
Linear Programming in Linear Time When the Dimension
Is Fixed

NIMROD MEGIDDO

Tel Aviv Umverslty, Tel Avzv, Israel

Abstract. It is demonstrated that the linear programming problem in d variables and n constraints can
be solved in O(n) time when d is fixed. This bound follows from a multidimensional search technique
which is applicable for quadratic programming as well. There is also developed an algorithm that is
polynomial in both n and d provided d is bounded by a certain slowly growing function of n.

Categories and Subject Descriptors: F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical
Algorithms and Problemsmcomputations on matrices; F.2.2 [Analysis of Algorithms and Problem
Complexity]: Nonnumerical Algorithms and Problems--geometrical problems and computations; sort-
mg and searching; G. 1.6 [Mathematics of Computing]: Optimization--hnearprogrammmg

General Terms: Algorithms, Theory
Additional Key Words and Phrases: Genuinely polynomial time, multidimensional search, quadratic
programming, smallest ball problem, linear time algorithms

1. Introduction

The computational complexity of linear programming is one of the questions that
has attracted many researchers since the invention of the simplex algorithm [3]. A
major theoretical development in the field was Khachian's algorithm [7], which
proved that the problem could be solved in time that is polynomial in the sum of
logarithms of the (integral) coefficients. This notion of polynomiality is not alto-
gether satisfactory (see [10]), and, moreover, it is not expected that the algorithm
will prove more practical than the simplex method. Khachian's result left an open
question as to the existence of an algorithm that requires a number of arithmetic
operations which is polynomial in terms of the size nd of the underlying matrix
(where d is the number of variables and n is the number of constraints). We call
such an algorithm genuinely polynomial. This question is closely related to other
interesting open questions in the theory of convex polytopes [6] concerning the
diameter, height, etc., ofpolytopes. Obviously, Khachian's results has not advanced
our knowledge about these problems.

With the central question still open, it is interesting to investigate special classes
of linear programming problems. Systems of linear inequalities with no more than
two variables per inequality have been shown by the author [13] to have a genuinely
polynomial algorithm. When either n or d is fixed, then the simplex algorithm is

This work was supported in part by the National Science Foundation under Grants ECS-8121741 and
ECS-8218181.

Author's present address: Computer-Science Department, Stanford UniversRy, Stanford, CA 94305.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and noUce is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0004-5411/84/0100-0114 $00.75

Journal of the A.~ctaUon for Computing Maclunery, VoL 31, No. I, January 1984, pp. 114-127

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2422.322418&domain=pdf&date_stamp=1984-01-01

Linear Programming When Dimension Is Fixed 115

of course genuinely polynomial (while Khachian's algorithm is not). However, the
crude bound of O(n a) (assuming d < n) means that no matter how slowly the
dimension grows, we have a superpolynomial bound. Even the more refined bound
of O(n a/2) (see [8]) does not help in this respect. Here we develop an algorithm that
is genuinely polynomial even if d grows slowly with n.

In this paper we study the complexity of linear programming in a fixed space.
In other words, considering linear programming problems of n constraints in R d,
we study the asymptotic time complexity with respect to n for any fixed value of
d. Surprisingly, this turns out to be linear in n, the coefficient of proportionality
rapidly growing with d. We remark that in the worst case any version of the simplex
algorithm requires O(n) time per pivot and hence is at least quadratic in terms of
n even in the two-dimensional case. Our result implies a genuinely polynomial
bound for classes of linear programs, where the dimension grows slowly with n,
namely, d = O(logn/loglogn)l/2).

Our results rely on a novel multidimensional search technique developed in the
present paper. One version of it may be described roughly as follows: to search
relative to n objects in d space, we solve, recursively, two problems each with n/2
objects in (d - l) space and then our problem is reduced to one with n/2 objects
in d space. This should not be confused with Bentley's multidimensional divide-
and-conquer [2], where an n x d problem is reduced to solving two (n/2) x
d-problems and then one n x (d - l) problem.

We note that even though the results of this paper are interesting from the
theoretical point of view in the general case, they are very practical for a small
number of dimensions. In a previous paper [12] the cases of d -- 2 and 3 were
described, and other classical problems were shown to succumb to the same method
of solution. Essentially, some of the common single-facility location problems
relative to either the Euclidean or the rectilinear metric are solvable by this
technique. Current computational experience with d = 3 looks very successful.
Direct applications of linear programming in which the dimension is normally
small are the following:

(l) Linear separability Given n points in R d, organized in two disjoint sets; find
a hyperplane (if there is one) that separates the two sets. This problem is useful in
statistics and in pattern recognition [4, 14].

