
An Information Workstation for Software Managers

M. A. Kret
Bell Communications Research, Inc.

ABSTRACT

In the complex and changing environment of
software development, it is imperative that
software managers have current and meaningful
information to support decision making. This
article discusses a system that draws
information from all phases of the software life
cycle and analyzes that data from a software
manager’s workstation. With the analysis tools
available at the workstation and data extracted
from the varioua phases of development, managers
can begin to form a model of the software
development life cycle and measure the success
or failure of software projects in quantitative
terms.

1. INTRODUCTION

Currently, large software development
environments are typically supported by a number
of systems. There are planning systems,
administration systems, marketing systems,
systems that track user requests, systems that
manage source code, deliverables and computer
resources, and systems that track and prioritize
action item5 and responsibilities. These
systems support the day to day operations of
software development. In addit ion to this
primary function, the operation support systems
often double as management information systems,
and inevitably produce some form of reports.

Such reports have traditionally
insufficient for the following reasons:

been

o Data across operation support systems are
neither centralized nor integrated.

Permission to copy without fee all ‘or part of this matmial is granted provided
that the copies =are not made or distributi for d&t commercial advantagc,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific pcnnission.

o The information addresses the general
management population and does not focus on
a particular manager’5 needs.

o When a problem is detected, reports do not
allow managers to probe deeper and
investigate what caused the problem.

o Data is often “stale” and inaccessible when
needed.

These were the kinds of problems that led to
the development of an information workstation
for software development managers at Bell
Communications Research. The workstation
extracts information from all phases of the
software life cycle, and allow5 a manager to
very, analyze, and interpret that data from a
software manager’s workstation.

The major benefit of the workstation over the
operation support system reporting method5 is
that the information, which previously existed
in a variety of reports, is made available in a
centralized relational database management
system. The system’s databases contain
management data, which includes trend and
summary information. Managers can use canned
queries or write ad hoc queries to suit their
particular needs. If a problem is detected,
further analysis can be performed either by
writing additional queries, or by accessing the
operation support systems through a direct
interface. The information is current since it
is extracted automatically at regular
intervals, and it is accessible since the
system is on-line. In addition, the system’s
distributed architecture enables managers to
access the system at work, at home, or while
traveling on business.

2. TIRKSRi MANAGEMENT AID

The software manager’s workstation was
originally developed to meet the information
needs of managers on the TIRKSTM System at
Bell Conununications Research, and wae given the
name TIRKS Management hid (TMA). The TIRKS
System started in 1972 and was designed to
track circuit orders and provisioning inventory
for interoffice telephone service.

01986 ACM O-8979b212-8/86/0012/059 750

59

http://crossmark.crossref.org/dialog/?doi=10.1145%2F24208.24216&domain=pdf&date_stamp=1987-01-01

The TIRKS System has growo into one of the
vorld’s largest software systems supporting 23
Bell Operating Companies in the provisioning,
operations, engineering, and msrketing of the ’
interoffice circuit network. The system as of
September, 1985 was comprisrd of approximately
23,000 modules and over 18 million lines of
source cods. Managing a project of such
magnitude has led to both challenging problems
and creative innovations in controlling the
software life cycle.

To control software releases the TIRKS System
has developed a number of operation *uppcm
systems. One of the first problems a large
project has to tackle is product management.
The TfRKS System has been known to ship as many
as two major software releases, four maintenance
releases, and numerous special purpose releases
in each of four project lines in a given year.
Thus, a system was developed to control the
building of software environments both for
testing snd for integrating the entire software
release that is ultimately shipped to the user.
With development occurring on as many as 30
releases simultaneously, a second system was
developed to track and manage source code for
the development environment. In addition, each
user request that comes in to the TIRKS
Technical Support Center ie logged into a
tracking system and monitored throughout the
software life cycle. During the testing phase
several systems exist to monitor; 1) if testing
is occurring, and 2) whether problems are being
addressed in a reasonable time frame. The only
phases of the software life cycle that are not
supported by specialized systems are the
requirements phase and the design phase. During
these phases manual inspection methods are used
to verify that quality requirements and designs
have been completed.

