set of atomic com-
ponents that participate ina. This notation is extended to sets

of interactionsγ, that is,support(γ)
def
=

⋃

a∈γ support(a).

Priorities. Given a setγ of interactions, we define a pri-
ority as a strict partial orderπ ⊆ γ × γ. We writeaπb for
(a, b) ∈ π to express thata has lower priority thanb.

Composite Components.A composite componentπγ(B1,
. . . , Bn) (or simplycomponent) is defined by a set of atomic
components{Bi = (Qi, Pi, Ti)}i=1,n composed by a set of
interactionsγ and a priorityπ ⊆ γ × γ. If π is the empty
relation, then we omitπ and simply writeγ(B1, . . . , Bn).
A global stateq of πγ(B1, . . . , Bn) is defined by a tu-
ple of control locationsq = (q1, . . . , qn). The behavior of
πγ(B1, . . . , Bn) is a labelled transition system(Q, γ,→πγ),
whereQ =

⊗n

i=1 Qi and→γ ,→πγ are the least sets of tran-

2 2013/10/29

M S

off up

onup

onMoff M

off
upg

rb

on

onMoff M

upg

rb
off M

onM

rb
upg

lst

dwn

onS

off S

srv

ack
req

off S
onS

ack

req

rb π req

rb π ack

π

off

on

Figure 1. BIP component. Initial state is(off, dwn).

sitions satisfying the rules:

a = {pi}i∈I ∈ γ
∀i ∈ I. (qi, pi, q

′
i) ∈ Ti ∀i 6∈ I. qi = q′i

(q1, . . . , qn)
a
→γ (q′1, . . . , q

′
n)

[INTER]

q
a

−→γ q′ ∀a′ ∈ γ. aπa′ =⇒ q
a′

9γ

q
a

−→πγ q′
[PRIO]

Intuitively, transitions→γ defined by rule [INTER] specify
the behavior of the component without considering priori-
ties. A component can execute an interactiona ∈ γ iff for
each portpi ∈ a, the corresponding atomic componentBi

can execute a transition labelled bypi. If this happens,a is
said to beenabled. Execution ofa modifies atomically the
state of all interacting atomic components whereas all others
stay unchanged. The behavior of the component is defined
by transitions→πγ defined by rule [PRIO]. This rule restricts
execution to interactions which are maximal with respect to
the priority order. An enabled interactiona can execute only
if no other interactiona′ with higher priority is enabled.

Example 1. A BIP component is depicted in Figure 1 using
a graphical notation. It consists of two atomic components
namedM andS. ComponentS is a server, that may receive
requests (req) and acknowledge them (ack). ComponentM
is a manager that may perform upgrades (upg) and needs to
reboot (rb) the server for the upgrade to be done. Interac-
tions are represented using connectors between the interact-
ing ports. There are 4 unary interactions and 2 binary inter-
actions. The component goes up and down through the bi-
nary interactionson andoff respectively. Priorityrb π req,
rb π ack is used to prevent a reboot whenever a request or
an acknowledgement are possible.

2.1 Replacing Priority by Observation

According to BIP semantics, a low priority interaction is
executed only if all higher priority interactions are not en-
abled. In general, detecting such situations requires infor-
mation about components that are not involved in the low
priority interaction. We propose here an alternative seman-
tics of BIP parameterized byObservation. This semantics
makes explicit the sets of components to be observed and the

global state condition to be met for authorizing execution of
each interaction.

Observation. Given a BIP componentγ(B1, . . . , Bn), we
define an observation as a pair of functionsO = (obs, pred),
that are both defined overγ. Let a ∈ γ be an interaction ;
obs(a) is a subset of{B1, . . . , Bn} including the set of
componentsobservedby the interactiona. We require that
obs(a) ∩ support(a) = ∅. The observed components and
the support ofa are the components visible toa, that is
Va = support(a)∪obs(a). Fora ∈ γ, pred(a) is a predicate
defined on the states of components inVa.

Composite Component with Observation.A composite
component with observationOγ(B1, . . . , Bn) is defined by
a componentγ(B1, . . . , Bn) and an observationO over this
component. The behavior ofOγ(B1, . . . , Bn) is the labeled
transition system(Q, γ,−→Oγ), whereQ =

⊗n

i=1 Qi is the
set of global states, and−→Oγ is the least set of transitions
satisfying the rule:

(q1, . . . , qn)
a

−→γ (q′1, . . . , q
′
n)

pred(a) ((qi)Bi∈Va
)

(q1, . . . , qn)
a

−→Oγ (q′1, . . . , q
′
n)

[OBS]

The rule [OBS] states that a transitiona can take place
in the component with observation if it is already a valid
transition in the componentγ(B1, . . . , Bn) and if the pred-
icatepred(a) holds for the current state of components in
Va. The predicatepred(a), is a boolean expression involv-
ing atomic predicatesat(q) for each stateq ∈

⋃n

i=1 Qi. The
atomic predicateat(q) evaluates to true whenever the corre-
sponding atomic component is at stateq and to false other-
wise. The rule [OBS] requires thatpred(a) depends only on
states of components that are visible toa, that ispred(a) is a
boolean expression onat(q) predicates forq ∈

⋃

Bi∈Va
Qi.

Example 2. Figure 2 depicts a composite component with
observation. Each interaction is labeled by the set of ob-
served components and the corresponding predicate. Here,
the only interaction with additional observation isrb, with
obs(rb) = {S}. The predicate for executingrb is written
between square brackets.

Observation-based semantics violates the component en-
capsulation principle as it needs access to inner states of
components. We use components with observation as an
intermediate model towards a distributed implementation
where we exploit the locality of observation: observing only
the components visible to an interaction is sufficient to de-
cide whether the interaction can take place.

Priority vs. observation. In Figure 2, we presented an ex-
ample of composite components with observation. Note that
the predicate associated torb actually encodes the priority
rule of Figure 1, since it guarantees that norreq neitherack
are enabled when executingrb. We show that given a priority
π one can obtain an observationOπ such that the behaviors

3 2013/10/29

M S

off up

onup

onMoff M

off
upg

rb

on

onMoff M

upg

rb
off M

onM

rb
upg

lst

dwn

onS

off S

srv

ack
req

off S
onS

ack

req

off

on

rb [¬at(lst) ∧ ¬at(srv)]

{S}

Figure 2. Example of a component with observation.

of the components with priority and observation are identi-
cal.

Using at(q) predicates, we define the predicateENa

stating whether the interactiona is enabled. First, we de-
fine the predicateEN i

pi
characterizing enabledness of port

pi in a componentBi = (Qi, Pi, Ti), that is EN i
pi

=
∨

(qi,pi,−)∈Ti
at(qi). Then, the predicateENa can be de-

fined by:ENa =
∧

pi∈a EN i
pi

. Note that this predicate de-
pends only of components insupport(a).

Definition 1 (Priority Observation). Given a prioritized BIP
componentπγ(B1, . . . , Bn), we define thepriority observa-
tion Oπ = (obs, pred) for the componentγ(B1, . . . , Bn),
for each interactiona ∈ γ:

• obs(a) contains all components involved in an higher pri-
ority interactionb that do not participate ina. Formally:
obs(a) = (

⋃

aπb support(b)) \ support(a).
• pred(a) ensures that each higher priority interactionb

is not enabled. Formally,pred(a) =
∧

aπ b ¬ENb. Ob-
viously, this predicate depends only on components in
support(a) ∪ obs(a).

For the example in Figure 1, the only low-priority inter-
action isrb. For all other interactions,obs(a) andpred(a)
are respectively∅ andTrue. The component with observa-
tion obtained from the component with priority is exactly
the one depicted in Figure 2. Indeed,rb observes the com-
ponentS and the predicate on this interaction is¬at(lst) ∧
¬at(srv) = ¬ENreq ∧ ¬ENack.

Proposition 1. Given a component with priorityπγ(B1,
. . . , Bn) and the component with observationOπγ(B1,
. . . , Bn), whereOπ is constructed fromπ as specified in
Definition 1, we have−→πγ = −→Oπγ .

Proof. For each interactiona, the predicatepred(a) =
∧

a π b ¬ENb is equivalent to∀b ∈ γ a π b =⇒ q
b
9γ .

Thus the rules [PRIO] and [OBS] define exactly the same set
of transitions.

In [6], we provided a heuristic to reduce the scope of ob-
servation while preserving behavior equivalence. More pre-
cisely, this heuristic takes an observationOπ = (obs, pred)
and returns another observationO′ = (obs′, pred′), such
that

• ∀a ∈ γ |obs′(a)| ≤ |obs(a)|, the scope of the observa-
tion is reduced, and

• −→O′γ⊆−→Oπγ the obtained behavior using observa-
tionO′ is correct with respect to the original one.

Furthermore, the heuristics ensures that if the inclusion is
strict, no deadlocks are introduced. Otherwise, the obtained
component has precisely the same behavior as the original
one.

2.2 Implementing Observation with Interactions

We start from a component with observationOγ(B1, . . . ,
Bn) and translate it into an equivalent observable BIP com-
ponentγ′(B′

1, . . . , B
′
n). In order to implement observation,

each atomic component has to make explicit its current state,
both for interactions where it is involved and for interactions
where it is observed. Observation is therefore encoded by
extending interactions to observed components.

Transforming Atomic Components.Given an atomic com-
ponentB = (Q,P, T), we define the corresponding atomic
observable component as a labeled transition systemB′ =
(Q′, P ′, T ′), where:

• Q = Q′ the states are the same than in the original
component.

• P ′ = (P ∪ {obs})×Q: we add a new port denotedobs,
that will be used for observation. All ports contain the
information of the current state. We denote byp(q) the
port(p, q) ∈ P ′.

• For each transition(q, p, q′) ∈ T , T ′ contains the transi-
tion (q, p(q), q′) where the current state of the component
is explicit in the offered port. Forq ∈ Q, T ′ contains the
loop transition(q, obs(q), q) that is used when the com-
ponent is observed.

Transforming Interactions. Given a setγ of interac-
tions and an observationO = (obs, pred), we define the
new set of interactionsγ′ as follows. For each interac-
tion a ∈ γ, wherea = {pi}i∈I , we extend its support to
the componentssupport(a) ∪ obs(a) = {B′

j1
, . . . , B′

jk
},

and we denote byJ the set of indices{j1, . . . , jk}. For
each state of this set of components(qj1 , . . . , qjk) such
that pred(a)(qj1 , . . . , qjk) holds, γ′ contains the interac-
tion a(qj1 , . . . , qjk) = {p′j(qj)}j∈J , wherep′j = obsj if
Bj ∈ obs(a), that isBj is observed bya, andp′j = pj
otherwise. This transformation associates to any interaction
a of Oγ(B1, . . . , Bn) a set of interactionsa(qj1 , . . . qjk) of
γ′(B′

1, .., B
′
n), each interaction ofγ′ being enabled by states

(qj1 , . . . , qjk) satisfyingpred(a).

Proposition 2. We have−→γ′=−→Oγ by mapping the in-
teractionsa(qj1 , . . . , qjk) of γ′ to a.

Proof. The states ofOγ(B1, . . . , Bn) andγ′(B′
1, . . . , B

′
n)

are the same. The transitionq
a

−→Oγ q′ can be fired if
and only if the components visible toa, namely{Bj}j∈J ,

4 2013/10/29

are in a state(qj1 , . . . , qjk) satisfying the predicatepred(a).
In that caseγ′ contains an interactiona(qj1 , . . . , qjk). This
interaction only changes the state of participants ina, thus
we haveq

a
−→γ′ q′.

Note that the duplication of interactions can be avoided
by using models extended with variables and guards on
interactions, In that case, instead of creating a new portp(q)
for any pair inP × Q, each port exports a state variableq.
Thenpred(a) is the guard associated with the interactiona,
and depends only on variables exported by the ports involved
in a.