(2) Chebyshev approximation [16]. Given n points a, = (a,~, . . . , a,a) ~ R d (i =
1 n), we wish to find a linear function

d - I

f(x~ xa_~) = ~ ajxj + ad
J=l

so as to minimize max{I Y.d7.~ ajau + aa -- a,al :i = 1 , nl. For other related
problems see [18]. We also note that the results can be extended to solve minimi-
zation convex quadratic programming problems. For the details of the extension
to quadratic programming, as well as other related problems solvable by similar
techniques, the reader is referred to [12]. Thus, the problem of finding the smallest
ball enclosing n points in R d can be solved in O(n) time for fixed d.

We start with an overview of the method, given in Section 2. In Section 3 we
describe two closely related methods of multidimensional techniques, based on an
oracle that can decide the "correct" side of any given hyperplane, relative to the
point we are looking for. The applications of these abstract search techniques to
linear programming are described in Section 4, where we discuss the linear
programming oracle. The final estimations of time efforts are given in Section 5.

116 NIMROD MEGIDDO

2. An Overview

We are interested in solving a d-dimensional linear programming problem of n
constraints:

minimize
jml

d

so that
J~ l

It is well known [3] that usually

d

2 6x~

aoxj >- bi (i = 1 n).

only relatively few constraints are tight at the
optimal solution and hence, if we could identify those active constraints, we could
solve our problem by solving a set of equations. The fundamental idea of our
algorithm is to repeatedly reduce the set of constraints until the problem can be
solved directly. For this idea to be successful, we need to drop relatively many
constraints simultaneously. Fortunately, there is a way to drop a fixed fraction of
the set of constraints regardless of the size of that set.

For the convenience of the presentation, let us transform the problem into the
form

minimize xa
d - I

so that Xd >-- Y, a,jxj + b, (i E I0 ,
J--I
d - I

Xd <-- ~, a,,xj + b, (i E I2),
j=l
d-I

~, a,jxj + b, <_ 0 (i ~ I3),

where l l, I + 1121 + 1131 = n. This transformation is always possible. (Set Z --
Y. Gxj; eliminate Xd; rename Z to be Xd.) In other words, our problem is

minimize xa
so that Xd >--- max{]~ auxj + b,:i E I~},

Xd <- min{]~ a,jxj + b,:i ~ I2},
max{Z auxj + b,:i ~ I3} --- 0.

It should be noted that the transformation is made only for the convenience of
presentation. It merely reflects our consideration of the behavior of constraints in
a subspace orthogonal to the gradient of the objective function. Repeated transfor-
mations might cause difficulties from the point of view of numerical analysis.
However, the algorithm can be programmed with no transformations.

Consider a pair of inequalities with indices i, k in the same set L (1 ___ v < 3).
For example, suppose {1, 2} C Ii and consider the constraints Xd >-- ~ j ~ aox j + b~
and xa > Yff-~ a2jx~ + b2. The relationship between these two constraints can be
summarized as follows:

(1) If (a~ ~ , a l,d-,) = (a2 ~ a2,d-l), then one of the constraints is redundant
and can readily be dropped.

(2) If(al~, . . . , al,d-,) ~ (a2, a2,d-0, then the equation
d - I d - I

Y, aijx~ + bt = Y, a2sxj + b2
J~l J=l

Linear Programmmg When Dimension Is Fixed 117

describes a hyperplane in R d-~ which divides the space into two domains of
domination; namely, on one side of this hyperplane ~a=1 a~jxj + bt < Y..~rl avxj +
b2, whereas on the other side the reverse inequality prevails. Thus, if we could tell
on what side of this hyperplane the optimal solution lies, then we could drop one
of our constraints.

