
ISTAR - AN INTEGRATED 
PROJECT SUPPORT ENVIRONMENT 

Mark Dowson 
Imperial Software Technology 

60 Albert Court Prince Consort Road 
London SW7 2BH ENGLAND 

1. INTRODUCTION 

The need for comprehensive support for the 
sys tern development process has been 
recognised for some time. But while thete is 
now a wide variety of tools to aid various 
development activities, Integrated Project 
Support Environments (IPSEs) providing 
comprehensive support for every aspect of 
software and system production are in short 
supply. 

Part of the reason for this is that most attempts 
to build support environments have been 
bottom up. Starting with language specific tools 
(compilers, linkers, loaders) they have added a 
superstructure of programming language 
oriented tools (editors, command interpreters) 
and run into difficulties providing an adequate 
database and integrating more general project 
support tools. 

Imperial Software Technology (IST) has adopted 
the opposite approach. Over the last two years 
IST has been developing ISTAR, an integrated, 
language independent, project support 
environment. The ISTAR design process started 
with a definition of the overall requirements for 
software project support and the associated 
database needs. It has led to the development 
of a comprehensive environment that supports 
every aspect of software production throughout 
the life cycle, encompassing project 
management, data and configuration 
management and technical development. 

Permission to copy without fee all or part of this ~atcriai is granted provided 
that the copies are not made or distributed for direct commercial advantage, 
the ACM copyright notice and the title of the publication and its date appear, 
and notice is given that copyins is by permission of the Association for 
Computing Machinery. To copy otherwise, or to republish, requires a fee and/ 
or specific permission. 

01986 ACM o-69791-212-a/86/oor2/027 7% 

A key design objective for ISTAR was to provide 
the ability to smoothly integrate sets of ‘foreign’ 
tools as workbenqhes that exploit ISTAR’s user 
interface and data management facilities. This 
ability has been exploited to include 
workbenches for languages such as C and 
Pascal, using existing compilers and other 
language oriented tools. 

This approach has now been extended to Ada. 
The ISTAR Ada workbench includes a validated 
compiler, and an (initially small) selection of 
Ada oriented tools. The Ada workbench can be 
used with the other iSTAR tools to provide 
comprehensive support for Ada system 
development projects. ISTAR is thus one of the 
closest approaches to date to a full APSE. 

Other ISTAR features include a high degree of 
portability, and the ability to support 
distributed projects where development is 
conducted on a network of host machines. 

ISTAR is currently commercially available on a 
variety of machines running the Unix operating 
system. Implementations for other operating 
systems are planned for the near future. 

2. THE ISTAR APPROACH 

ISTAR is organised to support a powerful but 
extremely general approach to software and 
system development, the con tmctual approach. 

This approach is based on the recognition that 
every activity in the software process has the 
character of a contract. That is, an activity is 
conducted by a ‘contractor’ eg a programmer or 
team of programmers, for a ‘client’ eg a 
manager. Each activity must have precisely 
specified deliverables and well defined 
acceptance criteria for them. In addition, the 
client may impose other ‘contractual’ conditions, 
such as schedules, reporting requirements and 
technical or management standards that must be 
followed by the contractor. 

27 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F24208.24212&domain=pdf&date_stamp=1987-01-01


CLIENT 
specification deliverables 
:reP&p reports 

schedule 
reporting 
requirements 
standards II 

I CONTRACT 
I 

Where the size or complexity of a contract 
warrants, the contractor is free to issue 
‘subcontracts’ to help fulfil the original contract; 
the subcontractors may themselves issue ‘sub- 
subcontracts’ and so on. 

The collection of tasks that compose a complete 
software project forms a contract hierarchy. At 
the root of this hierarchy is the contract for the 
project as a whole. The leaves of the hierarchy 
are the self-contained contracts which are 
-completed without letting subcontracts. The 
intermediate nodes of the hierarchy are 
subcontracts that themselves let subcontracts. 
Eventually all the subcontractors will complete 
their assigned tasks, allowing completion of the 
original contract. 