To manage and control the software life cycle a
number of support groups have been set up in the
TIRKS organization and each of these groups have
purchased or developed tools which complement
the sys terns discussed above. Examples are
project management toois which help plan
releases and track milestones using PERT and
Gantt techniques, toois developed by the
per formanee group to monitor our users’
performance levels and project capacity planning
for user hardware, and analysis tools used by
the planning groups to estimate the resources
required for work in the coming year. By now it
should be evident that an entire assembly line
of support systems and tools can be used in the
large sof tvare development environment to
control the software life cycle.

When software projects are small the manager can
usually talk to a few developers and come away
with a reasonably accurate status of the
project , assuming the manager is a good judge of
character. As projects grw and the
organizational heirarchy within a project
reaches two, three and four levels deep, this
method becomes impractical, if not impossible.
Inevitably at this point in a large software
project’s history managers encounter a situation

where information is desperately needed, but
not available. The organization then
recognicer the wealth of informstion in the
operation support systems discussed earlier.
Subsequently, extracts are taken from support
system databases and reports are written in the
absence of long term information planning.

There are several problems inherent in this
reactive method to developing management
informstion systems. Resolving these issues is
the main focus of the software mansger’s
workstation. The first issue is that a
management information system should not be
designed as a reaction to a crisis since these
systems lack the flexibility to meet future
information needs. The second issue is that in
SOlfIB organizations all levels of management
receive the same reports. Since each manager’s
information needs are di f ferent , general ised
reports both hide relevant information and
restrict the manager from focusing in on areas
of responsibility. A third issue involves the
representation of the data provided by
management information systems . Presently,
reports are often geared towards the operation
support system databases. Such a
representation does not illustrate trends in
the software life cycle. Finally there are the
acre general issues surrounding the value of
the data made available by information
systems . 1) The data must be current, 2) the
system must be available not only at the
office, but wherever the msnager needs to use
the system, and 3) the data must address those
items which management defines as critical to
controlling the software life cycle. This
means that the system should not provide the
information which is most readily available,
but the information that provides managers with
greater control.

The first step towards resolving these issues
is to analyze the information needs of software
managers. This occurred early in the
development of TIRKS Management Aid through a
series of interviews with managers of various
levels. The managers were asked to prioritize
their information needs and these priorities
were used to guide the implementation
schedule. The design of the system was
reviewed by both managers and the architecture
design group to insure that the system met the
long term information needs of the
organization. No specific reports were
designed. This function is delegated to each
manager through the use of a relational query
1 anguage . For those unfamiliar with the query
1 anguage used by the workstation, a set of
canned queries were provided with the system
and an individual on the TMA project was made
available to help managers modify the canned
queries to meet their particular needs. The
data extracted from the various operation
support systems is geared specifically towards
management. It is gathered from all phases of
the software life cycle and is sulnnarized to
reflect trends in the cycle.

One unique aspect of TMA in the area of decision

60

support architectures is its workstation/host
distributed architecture which allows managers
to take the system with them as a stand alone
workstation and later log into the host to
refresh the data at the workstation through the
use of the host database management facilities.
In addition to the decision support functions,
which will be discussed in the next section, the
workstation/host distributed architecture also
lended itself to a number of office automation
functions, like sending mail, word processing,
and action item tracking.

3. F’UNCTIONS

3.1 Introduction

The information workstation supports four basic
functions; a query facility, an analysis
feature, a support system interface and an
extract capability. This section will describe
each function in detail. Figure A illustrates
the relationship between functions.

3.2 Query Facility

The query facility is the backbone of the
software manager’s workstation. It al lows
managers to access data indicating the progress
of the software life cycle and analyze that data
using the functions at the workstation. Queries
can be written at the workstation using a text
processing system and sent to the host processor
for execution. The host relational database

management sys tern executes the query and
returns the result to the workstation where
spreadsheet, graphics, and presentation
utilities are available. Managers can
construct their own ad hoc queries or take
advantage of the canned queries supplied with
the system.

The query facility provides the workstation
with the flexibility it needs to keep up with
the changing software development environment.
Queries can be used both to extract data and to
create and modify the structure of relational
tables. Software metric tables measuring
indicators in the software environment can be
created quickly and easily as the information
relevant to software managers changes. The
security associated with a given user is also
controlled through the query facility. If a
user is not authorized to view or update a
particular subset of data the query facility
will reject the user’s request.