In general, the task of finding out on what side of a hyperplane the solution lies
is not so easy, and we are certainly not going to test a hyperplane merely for
dropping one constraint. We test relatively few hyperplanes, and our particular
method of selecting those hyperplanes enables us to drop relatively many con-
straints.]'his seems paradoxical; however, by carefully choosing the hyperplanes
we can know the outcomes of tests relative to many other hyperplanes without
actually performing those tests. We can summarize the characteristics of the method
in general terms as follows. Given n inequalities in d variables, we test a constant
number of hyperplanes (i.e., a number that is independent of n but does depend
on the dimension) as to their position relative to the optimal solution. A single test
amounts to solving up to three (d - 1)-dimensional linear programs ofn constraints.
Given the results of the tests for B. n pairs of inequalities (where 0 < B _< ½ is a
constant independent of n but dependent on d), we can tell which member of the
pair may be dropped without affecting the optimal solution. At this point the
problem is reduced to a d-dimensional linear programming problem o f (l - B).n
constraints, and we proceed recursively.

For the complete description of the algorithm, we need to specify the following
things. We need to explain what we mean by testing a hyperplane and we have to
design an algorithm for a single test. Then we have to design the organization of
the tests so as to establish a complete linear programming algorithm. These issues
are discussed separately in the following sections. In Section 3 we discuss an
abstract multidimensional search problem which we believe may also be applicable
to problems other than linear programming. The implementation for linear pro-
gramming is then discussed in Section 4.

3. A Multidimensional Search Problem

3.1 THE PROBLEM. Consider first a familiar one-dimensional search problem.
Suppose there exists a real number x* which is not known to us; however, there
exists an oracle that can tell us for any real number x whether x < x*, x -- x*, or
x > x*. Now, suppose we are given n numbers x~ , xn, and we wish to know
the position of each of them relative to x*. The question is how many queries we
need to address the oracle (and also what is the other computational effort) in
order to tell the position of each x, relative to x*. Obviously, we may sort the
numbers in O(nlogn) time and then perform a binary search for locating X* in the
sorted set. This amounts to O(logn) queries. An asymptotically better performance
is obtained if we employ a linear-time median-finding algorithm [1, 17]. We can
first find the median ofx,'s, inquire about its position relative to x*, and then drop
approximately one-half of the set of the x,'s and proceed recursively. Thus, one
query at the appropriate point suffices for telling the outcome with respect to half
of the set. This yields a performance of O(n) time for median finding in sets of
cardinalities n, n/2, n/4 plus O(log n) queries. It is also important to note that
a practical version of this idea is as follows. Pick a random x, and test it. Then
drop all the elements on the wrong side and pick another element from a uniform
distribution over the remaining set. This approach also leads to the expected

118 NIMROD MEGIDDO

number of O(logn) queries and O(n) comparisons. An analysis of essentially the
same thing appears in [9]. An even more efficient idea is to select the median of a
random sample of three or five.

We now generalize the one=dimensional problem to higher dimensions. Suppose
that there exists a point x* ~ R a which is not known to us, but that there is an
oracle that can tell us for any a ~ R d and a real number b whether aTx * < b, aTx *
= b, or a r c * > b. In other words, the oracle can tell us the position of x* relative
to any hyperplane in R d.

Suppose we are given n hyperplanes and we wish to know the position of x*
relative to each of them. The question, again, is how many queries will we need to
address the oracle and what is the other computational effort involved in finding
out the position of x* relative to all the n given hyperplanes? The general situation
is of course extremely more complicated than the one-dimensional case. The major
difference is that in higher dimensions we do not have the natural linear order that
exists in the one-dimensional case. It is therefore quite surprising that the result
from the one-dimensional case generalizes to higher dimensions in the following
way. We show that for every dimension d there exists a constant C = C(d) (i.e., C
is independent of n) such that only C.logn queries suffice for determining the
position of x* relative to all the n given hyperplanes. There is naturally some
additional computational effort involved, which turns out to be proportional to n
(linear time), the coefficient of proportionality depending on d.

3.2. THE SOLUTION. The procedure that we develop here is described recur-
sively. The underlying idea is as follows. We show that for any dimension d there
exist constants A = A (d) (a positive integer) and B = B (d) (0 < B <_ ½), which are
independent of n, such that A queries suffice for determining the position of x*,
relative to at least Bn hyperplanes out of n given ones in R d. The additional
computational effort is linear in terms ofn. Given that this is possible, we can drop
B n hyperplanes and proceed recursively. Each round of A queries reduces the
number of remaining hyperplanes by a factor of I - B. Thus, after approximately
logi/(l-B)n rounds we will know the position of x* relative to all the hyperplanes.
Thus the total number of queries is O(logn). The other computational effort
amounts to cn + c(l - B)n + c(l - B) 2 + . . . , which is no more than (c / B) . n ,
and hence linear in terms of n.

The constants A and B are derived recursively with respect to the dimension.
We already know that when d = 1, we can inquire once and drop half of the set of
hyperplanes. We may therefore define A(I) = 1, B(I) = ½. Henceforth, we assume
d ~ 2 .

Let H, = {x ~ Rd:aT, x ----- b,I (i = 1 n) be n given hyperplanes (where a, =
(a , j , . . . , a,d) r ÷ 0 and b, is a real number, i -- 1, n). We first note that it will
be convenient (for the description of the procedure) to transform the coordinate
system. Of course, we cannot transform the unknown point x*, but we can always
transform a hyperplane back to the original system before asking the oracle about
the position of the hyperplane. More precisely, if a vector x ~ R d is represented as
x -- M y , where M is a (d x d) nonsingular matrix, then a hyperplane a r x -- b is
represented by (a T M) y = b, and we may work with the vectors a ' = MXa. If we
need to inquire about a hyperplane a ' T y = b, then we look at aXx = b, where a "r =
a ' T M - l .

We would like to choose the coordinate system so that each hyperplane intersects
the subspace of x~ and x2 in a line (i.e., the intersection should be neither empty
nor equal to the entire subspace). Since we have a finite number of hyperplanes, it

Linear Programming When Dimension Is F i xed 119

is always possible to achieve this situation by applying a nonsingular transforma-
tion. Specifically, we would like to have (a,l, a,2) ~ (0, 0) for every i (i = 1
n). It is possible to find (in O(n) time) a basis for R d relative to which a,j ~ 0 for
all t, j. This is based on the observation that v -- v(~) -- (1, ~, ~2, ~a-a)T is
orthogonal to some a, for at most n(d - 1) values of e. Using this observation, we
can successively select our basic vectors so that none is orthogonal to any a~.
Alternatively (just for arguing that the linear-time bound is correct), in order to
avoid repeated transformation of this kind, we can say that we can simply ignore
those hyperplanes with a,~ = a,2 = 0; if there are too many of them, then we can
simply select variables other than x~ and x2, and if the same trouble arises with
every pair, then the entire situation is extremely simple (i.e., many constraints with
only one positive cofficient au).

Now, each hyperplane 11, intersects the (xt, xz) subspace in a straight line a, txt
+ a,2xz = b,. We define the slope of H, to be the slope of that straight line. More
precisely, this slope equals +~ i f a,2 = 0 and -a,~/a,2 i f a a .~ 0. We would like at
least half of our hyperplanes to have a nonnegative slope and at least half of them
to have a nonpositive slope. This can be achieved by a linear transformation of the
(x~, x2) subspace. In particular, we may find the median of the set of slopes and
apply a linear transformation that will take this median slope to zero. The
transformation takes linear time and in fact is needed here only for simplicity of
presentation. The algorithm can be programmed so that the same manipulations
are applied to the original data. Thus, assume for simplicity of presentation that
the original coefficients satisfy this requirement.

The first step in our procedure is to form disjoint pairs of hyperplanes where
each pair has at least one member with a nonnegative slope and at least one
member with a nonpositive slope. We now consider the relationship between two
members of a typical pair. Suppose, for example, that H, has a nonnegative slope,
while H~ has a nonpositive slope, and that we have matched H, with Hk. Assume,
first, that the defining equations of 11, and Hk are linearly independent. Let H~))
denote the hyperplane defined by the equation

d

Y. (ak,atj -- a, jakj)Xj = aklb, - a, ibk.
J = l

This equation is obtained by subtracting a,~ times the equation of Hk from akl
times the equation of H,. Thus, the intersection of H,, Hk and H~) is (d - 2)
dimensional. Moreover, the coefficient of x~ in H~) is zero. This property is
essential for our recursive handling of hyperplanes of the form of H~],), which takes
place in a lower dimensional setting. Analogously, let ~(2) denote the hyperplane at ~t l k

defined by
d

(ak2a,j -- a,2akj)xj = ak2b , - a,2bk.
.1=1

The hyperplane ,.~(2),k has characteristics similar to those of/a~,~). To understand the
significance of H~) and ~(2) note that if we know the position of x* relative to J Z t k ,

both of these hyperplanes, then we can readily tell the position of x* relative to
one of either H, or Hk. This is illustrated in Figure 1. Note that the intersection of
the four hyperplanes is still (d - 2) dimensional, and their relative positions are
fully characterized by their intersection with the (x~, x2) subspace. The fact that H,
and Hk have slopes of opposite signs is essential for our conclusion. If, for example,
x* is known to lie to the "left" of H~ 2) and "above" H~t~), then we definitely know
that it lies "northwest" of / / , .

120 NIMROD MEGIDDO

14 (2) [14(2) [

H (l)

X!

FIGURE I

For a more precise argument for why this is true, suppose, for example, that H,
has positive slope and a,i < 0 < a,2. (All other cases are handled similarly.) Suppose

d
Y. (a~lau - a, lak j)x* < aklb, - a, lb,,

J=l

and
d

(akzau - a,za~j)x* < ak2b, - a, zb,,.
J=l

These relations tell us that x* lies on certain sides of H~) and ,,~<2),~. Multiplying the
former by a,2 and the latter by a,i yields (after adding the two) either ~d=l a, jx* >
b, or ~f=l a u x * < b,, depending on the sign of akla,2 - akza, l. In other words, in
this example the side of H , is known.

If H, and Hk are linearly dependent, then we claim that a,l = ak~ = O. This
follows from the fact that H, and Hk have the same slope, which must be both
nonnegative and nonpositive. In this case let H[~) be defined as the hyperplane that
is parallel to both H, and Hk and lies in the middle between them. Formally, there
is a real number ~ ~ 0 such that a,j =)~akj (j = 1 d). The equation which

rr(l) defines n , k is therefore

1
Y. a, jxj = ~ (b, + Xbk).

Obviously, o~l) has a zero coefficient for x~ in this case too. Moreover, if the / /~k
• i0) is known, then we readily know its position relative position of x* relative to n,k

to one of either H, or H k (see Figure 2).
The next step is to consider the hyperplanes H~) (for those pairs (i, k) that we

have formed). Since all of them have zero coefficients for xb they may be perceived
as hyperplanes in the (d - l)-dimensional subspace of(x2 xa). More precisely,

Linear Programming When Dtmension Is Fixed

2

121

H !

H(I) tk

N.

FIGURE 2

X!

we may apply to the collection of these hyperplanes the search procedure that is
recursively known for hyperplanes in R d-~. The oracle we have for x* in R d may
be used as an oracle for the projection of x* on the subspace of(x2, Xd). More
specifically, since H~.) has a zero coefficient for Xl, it follows that the projection of
x* on {(x2 Xd)I lies on a certain side of the projection of H~) on that space if
and only if x* lies on the corresponding side of HI]) in the grand space. There are
two different approaches toward applying the recursion (see Figure 3):

Approach I. We may inquire A(d - 1) times and obtain the information about
the position of x* relative to B(d - 1). (n/2) hyperplanes of the form H~ ~ (where
(i, k) is a pair that we have formed). We now turn to the hyperplanes of the form
Ht2) but here we consider only those pairs (i, k) for which the position of x* is I k ,

known relative to HI]). Analogously, we can inquire A(d - 1) more times and
obtain the information about B(d "-- 1). B(d - 1). (n/2) hyperplanes. At this point
we have (B(d - 1))2(n/2) pairs of hyperplanes H,, Hk such that for each pair we
know the position of x* relative to at least one member of the pair. It therefore
follows that we have inquired 2A(d - 1) times and have obtainexl the information
about a fraction of ~(B(d - 1))2 of the hyperplanes. Thus, we may define A(d) =
2A(d - 1) and B(d) = ½(B(d - 1)) 2. The solution of these recursive equations is
simple: A(d) = 2 d-j and B(d) = 2 t-2a. This implies that within C(d).logn queries
and an additional effort of O(F(d). n), we find the position relative to all hyper-
planes. The coefficients C(d) and F(d) are of order 2 °t2a~.

Approach H. Suppose that we recursively find out the position of x* relative to
all the hyperplanes ~o) ~t2) (where i, k is a pair that we have formed). Let ~ l t k , 111k

Q(n, d) denote the number of queries required for n hyperplanes in R d and let
T(n, d) denote the additional effort (i.e., pairing hyperplanes, median finding, etc.)
in the same problem. Then, by solving two (d - l)-dimensional problems with
n/2 hyperplanes (i.e., the collection of H~)'s and the collection of H~)'s), we know
the outcome relative to half of the n given hyperplanes. Obviously, Q(n, d) <_ n.

122 NIMROD MEGIDDO

X 3, , X d - |

| k

H (2)
, k

FIGURE 3

We can therefore write down the following recurrence:

Q(n, d) = min {n, 2Q (2, d - I) + Q (2 d)}

with boundary conditions Q(n, l) = l + llog2nJ and Q(1, d) = I. It is easier to
solve Q~(n, d) = 2Q~(n/2, d - l) + Q~(n/2, d) with the same boundary condi-
tions and then use the relation Q(n, d) <- rain(n, Q~(n, d)). However, note that
Q(n, d) is not necessarily equal to min(n, Ql(n, d)); for example, Q(32, 2) = 26,
Q1(32, 2) = 31.

If n = 2 L where L is an integer, then instead of Q~ we may consider a recurrence
of the form

F(L, d) = 2F(L - 1, d - 1) + F(L - 1, d)

with boundary conditions F(L, 1) = L + 1 and F(0, d) = 1. The solution is (see
[15] for an interesting solution method):

F(L, d) = 2 d ~, i + 2 j.
I~l j=O

It follows that F(L, d) < (2L)d/(d - 2)! so that for fixed d we have Q(n, d) =
O(logdn) with a surprisingly favorable constant C = C(d) = 2d/(d -- 2)!.

Linear Programmmg When Dimension Is Fixed 123

The other effort involved in preparations for queries satisfies

Consider the recurrence

F(L, d) = 2F(L - 1, d - 1) + F(L - 1, d) + 2Ld

with boundary conditions F(0, d) = 1 and F(L, 1) = 2 L. Surprisingly, this turns
out to be linear in 2 L for every fixed d, with constants C(d) that satisfy C(d) ~-
2(C(d - 1) + d). Thus T(n, d) < d2 d. n.

It thus appears that the second approach may be more practical than the first,
provided n is not extremely large relative to d. These two different approaches to
multidimensional search give rise to two different algorithms for the linear pro-
gramming problem. These algorithms are discussed after we provide the details of
the oracle for linear programming.

4. The Oracle for Linear Programmmg

In this section we specify what we mean by testing a hyperplane in R d. We first
define what we require from a procedure for linear programming.

Given a d-variable linear programming problem
e

minimize Y~ cjxj
J ~ |

d

so that ~ auxj --- b, (i = 1 , n),
J=l

we require that the procedure either provide an optimal solution, report that the
problem is unbounded, or (in case the problem is infeasible) provide a vector x ' =
(x[. xb) which minimizes the function fix|, . . . , xa) = max{b, - ~d=| a,jxj:i
= 1 , n}. Note that the requirement in case the problem is infeasible is rather
unusual; it is needed here for recursive purposes.

The procedure we have developed so far solves this extended notion of a linear
programming problem, provided we have a suitable oracle. Specifically, when given
a hyperplane ~d.| ajxj ----- b, we need to know one of the following:

(1) The hyperplane contains the final outcome; that is, either there is an optimal
solution on the hyperplane, the problem is unbounded even on the hyperplane, or
the hyperplane contains a minimizer of the function f

(2) The final outcome is on a certain side of the hyperplane. However, in this
case we do not expect to know the nature of the final outcome, that is, whether
the problem is feasible and bounded.

We have to clarify that such an approach is valid even if the linear programming
problem has multiple optima. This follows from convexity of the set of optimal
solutions. If the hyperplane does not contain an optimal point (i.e., a point that
may be interpreted as x*), then all optimal points lie on one side of the hyperplane
(i.e., the oracle will respond in the same way for all possible choices of x* in the
optimal set).

We now show that the oracle is no more than a recursive application of the
master problem (i.e., the extended linear programming problem discussed earlier
in this section) in a lower dimensional space.

