skip to main content
research-article

Edge-aware point set resampling

Published:07 February 2013Publication History
Skip Abstract Section

Abstract

Points acquired by laser scanners are not intrinsically equipped with normals, which are essential to surface reconstruction and point set rendering using surfels. Normal estimation is notoriously sensitive to noise. Near sharp features, the computation of noise-free normals becomes even more challenging due to the inherent undersampling problem at edge singularities. As a result, common edge-aware consolidation techniques such as bilateral smoothing may still produce erroneous normals near the edges. We propose a resampling approach to process a noisy and possibly outlier-ridden point set in an edge-aware manner. Our key idea is to first resample away from the edges so that reliable normals can be computed at the samples, and then based on reliable data, we progressively resample the point set while approaching the edge singularities. We demonstrate that our Edge-Aware Resampling (EAR) algorithm is capable of producing consolidated point sets with noise-free normals and clean preservation of sharp features. We also show that EAR leads to improved performance of edge-aware reconstruction methods and point set rendering techniques.

Skip Supplemental Material Section

Supplemental Material

tp158.mp4

mp4

17.4 MB

References

  1. Adamson, A. and Alexa, M. 2006. Point-sampled cell complexes. ACM Trans. on Graph. 25, 3, 671--689. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Alexa, M., Behr, J., Cohen-or, D., Fleishman, S., Levin, D., and Silva, C. T. 2001. Point set surfaces. IEEE Trans. Vis. Comp. Graph. 21--28.Google ScholarGoogle Scholar
  3. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., and Silva, C. T. 2003. Computing and rendering point set surfaces. IEEE Trans. Vis. Comp. Graph. 9, 1, 3--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Alliez, P., Cohen-Steiner, D., Tong, Y., and Desbrun, M. 2007. Voronoi-based variational reconstruction of unoriented point sets. In Proceedings of the Eurographics Symposium on Geometry Processing. 39--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Avron, H., Sharf, A., Greif, C., and Cohen-Or, D. 2010. ℓ1-sparse reconstruction of sharp point set surfaces. ACM Trans. Graph. 20, 5, 135. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright, W. R., McCallum, B. C., and Evans, T. R. 2001. Reconstruction and representation of 3D objects with radial basis functions. ACM Trans. Graph. 67--76.Google ScholarGoogle Scholar
  7. Dey, T. and Sun, J. 2006. Normal and feature approximations from noisy point clouds. In Proceedings of the Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS). Lecture Notes in Computer Science, vol. 4337, 21--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Dey, T. K. and Giesen, J. 2001. Detecting undersampling in surface reconstruction. In Proceedings of the Symposium on Computational Geometry. 257--263. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Fleishman, S., Cohen-Or, D., and Silva, C. T. 2005. Robust moving least-squares fitting with sharp features. ACM Trans. Graph. 24, 3, 544--552. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Fleishman, S., Drori, I., and Cohen-Or, D. 2003. Bilateral mesh denoising. ACM Trans. Graph. 22, 3, 950--953. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Gross, M. and Pfister, H. 2007. Point-Based Graphics. Morgan Kaufman. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Guennebaud, G., Barthe, L., and Paulin, M. 2004. Real-Time point cloud refinement. In Proceedings of Symposium on Point-Based Graphics. 41--49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Guennebaud, G., Germann, M., and Gross, M. 2008. Dynamic sampling and rendering of algebraic point set surfaces. Comput. Graph. Forum (Special Issue of Eurographics). 27, 3, 653--662.Google ScholarGoogle ScholarCross RefCross Ref
  14. Guennebaud, G. and Gross, M. 2007. Algebraic point set surfaces. ACM Trans. Graph. 26, 3, 23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hildebrandt, K. and Polthier, K. 2004. Anisotropic filtering of non-linear surface features. Comput. Graph. Forum (Special Issue of Eurographics) 23, 3, 391--400.Google ScholarGoogle ScholarCross RefCross Ref
  16. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W. 1992. Surface reconstruction from unorganized points. ACM Trans. Graph., 71--78.Google ScholarGoogle Scholar