At Bell Conrmunications Research we started out
by defining software metric tables to measure
the following: user requests and performance,
work item scheduling, software development, and
quality assurance. Table 1 shows the layouts
for the metric tables. Each table is updated
nightly, thus building a trend of activities.
In addition to the metric tables, an activities
and milestones table is extracted from project
management to correlate trend data to planned
milestones.

FUNCTIONAL ARCHITECTURE

L w
SUPPORT
SYSTEM

INTERFACE

4
I I I

0

FKWRE A

The combination of an easy to use query facility
and a flexible set of workstation functions led
to some interesting results. We found that our
users, some of whom are non-progranmers, were
developing their own canned reports and passing
them on to other users. If the queries provided
analysis useful to all managers, they would be
integrated into the workstation’s prcde fined
analysis function. In other words, our users
not only provided us with requirements by
defining- the reports, but they had also
developed the software by packaging the query
and the presentation of the result.

3.3 Analysis

The analysis feature is designed to detect and
highlight in advance potential problem areas in
the software life cycle. Input to analysis
includes the following: the software metrics
data measuring the development process, support
system data such as planning and administration,
and thresholds set by the managers themselves.
The inputs are processed by a set of queries
that measure those items which are critical to
the project ‘s success. Bach time analysis is
run these critical factors are measured and the
results are presented using the workstation’s
graphics and spreadsheet capabilities. If a
threshold is being violated, the manager is
notified through the workstation’s bulletin
board feature. When project priorities change
the queries can be modified to reflect the
changes without updating the analysis programs.

Analysis is broken down into four functional
areas; user analysis, organization analysis,
subsystem analysis, and release analysis. User
analysis tracks the status of the project as
relates to each individual client. Items such
as software quality, performance, and the status
of maintenance and enhancement requests are
monitored. Organization analysis pertains to
the quality, productivity, budget and personnel
statistics of each organization in the project.
Subsystem analysis concentrates on the status of
each of the piece-parts of a large software
system. Finally, release analysis tracks the
progress from beginning to end of a new version
of the system.

A typical analysis screen appears in Figure B.
The analysis feature was developed at Bell
Communications Research using the Framework
integrated software package (Framework is a
trademark of Ashton Tate). The Framework menu
opt ions appear along the top of the screen.
These options control the spreadsheet, graphics,
filing and word processing functions offered by
the integrated package. The TMA menu is
illustrated along the bottom of the screen and
allows the manager to access each of the four
analysis categories as well as a threshold
update function. A bulletin board exists for
each type of analysis; user, organization,
subsystem, and release. Releases can be
analyzed in combination with either users,
organizations or subsystems.

Bulletin boards notify management when thresholds

SOFTWARE METRIC TABLES

DATE
MER
RELEASE I
TYPE

UNDER-lNVEST -

Ul-AGE

BEING-FIXED -
6F-AQE
NO-CHANQE -

COMPLETED -

DATE
USER
AVQ-CPU 1
BH-CPU
AVQJESWNSE -
BH-RESPONSE -
TRANSACTIONS -
BH-TRANS -
ABENDS

DATE EXTRACT WAS TAKEN
USER IDENTlFlCATlON
USER’S BOFTWARE RELEASE LEVEL
TYPE OF REQUESTS, SOFTWARE.
DOCUMENTATlON. ENHANCEMENT
NUMBER OF REQUESTS UNDER INVEST-
WTION
AVERAQEAQEOFREQUESTSUNDER
INVESTlQATlON
NUMBER OF REQUESTS StiINQ FlXED
AVERAQE AQE OF REQUESTS BEINQ FlXED
NUMBER OF REQUESTS REQUIRINQ NO
CHANQE. Lo. NO DEVELOPMENT EFFORT
NUMBER OF REQUESTS COMetETED

DATE EXTRACT WAS TAKEN
USER lDENTlFlCATlON
AVERAQE PROCESSOR UTILIZATION
BUSY HOUR PROCESSOR UTILIZATION
AVERAQE USER RESPONSE TIME
BUSY HOUR USER RESPONSE TIME
DAILY TRANSACTION VOLUME
BUSY HOUR TRANSACTION VOLUME
NUMBER OF ABNORMAL PROGRAM --- -.-..-