3. Decentralized Implementation of BIP
We provide here the principle of the method for distributed
implementation of BIP presented in [8, 9]. This method re-
lies on a systematic transformation from arbitrary BIP com-
ponents2 into distributed BIP components with Send/Recei-
ve interactions. These are binary point-to-point and directed
interactions from one sender component (port), to one re-
ceiver component (port) implementing message passing,
from the sender to the receiver. The transformation guar-
antees that the receive port is always enabled when the
corresponding send port becomes enabled, and therefore
Send/Receive interactions can be safely implemented us-
ing any asynchronous message passing primitives (e.g., MPI
send/receive communication, TCP/IP network communica-
tion, etc...).

In a distributed setting, each atomic component exe-
cutes independently and thus has to communicate with other
atomic components in order to ensure correct execution with
respect to the original semantics. Thus, a reasonable assump-
tion is that each component will publish its offer, that is the
list of its enabled ports, and then wait for a notification in-
dicating which interaction has been chosen for execution.
This is achieved by splitting each transition in atomic com-
ponents: one part sends the offer, the other part is triggered
by the notification and executes the chosen interaction.

The main difficulty when transforming a BIP component
into a distributed Send/Receive BIP component is to resolve
conflicts between simultaneously enabled interactions. Ina
centralized execution, only one entity is responsible for exe-
cuting interactions, and has exclusive access to all compo-
nents. In contrast, in a distributed setting, several entities
may be responsible for executing interactions. A conflict oc-
curs if two different entities try to execute two interactions
involving a common component. If both entities send a no-
tification to this component, then the original semantics is
jeopardized, since a component cannot participate in two
concurrently enabled interactions. For conflict resolution, a
protocol must be used in order to ensure that conflicting in-
teractions are not executed concurrently. This protocol takes
into account the offers from components and sends back no-

2 with or without priorities

tifications so that the distributed execution is correct with
respect to the original semantics.

Distributed conflict resolution boils down to solving the
committee coordination problem[12], where a set of profes-
sors organize themselves in different committees, a meeting
requires the presence of all professors to take place and two
committees that have a professor in common cannot meet
simultaneously. Different solutions have been provided, us-
ing managers [1, 12, 17, 18], circulating tokens [15], or ran-
domized algorithms without managers [14] to implement the
conflict resolution.

We first describe how atomic components are modified to
send offers and receive notifications. Then, we focus on the
Bagrodia’s solutions from [1], that use managers and coun-
ters to implement conflict resolution. Finally, we recall how
these protocols are used for building a 3-layer distributed
component.

3.1 Distributed Atomic Components

The transformation of atomic components consists in split-
ting each transition into two consecutive transitions: (i)an
offer that publishes the current state of the component, and
(ii) a notification that triggers the transition corresponding
to the chosen interaction. The offer transition publishes its
enabled ports through a set of special ports, labeledo(Off)
whereOff is the subset of enabled ports.

Definition 2 (Distributed atomic components). Let B =
(Q,P, T) be an atomic component. The corresponding
transformed atomic component isB⊥ = (Q⊥, P⊥, T⊥),
such that:

• Q⊥ = Q ∪ {⊥q |q ∈ Q} is the union ofstablestatesQ
andbusystates{⊥q |q ∈ Q}.

• P⊥ = P ∪ {o(Off)|Off ⊆ P}, whereo(Off) is a port
indicating that ports inOff ⊆ P are enabled.

• the set of transitionsT⊥ include, for every transition
τ = (q, p, q′) ∈ T :

1. an offer transition
(

⊥q, o({p|q
p

−→}), q
)

that goes
from a busy to a stable state and publishes the offer.

2. a notification transitionq
p

−→⊥q′ that goes from a
stable to a busy state and executes the transition from
the original component.

Notice that we introduced a new port for each possible
offer. This allows us to using the same model as for non-
distributed atomic components. However, as the notation
suggests, we can use a single porto with exported variables
as described in [9].

3.2 Bagrodia’s Counter-based Conflict Resolution

In Bagrodia’s solutions, the protocol is made of one or sev-
eral managers that receive offers from the atomic compo-
nents and reply with notifications.

5 2013/10/29

Centralized (Single) Manager. The first solution consists
of a single manager. In order to ensure mutual exclusion of
conflicting interactions, the protocol maintains two counters
for each atomic componentBi:

• Theoffer-countni which counts the number of offers sent
by the component. This counter is initially set to 0 and is
incremented each time an offer fromBi is received.

• The participation-countNi which counts the number
of times the component participated in an interaction.
This counter is initially set to 0 and is incremented each
time the manager selects an interaction involvingBi for
execution.

Intuitively, the offer-countni associated to an offer from
a componentBi correspond to a time stamp. The manager
maintains the last used time stamp (Ni) for each component.
If the time stamp (ni) of an offer is greater than the last used
time stamp (Ni), then the offer fromBi has not been con-
sumed yet. Otherwise, some interaction has taken place and
the manager has to wait for a new offer from this component.

Furthermore, the manager recalls the last offer sent by
each component. Thus in order to schedule an interaction,
it must check that (1) the interaction is enabled according
to the last offers received and (2) these offers are still valid
according to theni andNi counters. We define formally
the behavior of the centralized protocol as a composition
operator over distributed atomic components.

Definition 3 (Centralized Counter-based Implementation).
Given a BIP componentγ(B1, . . . , Bn) we define the be-
havior of the counter-based centralized implementation as
an infinite state LTS(Q⊥, γ⊥, T⊥) where:

• The set of statesQ⊥ is the product of the states of the
atomic components with the state of the protocol:

Q⊥ =

n
⊗

i=1

Q⊥
i ×

n
⊗

i=1

(

N×N× 2Pi

)

The state of the manager is defined byn tripletsmi =
(ni, Ni,Off i), one for each componentBi, whereni and
Ni are the values of the corresponding counters andOff i

is the last offer fromBi. We denote by(q,m) a state
of Q⊥, q[i] andm[i] represent theith component of the
tuplesq andm.

