
Bounding Fan-out in Logical Networks

H. J. HOOVER

Umverstty of Toronto, Toronto, Ontario, Canada

AND

M. M. KLAWE AND N. J. PIPPENGER

IBM Research Laboratory, San Jose, Cahforma

Abstract. Algorithms are presented which modify logical networks of bounded fan-in to obtain func-
tionally equivalent networks of bounded fan-m and fan-out, so that both size and depth are not increased
by more than constant factors.

Categories and Subject Descriptors: F. 1.1 [Computation by Abstract Devices]: Models of Computauon--
relattons among models; F.I.3 [Computation by Abstract Devices]: Complexity Classesurelations
among complextty classes, relatwns among complexity measures; F.2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumericai Algorithms and Problems--computations on discrete structures;
routing and layout; G.2.2 [Discrete Mathematics]: Graph Theorymgraph algorithms; network problems;
frees

General Terms: Algorithms, Theory

Addmonal Key Words and Phrases Circuits, fan-out, size, depth

1. Introduction

This paper addresses the question of how the assumption of bounded fan-out
affects the computat ional power of a logical network. This question arises when
constructing computat ional models of logical networks, since different technologies
impose significantly different constraints on the fan-out o f gates. In this paper
logical networks are modeled by acyclic directed graphs, where the vertices represent
the inputs and the gates, and the edges represent the wires connecting them. (Our
conventions for modeling networks by graphs differ from the most c o m m o n ones
for modeling networks [6] and resemble more closely those for straight-line pro-
grams [8]. The main differences are that inputs are treated in the same way as gates
and that outputs are not distinguished from the gates that compute them. Our
results are easily adapted to other conventions.) Given the assumption that the
gates belong to some standard set of functions, it makes sense to assume that the
fan-in in these graphs is bounded by some number s (commonly s is taken to be
2). The question of whether the fan-out should also be assumed to be bounded
depends on which technology is being modeled. In some technologies, the output

Authors' addresses: H. J Hoover, Department of Computer Science, Umvers~ty of Toronto, Toronto,
Ontario, Canada M5S IA7; M. M. Klawe and N. J. Pippenger, IBM Research Laboratory, San Jose,
CA 95193.
Permission to copy without fee all or part of this material ts granted provided that the copies are not
made or d~stnbuted for d~rect commercial advantage, the ACM copyright notice and the title of the
pubhcatJon and ~ts date appear, and notice is gwen that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to repubhsh, requires a fee and/or specific permission.
© 1984 ACM 0004-5411/84/0100-0013 $00.75

Jourflal ofthe AsSOClaUon ['or Computing Machinery, Vol. 31, No 1, January 1984, pp. 13-18

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2422.322412&domain=pdf&date_stamp=1984-01-01

14 H . J . HOOVER, M. M. KLAWE, AND N. J. PIPPENGER

of a gate can only be used a small number of times (typically 2 or 3) without
significant degradation of speed and reliability. In other technologies this problem
does not occur, or to be more accurate, only occurs at much higher levels of fan-
out.

Our main result is an algorithm which, for any t _> 2, modifies an acyclic directed
graph with fan-in bounded by s to obtain a functionally equivalent graph with fan-
in bounded by s and fan-out bounded by t, so that both size and depth are not
increased by more than constant factors (depending on s and t). By functionally
equivalent, we mean that when the graphs are interpreted as logical networks, the
modified network will produce the same values on the outputs as the original
network for any set of specified inputs. A further consequence of this result is that
it allows one to draw parallels between computations using straight-line programs
and computations using logical networks.

We call a vertex in an acyclic directed graph an input (output) if it has no in
(out) edges. The size of a graph G, denoted by Size(G), is the number of vertices,
and the depth, denoted by Depth(G), is the length of the longest path from an
input to an output. When G is viewed as a model of a logical network, size thus
corresponds to the cost of building the network (note that the number of edges can
be disregarded since it is linear in the number of vertices, because fan-in is bounded),
whereas depth corresponds to the total delay time of the network. Viewing G as
the computation graph of a straight-line program, we see that size corresponds to
the sequential evaluation time of the program, whereas depth corresponds to
parallel evaluation time.

An obvious method of modifying a graph to obtain fan-out bounded by t is, for
every vertex whose fan-out is too high, to replace the edges from that vertex to its
sons by a t-ary tree with that vertex as the root and its sons as the leaves. (By t-ary
tree we mean a rooted tree in which every vertex has at most t sons.) It is clear that
this results in a functionally equivalent graph when the nonroot internal vertices
of the trees are interpreted simply as replicators. In 1972 Johnson et al. (see [7])
showed that this results in

Size(modified G) < (l + S - l) Size(G) + q--q---
- - t - - t - - l '

where q is the number of outputs in G. Unfortunately, using this method can result
in depth being multiplied by as much as the logarithm of the size. In 1979, Hoover
[2] combined this technique with the option of recomputing values, to obtain for
any a > 0 and s = t = 2, an algorithm yielding

Size(modified G) <- (2(Size(G))) i+"

and

Depth(modified G) -- (2 + 1/a)Depth(G).
Our algorithm uses the obvious method, but by choosing the trees so as to minimize
the increase in depth, we are able to achieve the constant bound on increase in
depth as well as size.

The next section is devoted to describing the t-ary trees used in our algorithm to
minimize depth, and to establishing some of their properties. The algorithm itself
is presented in Section 3, along with the proofs of the size and depth bounds.

Just as the depth of the graph reflects the parallel evaluation time of a straight-
line program, it is possible to define various width measures of an acyclic directed
graph which reflect the space requirements of the program. The corresponding

Bounding Fan-out in Logical Networks 15

problem of preserving width while decreasing fan-out is investigated in [3] for two
natural width definitions. In particular, it is shown that our size--depth preserving
algorithm does not preserve width to within a constant multiplicative factor for
either definition of width, though size-width preserving algorithms are presented.
The problem of simultaneously preserving size, depth, and width seems to be more
difficult.

2. t.ary Trees Which Minimize Depth

We say that a t-ary tree is weighted if every vertex has an integer weight assigned
to it, and moreover, the weight of every internal vertex is exactly 1 plus the
maximum of the weights of its sons. This section presents a method of constructing
a weighted t-ary tree with a specified set of leaves, such that the weight o f the root
is minimal. We also present some properties of these trees which will prove useful
in obtaining the size and depth bounds in the next section. The tree construction
algorithm is a slight variant of Huffman's algorithm for constructing a prefLx code
of minimum average length [4], and was introduced by Golumbic [1] to construct
optimal trees with bounded fan-in.

For any vertex v we denote its weight by w(v). For V a set o f weighted vertices,
let V* be the set with I V*lmod(t - 1) = 1, obtained by adding at most t - 2
d u m m y vertices with weight -oo to V. The t-ary weighted tree T(t, V*) is defined
recursively as follows. To begin with, if I V*I = 1, then T(t, V*) is simply V*. For
I V*I > 1, let v~ v, be the t vertices of lm with the smallest weights, and let
V' = (V*\{vz, . . . , vt}) t.J {u}, where u is a new vertex with w(u) = 1 + max{w(v,): 1
_< i < tl. Notice that I V'I mod(t - 1) = 1 also. Then T(t, V*) is simply T(t, V')
with vj vt adjoined as the sons of u. Finally, T(t, V) is obtained by removing
the d u m m y vertices from T(t, V*).

Remark 2.1. Since every internal vertex of T(t, V*) has exactly t sons, it is easy
to see that the number of internal vertices in T(t, I0 is (I lml - l)/(t - 1) --
r(I Vl - l)/(t- 1)1.

The following lemma will be essential in the proof of the depth bound in the
next section. This result is also proved in [1], but we include a different proof here
which we feel is somewhat more illuminating.

LEMMA 2.2. I f r is the root ofT(t, V), then

twO')< t (~ v t ~ °).

PROOV. Since t -= = 0, it suffices to show that t "~° < t (~,~v* t"~°). For any
weighted tree T with at least t leaves, let T ' be the tree obtained by removing the t
leaves with smallest weights. Now let T' be defined recursively by T o = T(t, 1I*) and
T '+~ = (T')'. Thus, i f d = (I V*I - 1)/(t - 1), then T °, T ~ , Tais a sequence of
t-ary weighted trees, beginning with T(t, V*) and ending with the singleton tree {r}.
For 0 _< t _< d - 1, let v(i, 1) , v(i, t) be the t leaves of T' with smallest weights,
in ascending order. Then from the definition of T(t, V*), it is clear that v(i, 1)
v(t, t) have the same father in T', whose weight is w(v(i, t)) + 1. Thus,

Y~lt"~"): v is a leaf of T'+q = t "~*'t))÷~ - t "~*'')) t w(~i't))

+ E{t"~°:v is a leaf o f T'}
= (t -- l)t ~vtt't)) -- t wtvO'O) t wtv(i't-l))

+ X{tqv): v is a leaf o f Ti}.

16 H . J . HOOVER, M. M. KLAWE, AND N. J. PIPPENGER

Applying this repeatedly, we obtain

t w(r) = (t - - l) l w(v(d-l ' t)) - - t w(v (d-LO) I w (v (d - l ' t - l))

Since (t -
this yields

+ (t -- l)t ~O't)) -- t ~(~(°'D) t w(v(°'t-D)
+ ~ t ~v).

vEV*

l)t ~'~''t)) < t ~(v(t+l'O) + . . . + t ~(~0+ht-I)) for each i, and t ~°,t-')) > 0,

t "~') < (t - l)t "~a-''t)) + Y~ t w~v).
~v ,

Finally, we have t "~r,) < t (Y~v , tw~v)), since w(r) = w(v(d - 1, t)) + 1. []

LEMM• 2.3. For r the root ofT(t , V) we have w(r) = r logz(Y.~v t"~v))]. Moreover,
w(r) is min imal among the weights o f roots o f weighted t-ary trees with V as the set
of leaves.

PROOF. First note that for any weighted t-ary tree with V as its set of leaves and
z as its root, it is easy to prove by induction that ~,~vt w~v) <_ t "~z). In fact, this is the
well-known Kraft inequality [5]. Moreover, as all of the weights of the leaves are
integers, w(z) is alsq an integer, and hence w(z) >_ Combining this
with the bound on w(r) given in Lemma 2.2 completes the proof. []

Remark 2.4. Although the proof of optimality of T(t, V) given here (and in
[1]) depends on the integrality of the weights in V, it can be shown that T(t, V) is
still an optimal tree even when the weights in V are arbitrary real numbers. The
proof is quite straightforward, and consists of first reducing to the case I V I mod
(t - 1) = 1 and then showing that there is an optimal t-ary tree in which the leaves
with the t smallest weights are siblings. Since integrality is not used in the proof of
Lemma 2.2, we see the bound also applies to the case of real weights.

3. An Algorithm to Reduce Fan-out Which Preserves Size and Depth

Let G be an acyclic directed graph with fan-in bounded by s and q outputs. G is
also allowed to have multiple edges, since this is a common occurrence in logical
networks. We begin by describing an algorithm which modifies G to obtain a
functionally equivalent graph with fan-out bounded by t. The rest of this section is
devoted to proving that this algorithm does not increase the size and depth of G
by more than constant factors.

We define the ith level of G as the set of vertices of G whose longest path to an
output is of length i.

ALGORITHM 3.1. Let D be the depth of G, and let L, denote the ith level of G
for i = 0, 1 , . . . , D. Let Go be G, and suppose we have constructed G~ for 0 _< k <_
i - 1. Then G, is constructed as follows. For each vertex x in L, with outdegree
greater than t, let V(x) be the set (with repetition in the case of multiple edges) of
sons of x, where the weight of a son v is defined to be the length of the longest path
from v to an output in G,-~. Now G, is obtained from G,-,, for each such vertex x
in L,, by replacing the edges from x to its sons by the t-ary tree T(t, V(x)), with x
identified with the root of T(t, V(x)).

Let F(G) be the graph GD. Now as remarked in Section 1, it is easy to see that
F(G) is functionally equivalent to G and has fan-out bounded by t. An example of

Bounding Fan-out in Logical Networks

~t

a b c e ¢
J o. b C

G F(G)

FIGURE 1

It

0 ¢

17

)fit

;j

't

a graph G together with F(G), taking s = t = 2, is shown in Figure 1. Our next
lemma shows that the size of F(G) is bounded by a constant factor t imes that
of G.

LEMMA 3.2. I f G has fan-in bounded by s and q outputs, then

Size(F(G)) < (l + S - l) Size(G) + q - I
- t - t - l "

PROOF. For each vertex v in G let d(v) denote its outdegree. If no vertex of G
has outdegree greater than t, then F(G) = G, and the lemma is dear ly true, so we
may assume that G has at least one vertex, say x, with d(x) > t. We see from
Remark 2.1 that the number of new vertices added to G to obtain F(G) is exactly
~ . d (v) > t ([(d (v) - - l) /(t - 1)] - 1). We first notice that this sum is _< Y,a(~)>o(d(v) - 1)/
(t - 1) - l/(t - 1), since if d(v) > 0 then (d(v) - 1)/(t - 1) ___ 0; if d(v) > t, then
(d(v) - l) /(t - 1) - (ffd(v) - l) /(t - 1)] - 1) __ 1/(t - 1); and at least one vertex v
has d(v) > t. Now

<-(t - -~) (s (S i z e (G)) - (S i z e (G) -q)) .

Combining all this together we have the desired bound on Size(F(G)). []

This estimate for the size is essentially the same as the one given by Johnson et
al. (see [7, Theorem 2.3.2]).

Our next goal is to obtain a similar bound on the increase in depth. For each v
in G let w(v) be the length of the longest path from v to an output in F(G). Notice
that if v is in L,, then w(v) is also the length of the longest path from v to an output
in G,. Also, for 0 ___ i < D - 1, let A, be [v:v ~ Lj for s o m e j _< i, v is the son of
some u in Lk where k > t }. We begin with the following lemma.

18

LEMMA 3.3.

H. J. HOOVER, M. M. KLAWE, AND N. J. PIPPENGER

Y. t ~° <_ (st)'q.

PROOF. The proof is by induction on L Since Ao is,contained in the set of
outputs, the lemma is dearly true for i = 0. Thus assume i > I and that the lemma
holds for i - 1. Obviously A, is contained in (A, t3 A,-I) LI L,, and moreover, any
vertex in (.4, n A,-I) is the son of at most s - 1 vertices in Li. By Lemma 2.3, we
know that t w~'~ < t (~{t'~°: v is a son of u}). Combining all this with the fact that if
u is in L, then all of u's sons are in A,-I, we see that

Y.{t~°:v E A, 63 A,-I} + Y.{t~°:v E L,}

<_ st(st)'-I q. []

We are now ready to give the proof of the depth bound.

LEMMA 3.4.

Depth(F(G)) < (1 +log, s)Depth(G) + logtq.

PROOF. Let x be a vertex in G such that w(x) is maximal, and suppose x belongs
to L,. Then all of x's sons must be in A,-,, and by Lemmas 2.3 and 3.3 we have
t "~-'~ < st(st)'-Iq <_ (st)°q. Thus

Depth(F(G)) = w(x) < log~((st)°q)
= (1 + log~s)Depth(G) + log~q. []

By examining the graph with one input, q outputs, and s edges from the input
to each of the outputs, it can be seen that the bounds of Lemmas 3.2 and 3.4 are
tight to within additive constant terms depending only on s and t.

REFERENCES

1. GOLUMBIC, M.C. Combinatorial merging. IEEE Trans. Comput 25, 11 (Nov. 1976), 1164-1167.
2. HOOVER, H.J. Some topics m circuit complexity. M.Sc. Thesis, Univ. of Toronto, 1979.
3. HOOVER, H.J., KLAWE, M.M., AND PIPPENGER, N.J. Bounding fan-out in logical networks. Tech.

Rep. RJ3184, IBM Research Lab., San Jose, Calif., 1981.
4. HUFFMAN, D.A. A method for the construction of minimum redundancy codes. Proc IRE 40

(1952), 1098-1101.
5. JELINEK, Fo Probabdlstw reformation theory. McGraw-Hill, New York, 1968.
6. MULLER, D.E. Complexity in electronic switching circuits. IRE Trans. EC 5 (1956), 15-19.
7. SAVAGE, J.E. The Complexity of Computing. Wiley, New York, 1976.
8. STRASSEN, V. Berechnung und Programm I. Acta Inf. 1 (1972), 320-335.

RECEIVED JULY 1981; REVISED NOVEMBER 1982; ACCEPTED FEBRUARY 1983

Journal of the Association for Computing Machinery, Vol 31, No. I, January 1984.