~ ,TFU ~ TERMINATIONS

DATE - DATE EXTRACT WAS TAKEN
RELEASE - SCHEDULED SOFTWARE RELEASE
ORQ - RESPONSIBLE ORQANIZATION
TYPE - TYPE OF WORK ITEMS, SOFTWARE,

DOCUMENTATION. ENHANCEMENT
DEV - NUMBER OF WORK ITEMS IN DEVELOPMENT
ST - NUMBER OF WORK ITEMS IN SYSTEM TEST
COMPLETED ’ - NUMBER OF WORK ITEMS COMPLETED

DATE ’ -
VERSION
ORQ
EDIT-MODS -
EDIT-CODE -

DELIV-MODS -

DELIV-CODE -

DATE
RELEASE
ORQ
TESTS
OPEN
OPEN-AQE -
OPEN-GRIT -
GRIT-AQE -
CLOSED

DATE EXTRACT WAS TAKEN
VERSION CONTROL IDENTIFICATION
RESPONSIBLE ORGANIZATION
NUMBER OF MODULES BEINQ EDITED
LINES OF SOURCE CODE IN MODULES
BEING EDITED
NUMBER OF MODULES DELIVERED TO
TEST ENVIRONMENT
LINES OF SOURCE CODE IN MODULES
DELIVERED TO TEST ENVIRONMENT

DATE EXTRACT WAS TAKEN
SOFTWARE RELEASE BEING TESTED
RESPONSIBLE ORQANIZATION
NUMBER OF TESTS EXECUTED
NUMBER OF OPEN TEST PROBLEMS
AVERAGE AGE OF OPEN PROBLEMS
NUMBER OF CRITICAL OFEN PROBLEMS
AVERAQE AGE OF CRlTlCAL OPEN PROBLEMS
NUMBER OF CLOSED TEST PROBLEMS

TABLE 1

are not being met. Within each analysis ia a
set of categories. These are the factors which
management has defined as critical to the
success of the project. Associated with each
category is an index. The index represents a
measure of its corresponding category. The
indices are calculated by taking the thresholds
set by managers and querying the software
metric tables to determine if the thresholds
are being violated. A date and time stamp is
placed on each bulletin board stating when the
analysis process was last run.

If the manager discovers a problem in any of
the analysis areas (evidenced by a growing
index) he or she can use menu options to probe
deeper. These options will step the manager
through the calculation of the index as shown
in Figure C. From here the manager can observe

62

if the problem has been a trend by selecting a
graph of the software metric, Figure D, or the
user can enter the operation support system
where the metric was extracted to investigate
the details of the situation.

A second look at the example will illustrate how
a manager might use the analysis feature. The
manager sees that the organization’s maintenance
index is getting high (86), see Figure B. By
selecting the appropriate menu opt ions the
manager arrives at Figure C, which is the
calculation of the organization MR (Maintenance
Request > index. There are more MRS under
investigation than the threshold predicts (401,
and there are fewer requests being fixed than
expected (46). These two factors account for
the maintenance index (86). Finally, the
manager can display the data in graphical form
to determine if the problem has been a trend.
Figure D shows that even though there are more
MRs under investigation than the manager wou1.d
like, the trend in maintenance requests under
investigation is decreasing.

To define the critical success factors (CSFs)
managers from the assistant vice president to
the district manager level were interviewed.
These managers were primarily concerned with the
product ion side, as opposed to the
administrative side, of software development.
They moat often cited “responding to user
maintenance and enhancement requests in a
reaaonab le time frame” as being the most

critical item. As a result this item became
one of the factors monitored by the analysis
process. Through the course of the interviews
a number of critical success factors were
defined and incorporated into analysis. The
critical success factors defined during the
interviews included producing a high quality
product, delivering software releases on time,
and maintaining an acceptable level of user
performance. Each of these factors were broken
down into measurable items and appear in Table
2.

The next step was to create an index to measure
each of the critical success factors. As an
example, a maintenance index was defined based
on the number of maintenance requests under
investigation, and the number currently being
fixed. Since all CSF indices are presented on
a single analysis screen, managers can quickly
monitor the status of those items that they
have defined as critical. Managers can also
selectively monitor and set custom thresholds
for a particular user, organization, subsystem,
or release, resulting in greater control in
tracking a particular area of responsibility.
By gathering this information and attempting to
define reasonable thresholds, managers gain
insight into the nature of the software life
cycle.

3.4 Support System Interface

The purpose of the support system interface is

rin tenance 86lll

raducf , 1

FIGURE B

63

FIGUEC

25312)m 0

Oa tul
8

thrah

MRs in UI Status Press
RETURN

FIGURE D

CRITICAL SUCCESS FACTOR ANALYSIS

CRITICAL SUCCESS FACTOR SOFTWARE METRIC

1. RESPONDINQ TO USER 1 .l THE NUMBER OF REQUESTS
ENHANCEMENT AND CURRENTLY UNDER INVEST-
MAINTENANCE REQUESTS IQATION
IN A REASONABLE TIME
FRAME

1.2 THE NUMBER OF REQUESTS
CURRENTLY BEINQ FIXED

2. MAINTAIN AN ACCEPTABLE 2.1 THE RATIO OF USER MAINT-
LEVEL OF OUALITY ENANCE REQUESTS TO NEW

AND CHANGED LINES OF
SOURCE CODE

2.2 THE RATIO OF FAULTS FOUND
DURINQ OUALITY ASSURANCE
TO NEW AND CHANQED LINES
OF SOURCE CODE

3. MEETINQ SCHEDULES
3.1 COMPLETINQ DESIQNS 3.1 PERCENT OF SUCCESSFULLY

ON SCHEDULE COMPLETED DESIQN REVIEWS
3.2 COMPLETINQ CODINQ 3.2 TRENDS IN NEW AND CHANQED

ON SCHEDULE LINES OF SOURCE CODE
3.3 COMPLETING TESTINQ 3.3 TRENDS IN TEST VOLUME AND

ON SCHEDULE TEST TO FAULT RATIO

4. MAINTAIN AN ACCEPTABLE 4.1 PROCESSOR UTILIZATION
L&EL OF PERFORMANCE 4.2 AVERAGE RESPONSE TIME

4.3 TRANSACTION VOLUME

TABLE 2

to allow the workstation to cosxsunicate with all
existing operation aupport systems, e.g..
planning, administration, etc. The following
scenario illustrates why this requirement is so
important. A high level manager observes from
the workstation that user maintenance requests
are not being responded to within the limits of
the current thresholds. He or she discovers
that the problem exists predominantly in a new
and volatile subsystem. The manager of that
subsystem is contacted and after soma
investigation concludes from the trend data that
the requests have not been addressed due to
heavy development efforts in recent months.

At this point the manager understands the
problem. Yet to solve the problem the manager
needs to access the system that tracks user
requests. The workstation’s metric tables store
statistics regarding user requests, but to get
the details of each request requires a link to
the support system designed for that purpose.
The feature is reduced to an architectural issue
since what is required is that the workstation
hardware neat be capable of accessing all
support systems in the environment.

3.5 Extract

The purpose of the extract function is to take
data from the operation support environment, to
sunsnarize that data, and to make it available to
the information workstation in a relational
database management system. Data are extracted
at regular intervals, al lowing managers to
observe trends in the various measurements.

It is important when defining the extract tables
not to repeat what already exists in the
operation support systems, but to summarize by
priority, status, type etc. As an example,
suppose we were extracting from a support system
that tracked user maintenance requests. We
would not extract data pertaining to a particular

request. Instead, counts of high priority
items by user group, or open status requests by
development organization, would be more
relevant to managers. If a manager needs the
details of a particular request the support
system interface can switch the user into the
maintenance request support system.

The extract process consists of three steps;
the raw extract from the operation support
system, a summarization step, and the load of
the relational database management system. The
details of the raw extract will vary between
support aystema and will inevitably require
SOW programming effort. Basically, i terns
pertaining to status, priority, type and
duration are extracted from the operation
support system database and copied to a
temporary area.

Next, the summarization programs calculate
totals by user group, organization, subsystem,
and software release. Finally, the load step
takes the summarized data and appends it to the
appropriate relational table. This entire
process is automatically executed nightly
without manual intervention.

4. AECWITECTUEE

The primary objective of the architecture is to
support two basic functions. The first is to
access and manipulate data that indicates the
progress of the software life cycle. The
second is to provide a flexible set of tools to
query, analyze and interpret the information.

