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1. Introduction 

This paper addresses the question of  how the assumption of  bounded fan-out 
affects the computat ional  power of  a logical network. This question arises when 
constructing computat ional  models of  logical networks, since different technologies 
impose significantly different constraints on the fan-out o f  gates. In this paper 
logical networks are modeled by acyclic directed graphs, where the vertices represent 
the inputs and the gates, and the edges represent the wires connecting them. (Our 
conventions for modeling networks by graphs differ from the most c o m m o n  ones 
for modeling networks [6] and resemble more closely those for straight-line pro- 
grams [8]. The main differences are that inputs are treated in the same way as gates 
and that outputs are not distinguished from the gates that compute  them. Our  
results are easily adapted to other conventions.) Given the assumption that the 
gates belong to some standard set of  functions, it makes sense to assume that the 
fan-in in these graphs is bounded by some number  s (commonly  s is taken to be 
2). The question of  whether the fan-out should also be assumed to be bounded 
depends on which technology is being modeled. In some technologies, the output  
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of a gate can only be used a small number of times (typically 2 or 3) without 
significant degradation of speed and reliability. In other technologies this problem 
does not occur, or to be more accurate, only occurs at much higher levels of fan- 
out. 

Our main result is an algorithm which, for any t _> 2, modifies an acyclic directed 
graph with fan-in bounded by s to obtain a functionally equivalent graph with fan- 
in bounded by s and fan-out bounded by t, so that both size and depth are not 
increased by more than constant factors (depending on s and t). By functionally 
equivalent, we mean that when the graphs are interpreted as logical networks, the 
modified network will produce the same values on the outputs as the original 
network for any set of specified inputs. A further consequence of this result is that 
it allows one to draw parallels between computations using straight-line programs 
and computations using logical networks. 

We call a vertex in an acyclic directed graph an input (output) if it has no in 
(out) edges. The size of a graph G, denoted by Size(G), is the number of vertices, 
and the depth, denoted by Depth(G), is the length of the longest path from an 
input to an output. When G is viewed as a model of  a logical network, size thus 
corresponds to the cost of  building the network (note that the number of edges can 
be disregarded since it is linear in the number of vertices, because fan-in is bounded), 
whereas depth corresponds to the total delay time of the network. Viewing G as 
the computation graph of a straight-line program, we see that size corresponds to 
the sequential evaluation time of the program, whereas depth corresponds to 
parallel evaluation time. 

An obvious method of modifying a graph to obtain fan-out bounded by t is, for 
every vertex whose fan-out is too high, to replace the edges from that vertex to its 
sons by a t-ary tree with that vertex as the root and its sons as the leaves. (By t-ary 
tree we mean a rooted tree in which every vertex has at most t sons.) It is clear that 
this results in a functionally equivalent graph when the nonroot internal vertices 
of the trees are interpreted simply as replicators. In 1972 Johnson et al. (see [7]) 
showed that this results in 

Size(modified G) < (l + S -  l) Size(G) + q--q--- 
- -  t - -  t - - l '  

where q is the number of outputs in G. Unfortunately, using this method can result 
in depth being multiplied by as much as the logarithm of the size. In 1979, Hoover 
[2] combined this technique with the option of recomputing values, to obtain for 
any a > 0 and s = t = 2, an algorithm yielding 

Size(modified G) <- (2(Size(G))) i+" 

and 

Depth(modified G) -- (2 + 1/a)Depth(G). 
Our algorithm uses the obvious method, but by choosing the trees so as to minimize 
the increase in depth, we are able to achieve the constant bound on increase in 
depth as well as size. 

The next section is devoted to describing the t-ary trees used in our algorithm to 
minimize depth, and to establishing some of their properties. The algorithm itself 
is presented in Section 3, along with the proofs of the size and depth bounds. 

Just as the depth of the graph reflects the parallel evaluation time of a straight- 
line program, it is possible to define various width measures of an acyclic directed 
graph which reflect the space requirements of the program. The corresponding 
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problem of  preserving width while decreasing fan-out is investigated in [3] for two 
natural width definitions. In particular, it is shown that our size--depth preserving 
algorithm does not preserve width to within a constant multiplicative factor for 
either definition of  width, though size-width preserving algorithms are presented. 
The problem of  simultaneously preserving size, depth, and width seems to be more 
difficult. 

2. t.ary Trees Which Minimize Depth 

We say that a t-ary tree is weighted if every vertex has an integer weight assigned 
to it, and moreover, the weight of  every internal vertex is exactly 1 plus the 
maximum of  the weights of  its sons. This section presents a method of  constructing 
a weighted t-ary tree with a specified set of  leaves, such that the weight o f  the root 
is minimal. We also present some properties of  these trees which will prove useful 
in obtaining the size and depth bounds in the next section. The tree construction 
algorithm is a slight variant of  Huffman's  algorithm for constructing a prefLx code 
of  minimum average length [4], and was introduced by Golumbic  [1 ] to construct 
optimal trees with bounded fan-in. 