CLIENT 

XyT-‘,, tc, 
I CONTRACT 
I II 

CONTRACT 
I 

‘-ml- 
This view. does not impose a particular project 
organisation, or commit the project to a 
particular model of software development. For 
example, separate subcontracts could be let for 
‘specification’, ‘design’, ‘coding’, ‘testing’, etc; 
alternatively, different subcontracts could each 
be for the complete development of a specific 
part of the system. However, the approach does 
place some constraints on the ways in which 

projects can be conducted; in particular it 
forbids project organisations in which tasks are. 
ill-defined and no one has specific responsibility 
for executing them. 

Explicit adoption of the contractual approach 
allows a substantial simplification of the 
infrastructure needed for software project 
support. Each task can proceed autonomously, 
recording all relevant information in a strictly 
local ‘contract database’. In addition, formal 
channels of communication between tasks are 
well defined. and correspond to the 
organisation of the particular project. 

3. THE ISTAR FRAMEWORK 

ISTAR consists of two main parts; a framework 
and a set of tools. The ISTAR framework 
directly supports the contractual approach 
described in the previous section by 
maintaining an independent contract database 
for each individual contract within a project. 
When a new project is initiated, a database is 
created for the root contract of that project, and 
as new subcontracts are let so new databases 
are created for those contracts. Thus a direct 
one- to-one correspondence is maintained 
through the course of the project between a 
project’s contract hierarchy (organisation) and 
the hierarchy of contract databases. 

True distributed working, either locally or 
multi-site, is possible by spreading the 
hierarchy of contract databases over a network 
of host machines. Work on each contract can 
proceed autonomously, using the full resources 
of ISTAR. The majority of tasks, such as 
contract planning and coordination, and all 
technical development tasks, are internal to a 
single contract. The tools that support these 
tasks operate solely within the confines of the 
current contract database. 

kstatiol 

..A A! 
--s--s 

u;l DB / 
L - -- --mm- -- 

28 



The remaining tasks involve interaction between 
contracts, in order to initiate a subcontract by 
assigning it to a particular user at a particular 
host and creating a new contract database, 
monitoring its progress, collecting the 
subcontract deliverable, and so on. The tools 
that support these tasks still operate primarily 
on the current contract, but they also use 
communication facilities to transfer data to and 
from other contract databases in the hierarchy. 
These operations are relatively infrequent: thus 
the communication bandwidth between contract 
databases does not have to be high and 
communication can be via local or wide area 
network or even by physical transfer of media. 
The resources available to work on each 
individual contract have four main components: 
the database system which includes the contract 
database itself and a database interface: a 
comprehensive user interface system; a 
communication system to transfer information 
to and from other contract databases in the 
hi.erarchy; and a set of tools. 

ISTAFt FRAMEWORK ISTAFt TOOLSET 

SUBCONTRACTORS 

A friendly and consistent interface is important 
if an environment is to be used effectively. The 
basis of the ISTAR user interface is an ‘office 
automation’ quality multi-window text editor 
which also functions as a forms editor (with 
local validation of entered information) and as a 
general syntax directed editor for structured 
notations. The ISTAR user employs this editor 
for all interactions with the ISTAR framework 
and ISTAR tools. Windowing is handled by a 
general purpose, VT100 compatible, window 
management system which supports overlaid 
windows, pop-up menus and so on. Users are 
thus employing the same interface for all 
activities whether, for example, they are 
entering a free text description, writing a 
program, typing a command or filling in a 
compiler option selection form. 

The user interface also provides a small set of 
standard ISTAR ‘function keys’ which invoke 
tool independent operations such as movement 
between screen windows, display of help 
information and so on. Display of charts, block 
diagrams etc is supported (on vector or bit- 
mapped terminals) by a CKS based graphical 
presentation system. 

4 ISTAR TOOLS 

4.1 INTRODUCTION 

While the ISTAR framework does not, itself, 
constrain the choice of tools that may be used 
to execute projects, an unstructured collection 
of tools would not provide coherent support for 
the system development process. The initial 
ISTAR tool set - and in particular the project, 
resource and data management tools - has been 
designed to supply this coherent support. 