These objectives pointed to a workstation/host
architecture for several reasons. 1) The data
had to be centralized to integrate information
from the various operation support systems.
2) Users were interested in focusing on a
specific subset of data and updates would be
minimal. 3) The functionality at the
workstation had to be personalized, flexible,
portable, and easy to use for the management
community to accept the system.

Both large scale relational database management
systems and personal computers were finding
their way into the corporate environment at
about the time we began to implement the
software manager’s workstation at Bell
Communications Research. The two emerging
technologies appeared very attractive in
accomplishing the ob jectivea stated earlier.
The only drawback was their lack of
integration. Most installations were
implementing file transfer mechanisms to bring
corporate data to PC functionality, but this
approach did not isolate the manager from the
PC/host communication process. Typically users
had to log on to a host session, manually
establish a communication link, initiate the
file transfer routine, and then convert the
data at the PC into a format compatible with
the popular PC packages available.

The software manager’s workstation architecture
accomplishes integration, not through file

65

transfer, but by allowing the PC to directly
submit queries and commands to a host system.
In addition, a conwnon area of storage is
provided which can be accessed by both the host
and tht PC. The shared atoragt looks like a
dirk drive to the PC, but actually resides on
the hoat. As a result, host program5 can update
the shared staragt, making information available
to tht PC in a format it can rtcognizt. This
brought the pwer of the refational database
engint on tht host to the txpanding
functionality of Personal Computers, and at the
same time iaolattd manager5 from PC/ho5 t
comnunicationr. Figure E illu5trate5 the
concept. Basically, tht architecture consists
of two parts, tht workstation architecture and
the host archittcturt. Linking the two is the
workstation/host coumtunication process.

A combination of vendor software packages and
Btllcore devtloped software was used to
implement tht system. Vendor packages were
evaluated and selected to support the relational
database management function on the host, the
intergrated analysis function8 on the PC, and
portion5 of the communications interface.
Functions developed at Bellcore included; the
user interface, the support system interface,
the extract process, and a facility to submit
SQL queries from the PC to the host.

5. CONTROLLING SOFTWARE PROJECTS

It is no l urprist that software metrics begin to

get attention just when a project becomes too
large to control by interviewing developers.
Control is critical to the success of
roftwart. Ytt software mrnagere are often
unsure about what to measure and how to ust the
data to better control the software life
cycle. In Bellcore’s txperitnce with
developing a software manager’s workstation we
discovered that five 5 eps were necessary
before softwart metrics could become useful in
controlling the software lift cycle.

The first step is standardization. There is
littlt bentfit in measuring the software life
cycle in a project that does not develop
standard design, implementation and testing
practices. If each designer is using a
different design methodology, it is difficult
to develop an aggregate metric which accurately
indicates the size or complexity of the many
designs which make up a single release of
software. If prograunners are using different
Languages or have radically different coding
practices, there is no sense in using Lines of
code as a measure of productivity. Likewise,
if testers are using different testing methods,
or if they are testing functions of varying
complexity, then simply counting the errors
found during the test phase is not a good
indicator of the quality of the product.

If standards for design, implementation, and
testing art developed then metrics can be
defined which measure like objects, resulting in

Q DWLAY

ARCHITECTURE

HOST

SUWORT
SYSTEM

1 INTERFACE 1
L I

EXTRACT

FROCESS

FIGURE E

WlsTiNG
SUPPORT

66

more meaningful software indicators. Steps
towards achieving this goal include rigorous
design, code, and test plan reviews to insure
that standards are being followed, defining a
standard programming language and programming
practices, and developing standardized manual
and automated test scripts. It may seem
restrictive, in light of the many hardware and
software technologies available, to define a
standard software development environment, but
the result may mean more accurate measurements
and greater control. In addition,
standardization should not preclude
experimenting with new technologies, but
experimentation should take place within a
controlled environment. Once new technologies
are proven in the controlled environment they
can be int reduced as part of the standard
development environment.

The second step is the characterization of work
items. Here anain. the obiective 1s to measure
likeobjects.

Y ,~

By characterizing work items by
size and complexity, managers can begin to
predict the effect a work item will have on the
software life cycle. Intuitively speaking,
there is no utility in comparing a major
enhancement’s effect on the software life cycle
with that of a minor maintenance item. Many
schema for characterization are possible and a
viable scheme will probably require fine tuning
over time. ,One possible scheme might be to
characterize a. work item by its expected effect
on software metrics in the life cycle. A8 an
example an organization might characterize a
minor maintenance work item as one that can be
resolved by a single development organization,
. I.e., requires no interfaces, will affect a
single module and will take between 10 and 25
lines of code to make the fix. In this case
interfaces, modules and lines of code would be
measurements kept in the software manager ’ s
workstation. The kind of information required
to make this characterization is available when
the work item is reviewed and can be used to
predict not only the resources required to make
the fix, but also the effect the fix will have
on the software life cycle. This topic will be
discussed further in step five, the modeling
phase. Of course more complex work items will
require more complicated characterization
s chemas , but here again, the tradeoff is loss of
control since the alternative means that
managers would be unaware of the nature of the
work going on in the project.

The third step is measurement selection. As
part of the measurement selection process the
organization must first step back and take a
hard look at their information needs. The
organization should ask what items are most
important to software managers and how might
these items be quantified. At Bellcore we ueed
a technique called Critical Success Factor(CSF)
Analysis to determine which items were most
import ant. Table 2, referenced earlier, shows
some of the CSFs defined at Bellcore and the
metrics used to quantify those CSFs. Often a
single metric is not a good indicator of a
success factor and in these instances a

combination of metrics are used. The table
also breaks high level CSFs into subfactors in
order to reduce the item to a level that is
measurable.

Once the software metrics are made available a
fourth step of assimilation and experimentation
begins. This is the most critical phase since
it ultimately determines whether or not the
managers will accept the system. One would
assume that if the data defined in step three
is “critical” to the success of the project
that managers would be quite anxious to get
their hands on the system. This is not
necessarily the case. One paradox is that if
the information paints a picture of the
software life cycle that is drastically
different from the organization’s expectation,
the organization may be inclined to question
the validity of the data rather than their
expectations. The paradox lies in the fact
that this is precisely the data which is most
valuable since it tells the organization
something it was not previously aware of. There
may also be a misunderstanding in how the
metric was calculated and this too can lead to
skepticism about the integrity of data.
Another roadblock in the assimilation phase is
that many managers have done quite well by
polling their workers and peers for
information. These managers do not see a
pressing need to quantify information that they
feel they are already aware of at an intuitive
level. To compound matters, managers must
usually learn to use a query language if they
are to experiment with the data to form models
of the software life cycle. Often there is
simply not enough time to accomplish training
and proceed with experimentation. Canned
queries can be constructed to simplify the
process, but these queries do not lend
themselves to the kind of “what if” analysis
required to form a working model of the
software life cycle. Finally. there are the
political issues involved when chaos ing
software metrics since these metrics will be
used to make judgements about the status of the
organizations in the project .

There are several things that can be done to
ease the introduction of a software manager’s
workstation. The first and most effective way
to introduce the system is to open an
information center and staff the center with an
inquisitive individual who knows the software
life cycle and how to use the query and
analysis facilities at the workstation. The
information center should perform two
functions. First, it can supply managers with
answers to specific questions, such as what is
the trend in user maintenance requests for my
organization. Second, the information center
should publish reports on a regular basis that
are of interest to the project as a whole. By
performing these two functions, the information
center will allow the organization to focus in
on the data at the workstation rather than the
mechanics of the sys tern. Soon, the same
individuals will be coming to the information
center day in and day out. At this point it

W

makes sense to train these individuals and work
with them closely to insure they get the most
out of the system’s capabilities. As the number
of individuals in this category grows, it may
make sense to form a user group to review the
importance of certain metrics, form information
models and suggest workstation enhancements,
Certainly, if the data has value and the
managers in the user group appear to be getting
an “information edge” over the other managers in
the project , the software manager’s workstation
is well on its way to wide spread use.

Once the syrtem is accepted the next step is 2
form a model of the software life cycle. The
purpose of the model is to better control the
software life cycle, in particular, the
planning, monitoring and analysis functions.

In an established software project, software
development follows a fairly consistent cycle.
Users make requests for new systems, or for
enhancements and maintenance to existing
systems . Requirements are defined, resources
are al located, and a design is prepared and
reviewed. Next, software modules are coded and
tested in an isolated development environment.
The entire software release is then integrated
and tested as a single product. Finally, a
quality assurance group reviews, tests, and
signs off on the software. While software
development is taking place documentation and
training packages are being prepared for the
users.