For any vertex v we denote its weight by w(v). For V a set o f  weighted vertices, 
let V* be the set with I V*lmod(t - 1) = 1, obtained by adding at most  t - 2 
d u m m y  vertices with weight -oo to V. The t-ary weighted tree T(t, V*) is defined 
recursively as follows. To begin with, if  I V*I = 1, then T(t, V*) is simply V*. For 
I V*I > 1, let v~ . . . . .  v, be the t vertices of  lm with the smallest weights, and let 
V' = (V*\{vz, . . . ,  vt}) t.J {u}, where u is a new vertex with w(u) = 1 + max{w(v,): 1 
_< i < tl. Notice that I V'I mod(t - 1) = 1 also. Then T(t, V*) is simply T(t, V')  
with vj . . . . .  vt adjoined as the sons of  u. Finally, T(t, V) is obtained by removing 
the d u m m y  vertices from T(t, V*). 

Remark 2.1. Since every internal vertex of  T(t, V*) has exactly t sons, it is easy 
to see that the number  of  internal vertices in T(t, I0 is (I lml - l)/(t  - 1) -- 
r(I Vl - l)/(t- 1)1. 

The following lemma will be essential in the proof  of  the depth bound  in the 
next section. This result is also proved in [ 1 ], but  we include a different proof  here 
which we feel is somewhat more illuminating. 

LEMMA 2.2. I f  r is the root ofT(t, V), then 

twO')< t ( ~ v t ~ °  ). 

PROOV. Since t -= = 0, it suffices to show that t "~° < t (~,~v* t"~°). For any 
weighted tree T with at least t leaves, let T '  be the tree obtained by removing the t 
leaves with smallest weights. Now let T' be defined recursively by T o = T(t, 1I*) and 
T '+~ = (T')'. Thus, i f d  = (I V*I - 1)/(t - 1), then T °, T ~ . . . .  , Tais a sequence of  
t-ary weighted trees, beginning with T(t, V*) and ending with the singleton tree {r}. 
For 0 _< t _< d - 1, let v(i, 1) . . . .  , v(i, t) be the t leaves of  T' with smallest weights, 
in ascending order. Then from the definition of  T(t, V*), it is clear that v(i, 1) . . . . .  
v(t, t) have the same father in T', whose weight is w(v(i, t)) + 1. Thus, 

Y~lt"~"): v is a leaf of  T'+q = t "~*'t))÷~ - t "~*'')) . . . . .  t w(~i't)) 

+ E{t"~°:v is a leaf o f  T'} 
= (t -- l)t ~vtt't)) -- t wtvO'O) . . . . .  t wtv(i't-l)) 

+ X{tqv): v is a leaf o f  Ti}. 
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Applying this repeatedly, we obtain 

t w(r) = ( t  - -  l ) l  w(v(d-l ' t ))  - -  t w(v (d-LO)  . . . . .  I w (v (d - l ' t - l ) )  

Since (t - 
this yields 

+ (t -- l)t ~O't)) -- t ~(~(°'D) . . . . .  t w(v(°'t-D) 
+ ~ t ~v). 

vEV* 

l)t ~'~''t)) < t ~(v(t+l'O) + . . .  + t ~(~0+ht-I)) for each i, and t ~°,t-')) > 0, 

t "~') < (t - l)t "~a-''t)) + Y~ t w~v). 
~v ,  

Finally, we have t "~r,) < t (Y~v ,  tw~v)), since w(r) = w(v(d - 1, t)) + 1. [] 

LEMM• 2.3. For r the root ofT(t ,  V) we have w(r) = r logz(Y.~v t"~v))]. Moreover, 
w(r) is min imal  among the weights o f  roots o f  weighted t-ary trees with V as the set 
of leaves. 

PROOF. First note that for any weighted t-ary tree with V as its set of leaves and 
z as its root, it is easy to prove by induction that ~,~vt w~v) <_ t "~z). In fact, this is the 
well-known Kraft inequality [5]. Moreover, as all of the weights of the leaves are 
integers, w(z)  is alsq an integer, and hence w(z)  >_ Combining this 
with the bound on w(r) given in Lemma 2.2 completes the proof. [] 

Remark  2.4. Although the proof of optimality of T(t, V) given here (and in 
[ 1 ]) depends on the integrality of the weights in V, it can be shown that T(t, V) is 
still an optimal tree even when the weights in V are arbitrary real numbers. The 
proof is quite straightforward, and consists of first reducing to the case I V I mod 
(t - 1) = 1 and then showing that there is an optimal t-ary tree in which the leaves 
with the t smallest weights are siblings. Since integrality is not used in the proof of 
Lemma 2.2, we see the bound also applies to the case of  real weights. 