Every task in a project requires some degree of 
planning, scheduling and resourcing. Task 
execution may produce ‘deliverables’ that need 
to be placed under configuration control and 
checked for quality. Task progress needs to be 
monitored, and reports on progress may be 
required. The figure below shows the 
relationship between these activities in the 
context of a single ISTAR contract. It should be 
stressed that ISTAR does not enforce the 
sequence of activities shown, but simply 
provides support for them if required. The only 
constraint is that any data exported to other 
contracts must pass through the contract 
database and comes under ISTAR configuration 
control. 

DEVELOPMENT ACTIVITIES 

T ITRATEQIC ?lmmnc NmcotmRoL 

l--------- 

l 
b 4 

SunrRspaD 

29 



ISTAR tools are grouped into workbenches - 
coordinated sets of related tools. Project and 
Resource Management ‘workbenches are 
available to plan and schedule the work, to 
assign it to project personnel and to monitor 
progress; a variety of Technical Development 
workbenches support the development process 
from requirement capture through to final 
implementation: and a comprehensive set of 
configuration management and quality control 
tools provide a secure environment for building 
high quality, maintainable, systems. 

An ISTAR user invokes a selected workbench on 
a particular contract. Thereafter, and until the 
end of ,the session, all the tools that are part of 
that workbench are available to operate on the 
contents of the database. A few tools, such as 
electronic mail, are always available, and can be 
regarded as part of every workbench. 

Workbenches are flexible and extendible. For 
example, while the estimating tool in the current 
version of the Project Management workbench is 
based on COCOMO. there is nothing to prevent 
the substitution (or addition) of another 
estimating tool based on a different method. 
This capability allows ISTAR as a whole to 
evolve either to match changing needs or as 
new methods and the tools to support them are 
developed. It also allows ISTAR to be tailored 
to the requirements of a particular organisation, 
perhaps incorporating familiar tools, wlthout 
losing its essential coherence. Direct support 
for this evolutionary development is provided 
by the ISTAR tool building tools. 

4.2 BUILDING ISTAR TOOLS 

ISTAR employs both specially developed tools 
and existing ‘third party’ tools that are 
compatible with the underlying operating 
system. Third party tools present two potential 
integration problems, First, these tools will not 
have been designed to exploit and maintain 
contract databases, but rather will operate on 
some collection of files. Second, the tools will 
not reflect ISTAR’s user interface conventions. 
In order to address these problems, each 
existing tool is packaged in an ‘envelope’ a 
skeletal ISTAR tool that invokes the third party 
tool, and it is this combination of existing tool 
plus envelope that is installed as a new ISTAR 
tool. In such packaged tools, it is the envelope 
that interacts with the user via the framework 
user interface system and accesses the contract 
database as necessary. 

Development of new tools and integration of 
third party tools are supported by a powerful 
Tool Implementors kit, itself part of the initial 
ISTAR tool set. The kit includes a set of ISTAR 
facility libraries for database access, user 
interface construction and so on, and a special 
purpose script language for integrating tools 
into workbenches. A GKS based graphics 
presentation tool supports the provision of 
graphical display interfaces for new tools, a 
flexible report generation language is available 
for the construction of tailored report 
generators and an editor syntax compiler and 
checker allows the addition of syntax capability 
for new notations to the ISTAR editor. 

An important class of technical development 
tools provide support for structured methods 
such as CORE or SADT. Such methods build a 
specifmtion according to a data model using a 
generic set of steps which include analysis - 
checking conformance to the model; prompting 
- for missing information: checking - against 
‘advisory’ rules: and reporting - intermediate 
and final results. The ISTAR Structured Method 
Support kit is a kit of generic tools for building 
support for such structured me,thods. The kit 
can be instantiated with a specification of a 
particular method. To develop support for a 
new method, the kit is first instantiated with a 
method specification method; then the derived 
method specification is used to instantiate the 
kit for the method to be supported. 

4.3 INITIAL ISTAR TOOLS 

ISTAR tools fall into six broad classes: 
management tools; technical development tools; 
data management tools; office automation tools; 
tool building tools; and system administration 
tools. As described above, in each class the 
tools are grouped into workbenches. For 
example, the Project Management workbench 
includes tools for planning, es timaiing, 
monitoring and contract management, all of 
which can be used in the same session on the 
same contract. 