The ultimate goal in constructing a model of the
software life cycle is to evaluate the impact of
work proposed by the user on each of the phases
in the cycle. An accurate mDde1 can aid in
planning release schedules, determining the
resources required to do the work, estimating
the size and quality of software releases, and
analyzing bottlenecks during development. The
model really begins in step four with the
experimentation process. During this step
managers begin to find correlations between
variables and test whether or not these
correlations hold true for several releases of
software. As an example , an organization may
discover that the number of faults found in the
quality assurance phase may correlate with the
number of new and changed lines of code in the
implementation phase. This allows the manager
to use an indicator from an earlier phase in the
release cycle to predict what will occur in a
later phase. If the quality assurance manager
has some idea of the number of faults each of
his testers can process within the testing
phase, that manager can begin to estimate the
impact the release will have on the testing
organization. In actuality, many models may
emerge since variables may correlate highly in
some instances, but not in others.

In addition to correlations, a number of rules
of thumb eventually become evident. As an
example in the TIRKS System we look at the trend
of faults found in system test very closely. By
the shape of that curve we can estimate the
length of time required for testing to produce a

quality product. If the trend in the fault
curve does not level off within a given time
frame, then the the period required for
testing must be increased. This tan often have
an effect on the ship date of the release.

Ovef a period of time these correlations and
rules of thumb btgin to form a model of the
software life cycle. The emerging model can be
a valuable asset to the software manager in
terms of both increased awnreness and greater
control.

6. CONCLUSION

In summary, an information workstation designed
to support software managers should accomplish
the following:

0 Integration of data across support
systems (planning, quality assurance,
administration, etc.).

0 Provide flexible tools to query and
analyze the information.

0 Allow msnagers to verify the data
presented by accessihg the support
systems which are the source of the
data.

0 Provide summary and trend data so
managers can plan future projects based
on an analysis of past software
development experiences.

At Bell Communications Research we have
implemented TMA and are using it to track and
plan software releases. Presently, a history
of curves modeling the phases of the software
life cycle are being stored. Our next endeavor
is to test how the indicators in the various
phases interrelate. BY examining the
correlations between indicators from the
various phases of development we are better
equipped to predict and plan the software life
cycle.

As a result of this effort TMA is providing
insight into how software is developed in our
environment. Our goal is to eventually capture
this insight in an expert system that will plan
and track the software development process.

7. ACKNOWLEDGRMENTS

The software manager’s workstation developed at
Bell Communications Research was a result of
the talent and efforts of the following
individuals: Bob Clair, Yu Mei Chu, Jeff
Chern, George Harrison, Al Kendxiora, Frank
Marchere, Ray Neival, Gary Schneider, and Jeff
Wallace.

I would also like to thank Mike Geary, Jerry
Kaplan, Peter Vellotti and Joan Vigliotta for
their support and cormnents.

68

REFERENCES

1.

2,

3.

4.

5.

6.

7.

8.

9.

Alter, S. L. Decision Support Systems:
Current Practice and Continuing Challenges,
Addison-Wesley, Reading, Massachusetts, 1980

DeMarco, T. Controlling Software Projects,
Yourdon Press, New York, New York, 1982

Fox, M. S. "The Intelligent Management
System, An Overview," Process and Tools for
Decision Support, H. G. Sol (editor),
North-Holland Publishing Co., 1983

Henderson, J. C. and Schilling, D. A.
"Design and Support of Decision Support
Systems in the Public Sector," MIS
Quarterly, Vol. 9 No. 2, June, 1985

Rockart, J. F. "Chief Executives Define
Their Own Data Needs," Harvard Business
Review, March-April, 1979

Shank, M. E. and Boynton, A. C. and Zmud, R.
W. "Critical Success Factor Analysis as a
Methodology for MIS Planning," MIS
Quarterly, Vol. 9., No. 2 June, 1985

Sprague, R. Ii. and Carlson, E. D. Building
Effective Decision Support Systems, Prentice
Hall, Englewood Cliffs, New Jersey, 1982

Thierauf, J. R. Decision Support Systems for
Effective Planning and Control, Prentice
Hall, Englewood Cliffs, New Jersey, 1982

Yourdon, E. Managing the System Life Cycle,
Yourdon Press, New York, New York, 1982

69