3. An  Algorithm to Reduce Fan-out Which Preserves Size  and Depth 

Let G be an acyclic directed graph with fan-in bounded by s and q outputs. G is 
also allowed to have multiple edges, since this is a common occurrence in logical 
networks. We begin by describing an algorithm which modifies G to obtain a 
functionally equivalent graph with fan-out bounded by t. The rest of this section is 
devoted to proving that this algorithm does not increase the size and depth of G 
by more than constant factors. 

We define the ith level of  G as the set of vertices of G whose longest path to an 
output is of  length i. 

ALGORITHM 3.1. Let D be the depth of  G, and let L, denote the ith level of G 
for i = 0, 1 , . . . ,  D. Let Go be G, and suppose we have constructed G~ for 0 _< k <_ 
i - 1. Then G, is constructed as follows. For each vertex x in L, with outdegree 
greater than t, let V(x) be the set (with repetition in the case of  multiple edges) of  
sons of x, where the weight of a son v is defined to be the length of the longest path 
from v to an output in G,-~. Now G, is obtained from G,-,, for each such vertex x 
in L,, by replacing the edges from x to its sons by the t-ary tree T(t, V(x)), with x 
identified with the root of T(t, V(x)). 

Let F(G) be the graph GD. Now as remarked in Section 1, it is easy to see that 
F(G) is functionally equivalent to G and has fan-out bounded by t. An example of 
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a graph G together with F(G), taking s = t = 2, is shown in Figure 1. Our  next 
lemma shows that the size of  F(G) is bounded by a constant factor t imes that 
of  G. 

LEMMA 3.2. I f  G has fan-in bounded by s and q outputs, then 

Size(F(G)) < ( l  + S -  l )  Size(G) + q -  I 
- t -  t - l "  

PROOF. For each vertex v in G let d(v) denote its outdegree. If  no vertex of  G 
has outdegree greater than t, then F(G) = G, and the lemma is dear ly  true, so we 
may assume that G has at least one vertex, say x, with d(x) > t. We see from 
Remark 2.1 that the number  of  new vertices added to G to obtain F(G) is exactly 
~ . d ( v ) > t ( [ ( d ( v )  - -  l ) /( t  - 1)] - 1). We first notice that this sum is _< Y,a(~)>o(d(v) - 1)/ 
(t - 1) - l/(t - 1), since if d(v) > 0 then (d(v) - 1)/(t - 1) ___ 0; if  d(v) > t, then 
(d(v) - l ) /( t  - 1) - (ffd(v) - l ) /( t  - 1)] - 1) __ 1/(t - 1); and at least one vertex v 
has d(v) > t. Now 

<-( t - -~ ) ( s (S i z e (G) ) - (S i z e (G) -q ) ) .  

Combining all this together we have the desired bound on Size(F(G)). [] 

This estimate for the size is essentially the same as the one given by Johnson et 
al. (see [7, Theorem 2.3.2]). 

Our  next goal is to obtain a similar bound on the increase in depth. For  each v 
in G let w(v) be the length of  the longest path from v to an output  in F(G). Notice 
that if  v is in L,, then w(v) is also the length of  the longest path from v to an output  
in G,. Also, for 0 ___ i < D - 1, let A, be [v:v ~ Lj for s o m e j  _< i, v is the son of  
some u in Lk where k > t }. We begin with the following lemma. 
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Y. t ~°  <_ (st)'q. 

PROOF. The proof is by induction on L Since Ao is,contained in the set of  
outputs, the lemma is dearly true for i = 0. Thus assume i > I and that the lemma 
holds for i - 1. Obviously A, is contained in (A, t3 A,-I) LI L,, and moreover, any 
vertex in (.4, n A,-I) is the son of  at most s - 1 vertices in Li. By Lemma 2.3, we 
know that t w~'~ < t (~{t'~°: v is a son of  u}). Combining all this with the fact that if 
u is in L, then all of  u's sons are in A,-I, we see that 

Y.{t~°:v E A, 63 A,-I} + Y.{t~°:v E L,} 

<_ st(st)'-I q. [] 

We are now ready to give the proof of the depth bound. 

LEMMA 3.4. 

Depth(F(G)) < (1 +log,  s)Depth(G) + logtq. 

PROOF. Let x be a vertex in G such that w(x) is maximal, and suppose x belongs 
to L,. Then all of  x's sons must be in A,-,,  and by Lemmas 2.3 and 3.3 we have 
t "~-'~ < st(st)'-Iq <_ (st)°q. Thus 

Depth(F(G)) = w(x) < log~((st)°q) 
= (1 + log~s)Depth(G) + log~q. [] 

By examining the graph with one input, q outputs, and s edges from the input 
to each of  the outputs, it can be seen that the bounds of  Lemmas 3.2 and 3.4 are 
tight to within additive constant terms depending only on s and t. 
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