• The interactionsγ⊥ consists of interactions of the origi-
nal component and the offers:

γ⊥ = γ ∪
n
⋃

i=1

⋃

Off∈2Pi

oi(Off i)

• There are two types of transitions inT⊥:
(1) offer transitions:From state(q,m) ∈ Q⊥, there is an
offer transition inT⊥ if for some componentBi an offer
is enabled:(q[i], oi(Off), q′i) ∈ T⊥

i . ThenT⊥ contains

the transition(q,m)
oi(Off)
−→ (q′,m′), where :

q′[i] = q′i,
m′[i] = (ni + 1, Ni,Off), with m[i] = (ni, Ni,
Off i),
for all j 6= i, q′[j] = q[j] andm′[j] = m[j].

(2) execute transitions:From state(q,m) ∈ Q⊥, there
is an execute transition inT⊥ if for some interaction
a = {pi}i∈I , we have, for alli ∈ I (with m[i] =
(ni, Ni,Off i)):

pi ∈ Off i: the interaction is enabled according to the
last offers,
ni > Ni: the last offers are still valid.

Then, the transition(q,m)
a

−→ (q′,m′) is in T⊥, with:
∀i ∈ I, q′[i] is the state such that(q[i], pi, q′[i]) ∈ T⊥

i ,
∀i ∈ I, m′[i] = (ni, Ni + 1,Off i): counters of
participants are incremented.
∀j /∈ I, q′[j] = q[j] ∧m′[j] = m[j]

We show that the componentγ(B1, . . . , Bn) and the cor-
responding counter-based implementation are observation-
ally equivalent in the sense of Milner [16]. We first prove
the following lemma.

Lemma 1. If ni > Ni, then the componentB⊥
i is in a stable

stateqi andOff i = {p|qi
p

−→i}.

Proof. The construction ofB⊥
i implies that it alternates offer

and execute transitions. Initially,ni = Ni andB⊥
i is in a

busy state. The only possible transition is an offer, which
brings the system to a state whereni = Ni + 1 > Ni is
true and the offer transition ensures the property to prove.
Next possible step inB⊥

i is an execute action, after which
againni = Ni andB⊥

i is a busy state. This behavior repeats
forever.

In order to show observational equivalence, we have to
define the observable actions of both systems. For the com-
ponentγ(B1, . . . , Bn) the observable actions are the inter-
actionsγ. For the counter-based implementation, the visible
actions are the execute actionsγ. We denote byβ the offer
actions.

We define a relation between statesQ of the centralized
component and statesQ⊥ of its distributed implementation.
To each stateq⊥ ∈ Q⊥ of the distributed implementation,
we associate a statee(q⊥) ∈ Q of the original component.
For each componentB⊥

i , q⊥[i] is either a stable stateqi or a
busy state⊥qi . In both cases, we takee(q⊥)[i] = qi. We say
that a stateq ∈ Q andq⊥ ∈ Q⊥ are equivalent, denoted by
q⊥ ∼ q, if q = e(q⊥).

Proposition 3 (Correctness of Centralized Counter-based
Implementation). Given a componentγ(B1, . . . , Bn), the
labeled transitions systems(Q, γ, T) and (Q⊥, γ⊥, T⊥) of
its distributed implementation are observationally equiva-
lent.

Proof. We have to prove that:

6 2013/10/29

1. If q⊥
β

−→ r⊥, then∀q ∼ q⊥, r ∼ q⊥.
2. If q⊥

a
−→ r⊥, then∀q ∼ q⊥, ∃r ∈ Q q

a
−→γ r ∧ r ∼

r⊥.

3. If q
a

−→ r, then∀q⊥ ∼ q, ∃r⊥ ∈ Q⊥ q⊥
β∗a
−→ r⊥ ∧ r ∼

r⊥.

1. This is a consequence of the definition of∼.
2. The transition(q⊥, a, r⊥) is possible at stateq⊥ ∈ Q⊥ if
for each participantBi in the interaction, the counters verify
ni > Ni, and for each portpi ∈ a, we havepi ∈ Off i.
The Lemma 1 ensures that in the equivalent stateq ∈ Q, we
have as wellq

a
−→ r. The construction of distributed atomic

components ensures thatr ∼ r⊥.
3. If q

a
−→ r, then for each stateq⊥ ∼ q, each participantBi

in a is either in a busy or in a stable state. In the first case, it
can perform an offer transition, labeledβ, and reach a stable

state. By point 1., the stable stateq′⊥ such thatq⊥
β∗

−→ q′
⊥

is also equivalent toq. At stateq′⊥, all offers transitions for

a have been executed and we haveq⊥
β∗

−→ q′
⊥ a
−→ r⊥, with

r⊥ ∼ r.
In Definition 3, the enabling of offer transitions depends

exclusively on the state of the component sending the offer.
Similarly, the enabling of execute transitions is decided by
the manager alone. Thus we can assume an asynchronous
execution where an offer transition is executed first by the
atomic component, by sending a message and then by the
manager when receiving the message. Similarly, the execute
transitions are performed after the manager sends messages
to components involved in the interaction.

Decentralized (Multiple) Manager(s). In [1], Bagrodia
decentralizes the manager into a set of distributed managers,
also relying on counters to ensure correct execution of the
interactions. The correctness is guaranteed as long as each
manager can check and modify atomically all theNi coun-
ters corresponding to an interaction. Bagrodia proposes two
protocols guaranteeing this atomicity:

• The token ring protocol, where a token circulates through
all managers. This token stores theNi counters for the
whole system, which guarantees atomic access for each
manager.

• The dining philosophers protocol, where two interactions
that involve a common component share a fork with a
copy of theNi counter on it. In order to execute an
interaction, the manager needs to acquire all forks and
can then check and update if necessary allNi values
simultaneously.

It can be shown that these protocols are trace equivalent
with the centralized implementation [9]. However, they are
not observationally equivalent with the centralized imple-
mentation, since the position of the token or of the forks may
prevent some choices to be made (see [9] for details).

3.3 3-layer Distributed Architecture

The obtained distributed components must meet the follow-
ing three properties: (1) preserve the behavior of each atomic
component, (2) preserve the behavior of interactions, and
(3) resolve conflicts in a distributed manner. To ensure these
properties, we structure distributed components according to
a hierarchical architecture with three layers. The lower layer
includes the transformed atomic components. The second
layer deals with distributed interaction execution by imple-
menting interaction protocols (IP). The third layer deals with
conflict resolution. Since several distributed algorithmsexist
for conflict resolution, this layer is generic with appropriate
interfaces. An example of 3-layer architecture obtained from
the component presented in Figure 1 is depicted in Figure 3.

M
⊥

oMrb off
M

upg onM

S
⊥

oSoff
S
onS req ack

IP1

oMnrbnupg

rsv ok f

IP2

oM oSnon noff

rsv ok f

IP3

oS nreq nack

rsv ok f

CRP

Figure 3. 3-layer distributed implementation of component
from Figure 1.

Components Layer. This layer contains the distributed
version of the atomic components, as described in section
3.1. In Figure 3, it corresponds to componentsM⊥ andS⊥.

Interaction Protocol. This layer consists of a set of inter-
action protocols each hosting a set of interactions from the
original BIP component. Conflicts between interactions in-
cluded in the same interaction protocol are resolved by that
component locally. On Figure 3,IP1 handles interactionupg
andrb, IP2 handleson andoff , andIP3 handlesreq and
ack .

The interaction protocol evaluates the guard of each inter-
action and executes the code associated with an interaction
that is selected locally or by the upper layer. The interface
between this layer and the component layer provides ports
for receiving offers from each component (through ports
such asoM) and notifying the components on permitted port
for execution (through ports such asnon). Sender ports are
denoted by triangles and receiver ports by bullets. Interac-
tions with one sender and multiple receivers means that the
sender sequentially sends a message to each receiver.

Conflict Resolution Protocol. This algorithm embeds one
of the Bagrodia’s counter-based protocols as presented in the
previous section. The protocols have been slightly modified
since managers do not receive offers one by one from com-
ponents but instead receive the set of offers correspondingto

7 2013/10/29

an interaction sent by one of the interaction protocols. The
protocol can either be centralized, or distributed e.g. token
ring or dining philosophers. The interface between this layer
and the Interaction Protocol involves ports for receiving re-
quests toreservean interaction (labelledrsv) and respond-
ing by either success (labelledok) or failure (labelledf).

4. Distributed Implementation of
Observational Semantics

Applying the transformation presented in Subsection 2.2 fol-
lowed by the distribution method presented in 3 allows to
obtain a distributed model from a component with obser-
vation. This method leads to amultiparty-basedimplemen-
tation. We show here that a multiparty-based implementa-
tion is costly, as it treats all observation conflicts as struc-
tural conflicts. We propose an optimized version of Bagro-
dia’s counter-based protocol presented in the previous sec-
tion, that allows us to build anobservation-awareimplemen-
tation.

4.1 Observation Conflicts

Using the transformation presented in 2.2, we can transform
a component with observation into a observable component.
This transformation implements observation of components
through new ports denotedobs. However, it introduces new
structural conflicts between interactions on the observation
portsobs.

B2
q

p

p

c
.

B1

p1

a [at(q)]

{B2}
. . .

B3

p3

b [at(q)]

{B2}
. . .

Figure 4. Model with observation.

As an example, consider the model depicted in Figure 4.
It contains three atomic components and three fragments of
interaction. Interactionsa andb observe the atomic compo-
nentB2. Execution ofa or b will not change the state ofB2

since none of its transitions is involved. Intuitively,a andb
can be executed in parallel, they do not really conflict. How-
ever, execution ofc changes the state of the atomic compo-
nentB2 and may disable the predicate associated toa or b.
Thusa andc cannot be executed simultaneously. They are
conflicting.

This type of conflicts also appears in transactional memo-
ries [13]. In this context, different transactions (interactions)
can simultaneously read (observe) a variable (an atomic
component), but writing on a variable (executing a transi-
tion) requires exclusive access to the variable.

When we transform such a model with observation into a
observable model, as described in subsection 2.2, we obtain

B2

q

p(q)

obs(q)

p(q)

c
.

obs(q)

B1

p1(q1)

. . .

a(q1, q, . . .)

B3

p3(q3)

. . .

b(q, q2, . . .)

Figure 5. Observable model obtained from the model with
observation in Figure 4.

the model depicted in the Figure 5. The observation is im-
plemented by adding a new portobs(q) and extending inter-
actionsa andb to that new port. In this model,B2 becomes
a participant in the interactionsa andb by executing a loop
transition. This results in a structural conflict betweena and
b.

The 3-layer distributed implementation generated from
a component obtained with the transformation presented in
Subsection 2.2 involves an unnecessarily high number of
exchanged messages. Consider the model presented in Fig-
ure 5. Execution of interactiona followed by interactionb
requires at least 4 messages between the componentB2 and
the protocol. Indeed, each interaction requires at least one
offer and one notification. These four messages could be re-
placed by a single one, indicating thatB2 is at stateq to the
protocol, since the componentB2 does not need to be noti-
fied when it is observed.

4.2 Counter-based Conflict Resolution for Observation

The transformation from a component with observation to
an observable component adds new conflicts and results in a
message-inefficient distributed implementation. In orderto
avoid this, we modify the conflict resolution protocol to take
observation into account. The particularity of observation
is checking that a component is at a particular state, with-
out state change. This differs from multiparty interactions,
where observation is combined with state change.

The proposed adaptation of the counter-based protocol
presented in Definition 3 can be reused in the 3-layer BIP
model to encompass observation and thus priority.