  17. Huang, H. and Ascher, U. 2008. Surface mesh smoothing, regularization and feature detection. SIAM J. Scient. Comput. 31, 1, 74--93. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Huang, H., Li, D., Zhang, H., Ascher, U., and Cohen-Or, D. 2009. Consolidation of unorganized point clouds for surface reconstruction. ACM Trans. Graph. 28, 5, 176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Jones, T., Durand, F., and Desbrun, M. 2003. Non-Iterative, feature preserving mesh smoothing. ACM Trans. Graph. 22, 3, 943-- 949. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Jones, T. R., Durand, F., and Zwicker, M. 2004. Normal improvement for point rendering. IEEE Comput. Graph. Appl. 24, 53--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kazhdan, M., Bolitho, M., and Hoppe, H. 2006. Poisson surface reconstruction. In Proceedings Eurographics Symposium on Geometry Processing. 61--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lange, C. and Polthier, K. 2005. Anisotropic smoothing of point sets. Comput. Aid. Geom. Des. 22, 7, 680--692. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Lipman, Y., Cohen-Or, D., and Levin, D. 2007a. Data-Dependent MLS for faithful surface approximation. In Proceedings of the Eurographics Symposium on Geometry Processing. 59--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Lipman, Y., Cohen-Or, D., Levin, D., and Tal-Ezer, H. 2007b. Parameterization-Free projection for geometry reconstruction. ACM Trans. Graph. 26, 3, 22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Merigot, Q., Ovsjanikov, M., and Guibas, L. 2009. Robust voronoi-based curvature and feature estimation. In Proceedings of the SIAM/ACM Joint Conference on Geometric and Physical Modeling. 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Miao, Y., Diaz-Gutierrez, P., Pajarola, R., Gopi, M., and Feng, J. 2009. Shape isophotic error metric controllable re-sampling for point-sampled surfaces. In Proceedings IEEE Conference on Shape Modeling and Applications. 28--35.Google ScholarGoogle Scholar
  27. Mitra, N. J., Nguyen, A., and Guibas, L. 2004. Estimating surface normals in noisy point cloud data. Int. J. Comput. Geom. Appl. 14, 4--5, 261--276.Google ScholarGoogle ScholarCross RefCross Ref
  28. Öztireli, C., Alexa, M., and Gross, M. 2010. Spectral sampling of manifolds. ACM Trans. Graph. 29, 5, 168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Öztireli, C., Guennebaud, G., and Gross, M. 2009. Feature preserving point set surfaces based on non-linear kernel regression. Comp. Graph. Forum 28, 2, 493--501.Google ScholarGoogle ScholarCross RefCross Ref
  30. Pauly, M., Gross, M., and Kobbelt, L. P. 2002. Efficient simplification of point-sampled surfaces. In Proceedings of IEEE Visualization Conference. 163--170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Pauly, M., Keiser, R., Kobbelt, L. P., and Gross, M. 2003. Shape modeling with point-sampled geometry. ACM Trans. Graph. 22, 3, 641--650. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Pfister, H., Zwicker, M., van Baar, J., and Gross, M. 2000. Surfels: Surface elements as rendering primitives. In ACM Trans. Graph. 335--342. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Salman, N., Yvinec, M., and Merigot, Q. 2010. Feature preserving mesh generation from 3D point clouds. In Proceedings of the Eurographics Symposium on Geometry Processing. 29, 5, 1623--1632.Google ScholarGoogle Scholar
  34. Sun, X., Rosin, P. L., Martin, R. R., and Langbein, F. C. 2007. Fast and effective feature-preserving mesh denoising. IEEE Trans. Vis. Comp. Graph. 13, 5, 925--938. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Vergne, R., Pacanowski, R., Barla, P., Granier, X., and Schlick, C. 2010. Radiance scaling for versatile surface enhancement. In Proceedings of the Symposium on Interactive 3D Graphics and Games. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Weber, C., Hahmann, S., and Hagen, H. 2010. Sharp feature detection in point clouds. In Proceedings of the IEEE Conference on Shape Modeling and Applications. 175--186. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Edge-aware point set resampling

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 32, Issue 1
        January 2013
        125 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2421636
        Issue’s Table of Contents

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 7 February 2013
        • Accepted: 1 August 2012
        • Revised: 1 June 2012
        • Received: 1 August 2011
        Published in tog Volume 32, Issue 1

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader