
Rapidly Evolving Software
and the

OVERSEE Environment

Steven wartik
Department of Computer Science

University of Virginia
Charlottesville, VA 22903

Abstract

During its lifetime, a software sys-
tem will sometimes need to “rapidly
evolve,” that is, undergo a quick set
of changes. Making the changes
rapidly is difhcult, espe&lly if one’s
software development policies are
rigorous; the need for test reports,
signatures, etc., seems to create inter-
minable &lays. In this paper, we
argue that much of the problem
stems not from such policies, but
from a lack of consideration to
information flow in software environ-
ments. We present a confIguration
management environment called
OVERSEE, and discuss how it helps
solve the problems of information
flow.

1. INTRODUCTION

A software product, towards the end of its
development, often experiences a period of growth
spurts. Testing in real-life situations-alpha and
beta testing, for examplcadapts the software,
through a rapid series of mod&ations, from a
ragged-around-the-edges product into something
useful. This ‘rapid evolution” phase is,

This research Was supported in part by NW Orant
DCR-8602674.

Permission to copy without fee all or part of this material is granted provided
that the copies arc not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otberwisc, or to republish, requires a fee and/
or specific permission.

01986 ACM O-8979L212-8/86/0012/077 756

unfortunately, common in software development.
Making these changes quickly is a difficult, error-
prone task, and the .high costs of doing so have
long been known Ill. During alpha and beta
testing, users become dependent on existing
software, even though it is advertised as prelim-
inary. Changes, whether bug Bxes or enhance-
ments, must be introduced carefully if compatibil-
ity is to be maintained with previous versions.
However, it must be possible to make changes
rapidly. Anything that inhibits one set of
modtications slows down the next set, delaying
access to the improved software, not to mention
postponing the product’s delivery date. Because
the delays in introducing a change generally
result from the project’s software development
standards (test case preparation, review boards,
etc.), standards are often relaxed when a change
is needed quickly, which in the long run usually
exacerbates the problem.

Rapid prototyping can help solve this problem.
However, while it reduces the need for changes to
functionality, it does not necessarily affect the
number of bugs [2]. Moreover, the problem
appears across the entire life cycle. Frequent
changes occur at the end of the requirements and
design phases too, since reviews usually tid holes
in the requirements or the design. Rapid evolu-
tion seems endemic to a software project.

In this paper, we argue that many problems
during rapid evolution are due to poorly struc-
tured information flow within a software develop
ment environment. In the following section we
describe information flow. We next discuss
OVERSEE, a con&uration management environ-
ment we are building, and then cover how
OVERSEE helps alleviate the problems of infor-
mation flow.

2 INFORMATXON F’IBWS AND NON-Fu)‘WS

Software development involves much informa-
tion flow. Flow is usudly in the form of ties,
containing documents, forms, binaries, etc. It
occurs due to the need to share information
between the members of a software project. For

77

http://crossmark.crossref.org/dialog/?doi=10.1145%2F24208.24218&domain=pdf&date_stamp=1987-01-01

example, most modern operating systems have a
hierarchical directory structure. Developers work
in their own directory area so as to have an
independent development environment, and a cen-
tral database area serves as a repository for ties
that are part of the ofhcial configuration.
Developers send and receive information to and
from this area, duplicating most source code and
requiring its flow between the two areas.

Because of the difficulties in organizing and
tracking information flow, software development
organizations usually inhibit information flow
except under strictly regulated conditions; most
changes require written approval from several
parties. While such approaches have been used
on many successful projects, they are bureaucratic
and waste time and effort. One or more human
configuration managers must oversee every step of
development. Furthermore, the bureaucracy can
discourage entry of important information. Sub-
mitting an afterthought-for example, improve-
ments to commenting-becomes irritating and
time-consuming; most developers would feel that,
because the program already works, the change is
not worth the effort.

Automated CM systems help organize informa-
tion flow. However, information non-- causes
equally many software problems. Non-flow is
omitted information: something that should be
entered into the system but is not, for any rea-
son. Examples of non-flow include commenting
improvements, notes on program design, or send-
ing a set of f%s to a tester but forgetting to
include one. Non-flows have both short-term and
long-term consequences. A forgotten source code
Gle will cause recompilation to fail but will be
rectified within a day or so. A poorly com-
mented program has costs at some undetermined
future time for developers attempting to modify
it.

Non-flow is often caused by carelessness, but
equally often it is caused by the difhculty of ini-
tiating flow. The commenting example illustrates
this point. CM systems are too often based on a
company’s non-automated CM practices; instead of
passing paper data between of&es, they route
electronic data to appropriate users. This
approach fails to realize that the computer can
assume many duties of the CM, and that all par-
ties no longer need to review the data. Existing
practices should be r-e-thought before being
automated. In particular, we should concentrate
on:

1. Ehinming -ssary information jaw pa-h.
Each flow path begins and ends with human
interaction, and each human interaction intro-
duces delays.

2. Encouraging information Jmv. Paths should
be open and accessible, and submitting useful
data of any sort should be simple.

3. ANOVERVIEWOFOVEXSEE

OVERSEE is a con@uration management
environment consisting of a directory structure
along with a set of tools and a methodology for
maintaining files within that structure. In this
section we briefly describe OVERSEE and the
operations provided by its major tools.

OVERSEE recognizes three user groups: develop
em, who write or modify the system, testers,
who test the work of developers, and the
configuration manuger (CM), who manages tested
versions.

All groups manipulate text files. Text files
may be confiFed, meaning that they are
officially recorded as part of the system. Each
configured tie consists of one or more busehed
versions, each of which is always accessible.

Software is developed and tested in the System
Development Area @DA). Tested software,
namely that suitable for general distribution, is
stored in the System Cmfigzu-ed Area (SCA).
Because most data flow occurs in the SDA, we
shall concentrate on it. The structures of the
SDA and the SCA were adapted from those used
by the SPS 141 and SPMS [3]. These in turn
resemble the top level of the UMxTM tie system
hierarchy with additional directories for informa-
tion on the requirements and design phases--more
precisely, with a directory for each phase of the
software life cycle. OVERSEE also adds an area
known as the mini-environ.menZ, explained below,
for the testing of products from the current
development phase. Finally, an area exists for
storing project information and history that does
not fit cleanly into any other area. Each of these
areas is a hierarchy that reflects the project’s
structure, with subdirectories for logical subpro-
jects.

Any source file (one that cannot be generated
from other aes) that is to be regarded as an
official part of the system must be configured,
whether it is in the SCA or the SDA. OVERSEE
permits cotigured files to be ‘changed,” ‘base-
lined,” ‘unit-tested,” and ‘integration-tested.” (The
‘change” operation is a noti&ation of intent to
change; “baseline” is a notification that the change
has been made. This is analogous to the RCS
concept of check-in and check-out 161, for exam-
ple.) A test phase may ‘accept” or #reject” a
software product. The order in which these
operations are performed within the SDA is
shown by the data flow graph in Figure 1. This
model is our common denominator for

76

Developer Tester CM

11

Figure 1 Operation Order

information flow. It assumes only that source is
to be tested, first by the developer and then by a
tester, and so is applicable to any life cycle
model. Note that the nodes are points of interac-
tion with humans. We do not specify exactly
the information required at each node (much of it
depends on contractual requirements), but instead
employ a form-oriented tool called Fillin 171 that
can adapt to different data configurations in a
simple way. We also do not specify exactly
what the interaction consists of, as this depends
on a particular company’s organization; acceptance
might require a single electronic signature, or the
joint approval of a change control board. OVER-
SEE accommodates either scenario.

CM tools have traditionally stored information
in a heavily-protected database, where the CM
has absolute control on whether information is
entered. In TRW’s PMDB [51 and in CMS 191,
for example, separate areas exist for software
under development, software being tested, and
software that has been tested and installed. In
OVERSEE, however, the development and testing
areas are merged into the SDA, and the SCA has
a close relationship to the SDA. The following
concepts are most important in su porting

P
this.

(We explain why in the next section.

1. All software development relevant to a pro-
ject is done under a single directory (not
spread across different developers’ accounts).
Each developer creates, contigures, and unit-
tests his portion of the software in a set of
directories with no special access restrictions.

2. When his software is ready for integration
testing, the developer places it (through the
‘integration-test” operation> in a “mu-
environment* that mimics the configuration
ultimately adopted by the tested, installed
software. Note that the developer does not
submit Gs to a CM for testing. Rather, he
notifies the tester that a product of his in

3.

4.

the SDA is ready for testing. OVERSEE
maintains a list of source f&s relevant to
any product, and the tester is given that
list; he (the tester) then reviews the source
iiles, in the SDA. File locks prevent
modifications to the files until the tester
either accepts or rejects the product.

The mini-environment stores files that are
tested or in the process of being tested. It
is accessible to other developers, so object
libraries may be placed there. Developers
reference only their own source directories
and the mini+znvironment, but not other
developers’ directories. This avoids the prob-
lem of other developers (or the general user
community) becoming dependent on private,
preliminary versions while giving them access
to software that is reasonably stable.

Once software is tested and accepted, it is
transferred from the SDA to the SCA. This
will occur when testing on an entire product
is complete. In other words, much of the
software in the mini-environment will have
passed through testing before the software is
moved.

Configuration management systems can help
enforce software development standards. OVER-
SEE allows this through the use of p&.&s, a
concept similar to that found in MCS [8]. An
OVERSEE policy is a boolean-valued operation
applied to any component or set of components in
the SDA. Each OVERSEE command has an asso-
ciated set of policies that are tested whenever the
command is invoked. The exact set of policies
associated with a given command is project-specific
and depends on the particular life cycle and stan-
dards in effect. The following are examples of
policies that have been implemented in OVERSEE

1. Each subroutine must have a comment
header in a standard format. The header
contains at least the routine’s name, authors

79

SIC +obj, lib / \

Figure2 Sample Project Structure

and a copyright notice.

2. All permanent fl.le names must be imple-
mented as defined constants, not hard-coded
into a program.

3. Each (sub)system must contain a ‘makellle”
with a standard set of directives to for com-
pilation and installation.

Figure 2 presents the general structure of a
software development project configured under
OVERSEE that illustrates many of the concepts
presented in this section. The project has passed
through requirements and design into coding (else
there would be no files under the code directory).
The project is to produce:

l A library of software modules. Each module
is obtained from one or more con@red source
files, which compile into relocatable object f&s,
which are then placed in the library.

l A shell-level command. This command is
built from cotigurcd source i&s, which com-
pile into relocatable object ties. These Us,
along with several objects from the library,
are linked to form the command.

The testing ares contains versions of software
from the code area in the integration testing
phase. Test 5les in this area are stored in a
hierarchy that duplicates the subproject organiza-
tion in the coding area; the similarity helps in
locating appropriate test files and plans. The
other parts of the testing area represent the

. . .
test file

.*.

minienvironment. The curved lines show what
types of &s are taken from the developers’ areas
and where they reside in the mini-environment.

The software in the mini-environment is being
referenced by several people. It has already been
through unit-testing (a necessary precondition to
being ex rted outside the area from which it

Y originates and is now being used by testers.
Also, the person developing the command is
extracting the necessary modules from the library.

4. SUF’F’OKI’ING RAPIDLY ISOLVING
SOFTWARE

We claim a con.@uration management system
must do the following to support rapidly evolv-
ing software:

1. It must minimize information loss.
2. It must reduce the overhead of initiating

testing and installation.
3. It must alIow the developer to experiment

with different versions.
4. It must allow simple recovery of previous

versions.

This section describes OVERSEE’s support for the
above.

4.1 Midmiziq Information Lam

Information is lost in two ways. The first is
through leaks within the system. Losses of this
sort are minimal in an automated environment, so
we shall not comment on them further. The

80

second, more serious way, is through the non-flow
concept &cussed earlier. Any place where flow
may be initiated represents a potential non-flow
point. OVERSEE attempts to eliminate informa-
tion flow in three major ways.

4.1.1 Reducing LIata Fbw
One of the first projects in OVERSEE was to

build a general-purpose model for software
development and to analyze data flow within that
model. The model assumes little more than that
if a product is to be part of the installed
configuration (which includes much more than
just code) then it be tested in some manner.
Even so, the complexity of information flow was
soon apparent. The data flow diagram of Figure
1 is accurate only for a project with one
developer, one tester, and one CM. In reality, a
highly complex set of interactions exists between
a multitude of project members, each interaction a
possible non-flow point. Simplifying the data
flow is an important goal.

Using the mini-environment and merging the
testing and development areas are the principle
techniques for reducing non-flow. They eliminate
a large number of flow paths and information
entry points; since less information flows, less can
be lost. Software that compiles in the mini-
environment needs little transformation when it is
moved to the SCA. Similarly, there is no flow
between development and testing areas, since they
are the same. Projecta are often delayed for a
day or more due to non-flows of this nature;
OVERSEE solves the problem by eliminating the
possibility of their occurring.

4.1.2 Note-Taking Chmunds
OVERSEE also provides special note-taking

commands to allow for spur-of-the-moment
thoughts. These are shell-level commands, and,
combined with Unix’s context-switch facilities, are
simple to access at any time. While the notes
entered are not necessarily organized in any logi-
cal fashion, they exist, which is better than typi-
cal scenarios. For example, a developer modifying
code might enter some thoughts on understanding
the design that were not covered in the design
document, which is easier and quicker than modi-
fying the design document itself (and hence more
likely to be done). We are presently studying
techniques for categorizing and reporting such
notes; currently, they are timestamped to help
maintain project history. OVERSEE simply
requires that all notes be re-read before integra-
tion testing ends. The intent is that re-reading a
design note will encourage it to be added to the
design document.

4.1.3 Accaunbg for Uncm$gured Fib
OVERSEE allows any ffle to become part of

the SDA through a single command. Not all of

these files become part of the SCA, but OVERSEE
tracks all @es in the SDA and can notify a user
of the presense of a tie that does not fit into the
expected confIguration. Suppose a developer for-
gets to configure a source tile; since such a !Ile
must be tested, it is lost information. The
notification gives the developer a chance to
recover the information before the software leaves
his control (which is when lengthy delays are
possible).

4.2 Reducing Testing Overhead

Passing software through the testing phase-
preparing the necessary forms, getting proper
approvals, etc.-can create lengthy delays. This is
undesirable for rapidly evolving software. How-
ever, relaxing the testing standards is not accept-
able; small changes should be subjected to the
same review process as large ones.

OVERSEE’s solution to this problem is to
increase the developer’s control over the testing
process. In most CM scenarios, a developer must
inform the CM that testing is to begin. The CM
will then copy a set of ties into the testing are&
and notify all parties involved in the testing.
However, in an automated CM environment, the
(human) CM’s presense is not needed until after
testing is completed. Thus developers control
when testing commences, as discussed above;
OVERSEE is responsible for notification and tile
locking. This eliminates several information flow
paths between the developer, the tester, and the
CM.

A potential drawback to this scheme is that
the developer can, by placing a new version of
software in the mini-environment during integra-
tion testing, affect another developer who is
referencing the old version. We do not view this
problem as serious; it involves no information
loss and, as explained below, can always be
corrected with a single recompilation command.
Software under development is subject to bugs in
any case, and in our experience there does not
appear to be a simcant increase in lost time
from changes to the minienvironment. To help
guard developers from surprises, OVERSEE sends
an electronic mail message to all developers am-
netted with a project when any part of the
software within that project is about to be tested.

Policies also reduce testing overhead by elim-
inating some of the most tedious and time-
consuming parts of testing. The examples in the
previous section are usually accomplished by
manual code reviews. Their implementations were
not foolproof--checking adherence to standards is
a complex pattern-recognition problem, and there
is still no substitute for a careful code review-
but they uncovered many simple errors caused by

carelessness. OVERSEE helps developers pinpoint
and ti such problems before a tester sees the
code. This saves testers’ time and eliminates a
large information flow between developers and
testers.

43 Experimenting with verdolla

While developers use the mini+nvironment for
software that is being tested, they can easily
create dXerent versions of the software in their
own areas. They therefore doe not interfere with
files of theirs that other developers are using.
Experiments with variations on interface styles or
functionality can be conducted in isolation from
anyone else’s work.

4.4 Recovering Previous Versiona

Since the developers do their work in the
SDA, and since they have normal file access per-
missions, they can damage the cofiguration. We
now discuss two issues: first, how much trouble a
developer can cause, and second, how dficult it
is to recover from that trouble. We consider
carelessness rather than maliciousness, but note in
passing that an ordinary developer lacks the abil-
ity to destroy anything except his own ties, and
only the latest versions thereof. Hence, even
maliciousness cannot necessitate more than a
recompilation of the previous version.

OVERSEE permits the developer to modify
only the set of objects that he is developing.
Modacation is done through extension, so previ-
ous versions can never be lost. This in itself
means that problems can cause delays no longer
than recompilation time. It is also important to
understand exactly what the developer can affect.
Aside from his own files, he may ause some
modification to software that other developers
(but not users) require. Insuring that access to
this common area does not disrupt other software
developers is therefore important. Suppose, for
example, that a developer is creating some object
file that is to be part of a publicly accessible
object library. OVERSEE requires (in a way that
can be automatically verified) that a developer
test the file before it is placed in the public test-
ing area. Furthermore, the last version of the
public file is preserved, and developers can resort
to it if bugs impact their work.

Finally, all software that has passed through
testing is stored in the SCA. Here, it is com-
pletely removed from the developer’s responsibil-
ity, and so cannot be harmed by him. Most of
installation is automated, invoked by a single
command. It is based on the Unix “make install”
convention, but extended to account for installing
particular versions. This minimizes the possibility
for error on the part of the CM.

5. CONCLUSIONS

Few software projects avoid a rapid evolution
Phase. In this paper, we have discussed two
methods used by the OVERSEE environment to
reduce the consequent problems: the elimination of
excess information flow, and attempts to prevent
non-flow. The reader should not conclude that
the problems discussed are unique to rapid evolu-
tion phases, nor that OVERSEE handles only this
part of the software life cycle. Rapidly evolving
software exposes problems in one’s software
configuration procedures more than other times,
due to the need for haste: since we do not have
space for a complete discussion of OVERSEE, we
have concentrated on this one aspect.

OVERSEE is the result of an attempt to re-
think CM practices by asking ‘How can we
manage software on a computer?” rather than
asking ‘How can we automate current software
development practices?’ We have answered this
question largely in terms of our information flow
analysis. Several ideas unique to OVERSEE have
resulted, including merging the testing and
development areas, keeping test data out of the
central database (the system cotigured area) until
the testing phase is completed, and allowing the
developer to control the testing phase. These
ideas might, at first, seem to border on heresy.
In practice, we have not seen them cause trouble;
rather, they have greatly simplised software
development. A prototype version of OVERSEE
has been used in the development of several
small software systems with encouraging results,
and the information flow seems natural for an
automated environment.

[II

M

131

[41

151

B. Boehm, So-e Engineering Ecorzomics,
Prentice Hall, Englewood Cliffs, NJ, 1981.

B. Boehm, T. Gray and T. Seewald, Protczyp
ing vs. Specifying: A Mu&i-Project Experiment,
UCLA Technical Report, Computer Science
Dept., University of California,. Los Angeles,
CA, 1982.

P. Nicklin, The SPMS Software Project Mamge-
ment System, Unix Programmer’s Manual (4.2
Berkeley Software Distribution), Berkeley,
CA, Aug. 1983.

M. Penedo and A. Pyster, ‘Software
Engineering Standards for TRW’s Software
Productivity Project,” Proc. 2nd Soffwtzre
Engineering Stamiards Application Workshop,
San Francisco, CA, May 1983.

M. Penedo and E. Stuckle, ‘PMDB-A Project
Master Database for Software Engineering

82

Environments,” Proc. 8th Znz. Conf. on Software
Eng., London, UK, Aug. 1985.

[6] W. Tichy, “Design, Implementation, and
Evaluation of a Revision Control System,”
Proc. IEEE 6th Znt. Conf. on S$ware Bag.,
Tokyo, Japan, Sep. 1982.

[71 S. Wartik and M. Penedo, ‘Form-Oriented
Software Development,” ZEEE Software 3, 2
(Mar. 1986), pp. 61-69.

i81 A. WasSermill& ‘The unified support
Environment: Tool Support for the User
Software Engineering Methodology,” Proc.
s0fcfai.c Washington, D.C., June 1983, pp.
145-153.

[91 S. Zucker, ‘Automating the Conf@ration
Management Process,” SOFTFAZR, Arlington,
VA, June 1983, pp. 164-172.

83