This adaptation relies on the following key facts:

• Observation of a component does not imply state change.
Freshness of the offer from a component (the observa-
tion) is still validated by checkingni > Ni. However,
upon execution of an interaction, theNi counters cor-
responding to the observed components are not incre-
mented. Thusni > Ni still holds and another interaction
observing the same component can still take place.

• The state predicates need to be checked. This assumes
that every component sends its local state with its offer
and that the manager knows the state predicate for each
interaction.

8 2013/10/29

Definition 4. Given a BIP component with observation
Oγ(B1, . . . , Bn) we define the behavior of the adapted
counter-based centralized implementation as an infinite state
LTS (Q⊥, γ⊥, T⊥) where:

• The set of statesQ⊥ is the product of the states of the
atomic components with the state of the protocol:

Q⊥ =

n
⊗

i=1

Q⊥
i ×

n
⊗

i=1

(

N×N× 2Pi ×Qi

)

The state of the manager is defined byn quadruples
mi = (ni, Ni,Off i, qi), one for each componentBi,
whereni and Ni are the values of the corresponding
counters,Off i is the last offer fromBi andqi is the last
known state fromBi. We denote by(q,m) a state ofQ⊥,
q[i] andm[i] represent theith element of the tuplesq and
m.

• The interactions ofγ⊥ include the interactions from the
original component and the offers:

γ⊥ = γ ∪
n
⋃

i=1

⋃

Off∈2Pi

oi(Off i)

• There are two types of transitions inT⊥:
(1) offer transitions:From state(q,m) ∈ Q⊥, there is an
offer transition inT⊥ if for some componentBi an offer
is enabled:(q[i], oi(Off), q′i) ∈ T⊥

i . That is,T⊥ contains

the transition(q,m)
oi(Off)
−→ (q′,m′), where:

q′[i] = q′i,
m′[i] = (ni + 1, Ni,Off , q[i]) (with m[i] = (ni, Ni,
Off i, qi),
for all j 6= i, q′[j] = q[j] andm′[j] = m[j].

(2) execute transitions:From state(q,m) ∈ Q⊥, there
is an execute transition inT⊥ if for some interaction
a = {pi}i∈I , we have, for alli ∈ I (with m[i] =
(ni, Ni,Off i, qi)):

pi ∈ Off i: the interaction is enabled according to the
last offers,
ni > Ni: the last offers are still valid.

Furthermore, we require thatpred(a)((qi)Bi∈Va
) holds.

Then, the transition(q,m)
a

−→ (q′,m′) is in T⊥, with:
∀i ∈ I, q′[i] is the state such that(q[i], pi, q′[i]) ∈ T⊥

i ,
∀i ∈ I, m′[i] = (ni, Ni + 1,Off i, qi): counters of
participants are incremented.
∀j /∈ I, q′[j] = q[j] ∧m′[j] = m[j]

As for the counter-based implementation, we prove the
correctness of the adapted version using Milner’s observa-
tional equivalence.

Proposition 4 (Correctness of adapted Counter-based Im-
plementation). Given a componentOγ(B1, . . . , Bn), the la-
beled transitions systems(Q, γ, T) and(Q⊥, γ⊥, T⊥) of its
distributed implementation are observationally equivalent.

The proof has the same structure as for the Proposition 3,
and uses the same equivalence relation. The only difference
is in points 2. and 3. where we have to take into account
the additional enabling condition. More precisely, we have
to show that the truth value of the enabling condition is pre-
served by the equivalence relation restricted tostablestates.
This is obtained by considering the counters of observed
components.

The correctness is guaranteed through the fact that check-
ing the freshness of offers sent by visible components and
incrementing the counters of participant components is an
atomic action. Thus as for Bagrodia’s original version, the
manager can be distributed provided this atomicity is en-
sured, either by the token ring or by the dining philosophers
solutions.

B1 B3 P B2

o(p3) o(p, o
bs)o(p1)

a

p1
obs

o()

bp3 obs
o()

c
p

Multiparty-based
implementation

B1 B3 P B2
o(p3) o(p)

o(p1)

a
p1

bp3
c p

Observation-aware
implementation

Figure 6. Exchanges of messages to execute the sequence
a, b, c in the model of Figure 4, for the two implementations.

Example 3. To illustrate the behavior of this new protocol,
consider again the model depicted in Figure 4. We obtain a
multiparty-based implementation by transforming it into the
model of Figure 5 and then using the original protocol from
Bagrodia. The modified protocol presented here allows to
obtain an observation-aware implementation directly from
the model in Figure 4. In Figure 6, we compare the behavior
of the two approaches, when executing the interaction se-
quencea, b, c. On the left, we show the messages exchanged
in the multiparty-based implementation. On the right we
show the messages exchanged in the observation-aware im-
plementation. For each process (the distributed components
Bi and the protocolP) Figure 6 presents the sequence of
messages received and sent. The black circles indicate that
an interaction is scheduled by the Protocol. Note that the
componentB2 is observed bya andb and is participant inc.
With the multiparty-based implementation, the observation
is treated as a participation. Both execution ofa andb trig-
ger the emission of a notification (obs) to B2 followed by
a new offer (o()). With the observation-aware implementa-
tion, the first offer sent byB2 is observed but not consumed
bya andb. So, there is no need to send notifications and wait
for corresponding offers. Only the execution ofc consumes
the offer. For this particular configuration, the new protocol
spares 4 messages and increases parallelism sinceb and c

9 2013/10/29

thinking

eating

eat

cleaning
clnl

clnr

clnl clnr

eatPi

free

used

cln eat

eat

cln

Fi

free

used

cln eat

eat

cln

Fi+1

eatieati−1

Ei

eati+1

cleanlefti cleanrighticleanrighti−1 cleanlefti+1

Ci Ci+1

Figure 7. Fragment of the dining philosopher component.
Braces indicate how interactions are grouped into interaction
protocols.

can be launched directly aftera, without waiting for a new
offer.

The observation-aware implementation is more message-
efficient than the multiparty-based implementation. If there
is no observation, both implementations behave exactly the
same. If there is an observation, executing the observing in-
teraction results in the emission of a notification to each ob-
served component in the multiparty-based implementation.
This notification is not generated in the observation-aware
implementation. Moreover, in the observation-aware imple-
mentation, an offer may be shared between several interac-
tions observing the same component, reducing further the
overall number of messages.

5. Experiments
We compare the execution time and the number of ex-
changed messages for several distributed implementations
of a component with priority. The first step involves trans-
formation of this component into a component with obser-
vation. Then we consider the two following sequences of
transformations.

• Transform the component with observation into an ob-
servable component as explained in Subsection 2.2. Then
generate a 3-layer distributed model embedding Bagro-
dia’s conflict resolution protocol described in Subsec-
tion 3.2. This method results in a multiparty-based im-
plementation.

• Directly transform the component with observation into
a 3-layer distributed model embedding the modified con-
flict resolution protocol described in Subsection 4.2. This
method results in a observation-aware implementation.

For both implementations, we used the centralized ver-
sion of the conflict resolution protocol.

5.1 Dining Philosophers

We consider a variation of the dining philosophers prob-
lem, denoted by PhiloN whereN is the number of philoso-
phers. A fragment of this composite component is presented
in Figure 7. In this component, an “eat” interactioneat i in-
volves a philosopher and the two adjacent forks. After eat-
ing, philosopherPi cleans the forks one by one (cleanleft i
thencleanright i). We consider that eacheat i interaction has
higher priority than anycleanleft j or cleanright j interac-
tion.

This example has a particularly strong priority rule. In-
deed, executing one “clean” interaction requires to check
thatall “eat ” interactions are disabled, that is to observe all
components. This example allows to compare both imple-
mentations under strong priority constraints.

As explained in Section 3.3, the construction of our dis-
tributed implementation is structured in 3 layers. The second
layer is parameterized by a partition of the interactions. For
this example, the partition is built as follows. There is onein-
teraction protocolEi for everyeati interaction and one inter-
action protocolCi for every paircleanright i−1, cleanleft i.
Only the latter deals with low priority interactions that need
to observe additional atomic components.

We compare multiparty-based and observation-aware im-
plementations. For both, once we have built the distributed
components, we use a code generator that generates a stan-
dalone C++ program for each atomic component. These pro-
grams communicate by using Unix sockets.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

philo3 philo4 philo5 philo6 philo7 philo8 philo9

N
um

be
r

of
 in

te
ra

ct
io

ns
 d

ur
in

g
60

s

Example

Multiparty-based
Observation-aware

Figure 8. Number of interactions executed in 60s for the
dining philosophers example.

The obtained code has been run on a UltraSparc T1 that
allows parallel execution of 24 threads. For each run, we
count the number of interactions executed and messages
exchanged in 60 seconds, not including the initialization
phase. For each instance we consider the average values
obtained over 10 runs. The number of interactions executed
by each implementation is presented in Figure 8. The total
number of messages exchanged for the execution of each
implementation is presented in Figure 9.

10 2013/10/29

 0

 500000

 1e+06

 1.5e+06

 2e+06

philo3 philo4 philo5 philo6 philo7 philo8 philo9

N
um

be
r

of
 m

es
sa

ge
s

du
rin

g
60

s

Example

Multiparty-based
Observation-aware

Figure 9. Number of messages exchanged in 60s for the
dining philosophers example.

The comparison of the two implementations shows a
huge difference both in performance (number of interac-
tions executed) and communications needed (total number
of messages exchanged). The observation-aware implemen-
tation is fastest and needs fewer messages than multiparty-
based implementation. This can be explained as follows. In
both cases,eat i interactions can execute in parallel, pro-
vided they do not involve a common fork. However, re-
solving priority conflicts requires to observe all components
for executing acleanlefti or a cleanrighti interaction. In
the multiparty-based implementation, observed components
must synchronize to execute some interactioncleanlefti or
cleanrighti . Between two “clean” executions, each compo-
nent has to receive a notification and to send a new offer.
This strongly restricts the parallelism. In the observation-
aware implementation, a component offer is still valid after
execution of an interaction observing that component. For
a “clean” interaction, only two components will need to
send a new offer before another “clean” interaction can be
executed. This explains the speedup.

5.2 Jukebox

The second example is a jukebox depicted in Figure 10. It
represents a system, where a set of readersR1 . . . R4 access
data located onN disksD1 . . .DN . Readers may need to
access any disk. We denote by jukeboxN the jukebox com-
ponent withN disks. Access to disks is managed by juke-
boxesJ1, J2 that can load any disk to make it available to
the connected readers. The interactionloadi,k (respectively
unloadi,k) allows loading (respectively unloading) the disk
Di in the jukeboxJk. Each readerRj is connected to a
jukebox through thereadj interaction. Once a jukebox has
loaded a disk, it can either take part in a “read” or “unload”
interaction. Each jukebox repeatedly loads allN disks in a
random order.

If unload interactions are always chosen immediately af-
ter a disk is loaded, then readers may never be able to read
data. Therefore, we add the priorityunloadi,k π readj , for

all i, j, k. This ensures that “read” interactions will take
place before corresponding disks are unloaded. Furthermore,
we assume that readers connected toJ1 need more often
disk 1 and that readers connected toJ2 need more often
disk 2. Therefore, loading these disks in the corresponding
jukeboxes is assigned higher priority:loadi,1 π load1,1 for
i ∈ {2, 3} andloadi,2 π load2,2 for i ∈ {1, 3}. Each interac-
tion is handled by a dedicated interaction protocol.

D1

load unload

D2

load unload

D3

load unload

J1

load unload

data

read

R1

read

R2

J2

load unload

data

read

R3

read

R4

Figure 10. Jukebox component with 3 discs.

Compared to the Dining Philosopher example, this one
has more localized priorities, in the sense that they do not
require to observe the global state of the system. Here a
priority rule is used to express a scheduling policy that aims
to improve the efficiency of the system, in terms of “read ”
interactions. Generating the same example without taking
priority into account results in an implementation that does
less “read ” interactions.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

jukebox3 jukebox4

N
um

be
r

of
 in

te
ra

ct
io

ns
 d

ur
in

g
60

s

Example

Multiparty-based
Observation-aware

Figure 11. Number of inter-
action executed in 60s for the
jukebox example.

 0

 50000

 100000

 150000

 200000

 250000

 300000

jukebox3 jukebox4

N
um

be
r

of
 m

es
sa

ge
s

du
rin

g
60

s

Example

Multiparty-based
Observation-aware

Figure 12. Number of mes-
sages exchanged in 60s for
the jukebox example.

We performed the same measurements, in the same con-
ditions as for the previous example. The number of interac-
tions executed in 60s is presented in Figure 11. Here per-
formance of both versions is the same. The main reason
is that no or few parallelism is allowed between low pri-
ority interactions, i.e. two “unload ” interactions from the
same jukebox cannot be launched sequentially and run in
parallel since they involve the same jukebox. However, Fig-
ure 12 shows that fewer messages are exchanged, with the

11 2013/10/29

observation-aware implementation. Intuitively, this differ-
ence corresponds to the notifications and subsequent offers
to and from observed components, that are not necessary
with the observation-aware implementation.

6. Conclusion
We proposed different methods of generating a distributed
implementation for multiparty interactions with observation.
The proposed model ensures enhanced expressiveness as the
enabling conditions of an interaction can be strengthened
by state predicates of components non participating in that
interaction. It directly encompasses modeling of priorities
which are essential for modeling scheduling policies. We
have proposed a transformation leading from a model with
observation into an equivalent model with interactions. The
transformation consists in creating events making visible
state-dependent conditions.

Expressing observation by interactions allows the appli-
cation of existing distributed implementation techniques,
such as the one presented in [9]. We have proposed an op-
timization of the conflict resolution algorithm from [1] that
takes into account the fact that an observed component does
not participate in the observing interaction. Preliminaryex-
periments show significant performance improvement of this
optimized implementation method.

Future work directions include the study of knowledge-
based techniques [6] for efficient conflict resolution, in par-
ticular by minimizing the set of the observed components
for each interaction. We also plan to study optimized imple-
mentations of systems with multiparty interaction and ob-
servation, for other implementations based on other conflict
resolution protocols, such asα-core [18].

References
[1] R. Bagrodia. Process synchronization: Design and perfor-

mance evaluation of distributed algorithms.IEEE Transac-
tions on Software Engineering (TSE), 15(9):1053–1065, 1989.

[2] A. Basu, P. Bidinger, M. Bozga, and J. Sifakis. Distributed se-
mantics and implementation for systems with interaction and
priority. In Formal Techniques for Networked and Distributed
Systems (FORTE), pages 116–133, 2008.

[3] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous
real-time components in BIP. InSoftware Engineering and
Formal Methods (SEFM), pages 3–12, 2006.

[4] Ananda Basu, Saddek Bensalem, Doron Peled, and Joseph
Sifakis. Priority scheduling of distributed systems based
on model checking. Formal Methods in System Design,
39(3):229–245, 2011.

[5] S. Bensalem, M. Bozga, S. Graf, D. Peled, and S. Quinton.
Methods for knowledge based controlling of distributed sys-
tems. InAutomated Technology for Verification and Analysis
- 8th International Symposium, ATVA 2010, Proceedings, vol-
ume 6252, pages 52–66. Springer, September 2010.

[6] S. Bensalem, M. Bozga, J. Quilbeuf, and J. Sifakis.
Knowledge-based distributed conflict resolution for multi-

party interactions and priorities. InFMOODS/FORTE, pages
118–134, 2012.

[7] Saddek Bensalem, Doron Peled, and Joseph Sifakis. Knowl-
edge based scheduling of distributed systems. InEssays in
Memory of Amir Pnueli, pages 26–41, 2010.

[8] B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, and
J. Sifakis. From high-level component-based models to dis-
tributed implementations. InEMSOFT, 2010.

[9] B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, and
J. Sifakis. A framework for automated distributed implemen-
tation of component-based models.Distributed Computing,
25(5):383–409, 2012.

[10] B. Bonakdarpour, M. Bozga, and J. Quilbeuf. Automated
distributed implementation of component-based models with
priorities. InEMSOFT, pages 59–68, 2011.

[11] K. M. Chandy and J. Misra. The drinking philosophers prob-
lem. ACM Transactions on Programming Languages and Sys-
tems (TOPLAS), 6(4):632–646, 1984.

[12] K. M. Chandy and J. Misra. Parallel program design: a
foundation. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1988.

[13] Maurice Herlihy and J. Eliot B. Moss. Transactional memory:
architectural support for lock-free data structures.SIGARCH
Comput. Archit. News, 21(2):289–300, May 1993.

[14] Y.-J. Joung and S. A. Smolka. Strong interaction fairness via
randomization.IEEE Trans. Parallel Distrib. Syst., 9(2):137–
149, 1998.

[15] D. Kumar. An implementation of n-party synchronization
using tokens. InICDCS, pages 320–327, 1990.

[16] R. Milner. Communication and concurrency. Prentice Hall
International (UK) Ltd., Hertfordshire, UK, 1995.

[17] J. Parrow and P. Sjödin. Multiway synchronizaton verified
with coupled simulation. InInternational Conference on
Concurrency Theory (CONCUR), pages 518–533, 1992.

[18] J. A. Pérez, R. Corchuelo, and M. Toro. An order-
based algorithm for implementing multiparty synchroniza-
tion. Concurrency and Computation: Practice and Experi-
ence, 16(12):1173–1206, 2004.

12 2013/10/29