Project and Resource Management 

Management tools are central to ISTAR. They 
support the contractual approach to 
development, and make possible the coherent 
organisation of a project so that the technical 
development tools can be deployed effectively. 
The figure below shows the relationship of the 
various project management activities in the 
context of a single ISTAR contract. 

30 



PROJECT MANAGEMENT 

L _______ ______- - --_____- -/----A 

B - 

Resource management is a complex activity, and 
ISTAR provides a powerful set of tools to 
support it. ISTAR resource management is based 
on the establishment of Resource Management 
Centres each with their own database of 
resources. Resource Management Centre 
databases are normal ISTAR contract databases, 
and the resource managers are normal ISTAR 
users who have been assigned a contract to 
manage a set of resources. Resource 
Management centres may be used to control the 
allocation of resources within a single project or 
across projects on a company- or division-wide 
basis, and may hold mixed resources - staff, 
space, computing resources . or be dedicated to 
a single resource type. The structure of 
Resource Management Centres, and the tools 
used, are shown below. 

Work Breakdown Structuring is a fundamental 
activity which divides the assigned contract task 
into work packages which can either be 
performed as part of the current contract or 
subcontracted further. The ISTAR Work 
Breakdown Structuring tool provides three 
coordinated viewpoints to support the 
breakdown of tasks inta subtasks: the activity 
view of the component activities of each task 
and their dependencies; the product vfew 
identifying the products of each activity and 
defining a product hierarchy; and the resource 
view associating resource requirements with 
activities and allowing resource estimates to be 
checked against constraints. 

The Scheduling tool is a critical path scheduler 
that can work in both batch and interactive 
modes. By communicating with the ISTAR 
Resource Management tools it makes allocations 
of suitable resources to activities following an 
automatically generated resource limited critical 
path schedule. Manual intervention with the 
scheduling process allows the schedule to be 
modified to meet additional constraints and 
permits ‘what if’ exploration of schedule 
changes. 

Once again, ISTAR does not enforce the use of 
these tools or require them to be used in the 
sequence shown (with the exception of the Task 
Definition tool which is required for the 
assignment of subcontracts). For example, the 
Estimating tool, a full implementation of 
COCOMO, need not be used at all, and in any 
case is likely only to be used at the higher 
levels of a contract hierarchy. Similarly, users 
are free to ignore the progress information 
collated by the Monitoring tool, and to transmit 
intuition based free text reports to the contract 
client if they so wish (and if their manager 
permits). 

RESOURCE MANAGEMENT 

Resource management starts with the definition 
of the set of resources to be held at the centre, 
using the Resource Definition Tool. The 
Resource Management Centre database is 
interrogated by contract managers who then 
make resource reservations which can be 
arbitrated by the resource manager using the 
Resource Allocation tool. Activated tasks can be 
booked to by users and the bookings checked. 
Finally, resource usage reports are returned to 
the appropriate contract for integration into 
contract progress reports. 

31 



Data and Configuration Management 

Data management is integral to the structure of 
ISTAR. During the course of executing a 
contract, data items are created and modified by 
ISTAR tools in work databases and exported to 
the contract database where they come under 
strict ISTAR configuration control. Contract 
databases have a built in versioning mechanism, 
supporting both successors which supersede the 
previous version and variants which undergo 
parallel development. In addition, the database 
can hold data item attributes (such as ‘preferred 
version’) and user defined relationships 
between items (such as ‘uses the same widget 
as’). Data items that have any dependencies are 
‘frozen’ and cannot be deleted, and ISTAR keeps 
track of any data items that are exported to 
other contract databases. A number of tools are 
available to control and manage data. Their 
relationships are shown below. 

DATA MANAGEMENT 

The component management system allows the 
user to inspect the content of the contract 
database, navigating trees of variants and 
successors: to copy data items for the creation 
of new versions; to delete redundant (non- 
frozen) data items; and to define data item 
attributes and relationships. It is also used to 
provide basic services for the library 
management and problem reporting tools. 

Libraries in ISTAR are contract databases 
containing shared configuration items. Each has 
a librarian - a user who deploys the ISTAR 
Library Management tool to control submission 
and distribution of library items, to commission 
work to correct errors in items and supplement 
the content of the library. 

The Problem Reporting tool allows the 
generation of problem reports about particular 
data items, submission of the reports to e.g. the 
contract database where the item is held, and 
dissemination of reports to other users of the 
item. Initially, the originator of a problem 
report is its coordfnator and has responsibility 
for progressing it. But the role of coordinator 
can be passed to another user e.g. the creator of 
the faulty item or the librarian of the library 
where the item is held. 

The Build workbench provides a set of tools for 
building executable programs for release. A’ 
command list specifies the names of the needed 
transfer items containing e.g. source code, and 
what actions on them e.g. compilation, are 
required to complete the build. In addition, a 
bindings list indicates which item versions are 
to be used. The component transfer items are 
imported into the build work database from the 
local contract database and from remote 
libraries. When the build is complete, the built 
system and a build record are exported to the 
contract database where they are subject to 
configuration control. 

Technical Development 

Technical development tools support the 
technical activities of a contract, including 
production and verification of the contract 
deliverables. Tools supporting the 
programming process, for example compilers, 
debuggers and test tools are available from a 
variety of sources. The ISTAR technical 
development tool set includes a number of 
workbenches composed largely of integrated 
collections of such existing tools, packaged 
where necessary to provide a common interface 
style for the workbench and integrated access 
to the contract database. In general, these 
workbenches are language specific. For 
example, the C workbench includes a syntax 
directed editor for the C language, a C compiler, 
linker and dynamic debugger, and a set of C 
oriented test tools. Initially, language oriented 
workbenches are being provided for C, Pascal, 
Ada and CHILL; they are mainly composed of 
existing tools, but incorporate specially 
developed tools where necessary. 

32 



In the longer term, IST intends to release a 
number of Ada workbenches. These will differ 
both in the Ada compiler used and in the mix of 
additional tools. For example, an Ada ‘cross- 
compiler’ workbench might include a target 
machine emulator and/or target oriented remote 
debugging tools. The initial Ada workbench 
includes the (validated) Alsys Ada compiler, 
associated linker, debugger and cross reference 
lister and the ISTAR syntax directed editor. The 
compiler is integrated to the extent that it uses 
normal ISTAR contract databases as package 
libraries, allowing the full range of ISTAR 
configuration and data management tools to be 
used for Ada program development. 

The area of specification and design methods is 
not nearly as well served by existing tools, and 
ISTAR workbenches for them will mainly consist 
of specially developed tools. Initially, 
workbenches have been developed to support 
the CORE Controlled Requirements capture and 
Expression method (built using the Structured 
Method Support kit); VDM, the formal Vienna 
Development Method for sys tern specification 
and design; and SDL, the CCITT recommended 
Specification and Description Language for 
concurrent real time systems. 

Quality Management 

ISTAR does not enforce a particular quality 
control policy, but provides support for 
implementing the chosen policy using the 
Quality Assurance (QA) check list mechanism. 
QA checklists may be passed down to 
subcontractors as part of the contract 
specifications, used by the client of a contract to 
check the quality of received deliverables, or 
passed to a separate ‘quality control’ contract. 
QA checklists can contain references to other 
Q.A checklists (which might be held in a QA 
checklist library), allowing a hierarchy of QA 
checks to be applied. 

Office Automation and System 
Administration 

ISTAR is intended to support all the activities 
involved in conducting a software project, many 
of which are clerical and not specifically related 
to software or system development. Thus, 
ISTAR includes office automation quality tools 
for activities such as document preparation and 
production, electronic mail and so on, all 
accessible through the standard ISTAR user 
interface. 

In addition, ISTAR includes a comprehensive set 
of system administration tools supporting such 
functions as ISTAR network configuration, 
adding and removing users, archiving and 
database recovery. The presence of these toois, 
together with the useability of the other ISTAR 
tools has led to the (as yet unproven) 
suggestion that the learning time for ISTAR is 
negative L compared with raw Unix. 

5 SUMMARY 

ISTAR is a full, commercially available, 
integrated project support environment. It 
includes a comprehensive and extendible set of 
tools covering every aspect of the software and 
system development process. 

33 