124 NIMROD MEGIDDO

Given the linear programming problem and the hyperplane, we first consider
the same problem with the equation of the hyperplane as an additional constraint.
This is a d-variable problem of n + 1 constraints, but we can eliminate one variable
and thus have an equivalent (d - 1)-variable problem of n constraints. Moreover,
for simplicity of presentation we may assume that the given hyperplane is simply
{Xd = 0}. (Otherwise, apply an affine transformation that takes the given hyperplane
to the latter.) Thus the (d - D-dimensional problem is obtained by dropping the
variable Xd. We assume of course that d -> 2; the case d = 1 is easy since then the
"hyperplane" is a single point. If the problem is feasible and unbounded even when
confined to {Xd = 0}, we are done. Otherwise, we obtain (recursively) either an
optimal solution x* = (x* x~_,, 0) (optimality is relative to {Xd = 0}) or a
vector x ' = (x¢ , x~-i, 0) which minimizes the function f o n {Xd = 0}. We now
need to determine whether we already have the final outcome or, alternatively,
which side of {Xd = 0} should be searched. Distinguish two cases:

Case I. First consider the case in which we obtain an optimal solution x*. We
would like to know whether there exists a vector y = (y, , yd) such that Yd > 0,
Y~ C~yj < ~ CjX* and Y, a,~yj > b, (i = 1 n). Convexity of the feasible domain
and linearity of the objective function imply that if a vector y satisfies these
requirements, then so does the vector (1 - e)x* + ~y for any e (0 < E < 1). It is
therefore sufficient to look only in the neighborhood of x*. Specifically, consider
the following (d - l)-dimensional problem:

d- I

minimize Y, c~xj
j= l

d- I

so that Y. auxj + a,d >-- 0 (i ~ I),
J=l

where I = {i:Y~ aox* = b,}. Here we impose only those constraints that are tight at
x* and we set Xd = 1. This is because we are interested only in the local behavior
in the neighborhood of x* and we wish to determine the existence of a direction of
improvement. It is easy to see that this (d - l)-dimensional problem has a solution
with a negative objective-function value if and only if there is a direction with the
following property: Moving from x* in that direction into the half-space {Xd > 01,
we remain in the feasible domain if the move is sufficiently small (yet positive)
while the objective function decreases. Thus, if the problem is infeasible or if, in
turn, its optimal value is nonnegative, then there is nothing to look for in that half-
space. In the latter case we then consider the other half-space by solving the
following problem:

d- !

minimize ~ cjxj

d-I

so that Y, a,jxj - a,d >- 0 (i E I).
j s l

Analogously, the half-space {Xd < O} contains solutions that are better than x* if
and only if this problem has a solution with a negative objective-function value.
We note that since x* is a relative optimum, it follows that at most one of these
auxiliary problems can have a solution with a negative objective-function value. If
neither has solutions with negative values, then x* is a global optimum and we are
done with the original problem.

Linear Programming When Dimension Is F i xed 125

Case I1. The second case is that in which the problem is i n f ~ i b l e on
the hyperplane {Xd = 0}. Here we obtain a vector x ' = (x ' , . . . , x,~-~, 0) that mini-
mizes the function f(x~ Xd) (defined above) on {Xd = 0}. Note that this
function is convex so that it is sufficient to look at the neighborhood of x ' in
order to know which half-space may contain a feasible point. Formally, let 1' -
[i: f(x~ , x[~-t, O) = b, - ~dT,~ a,j~j}. We are now interested in the following
questions:

Q I. Is there a vector y = (y~ Yd) such that Yd > 0 and
d

Y, a v y j > 0 for i E I ' ?
j= l

Q2. Is there a vector z = (z~ Zd) such that Zd < 0 and
d
Y, a , j z j > 0 for i ~ I ' ?

Jml

Note that if the answer to QI is in the affirmative, then we proceed into the half-
space {Xd > 0]; if the answer to Q2 is in the affirmative, then we proceed into
{Xd < 0}; if both answers are in the negative, then we conclude that the original
problem is infeasible and that x ' is a global minimum of the function f

We answer the above questions in a somewhat tricky way. Consider the following
(d - 1)-dimensional problem:

minimize 0
d - l

so that Y, au y J >-- --aid
J=l

(i e I ') .

If this problem is feasible, then there is a vector y such that Yd > 0 and]~.t aoYj >-
0 (i E I'). We claim that in this case the answer to Q2 is in the negative. This
follows from the fact that if there is also a vector z such that za < 0 and ~ d aozj
> 0 (i ~ I '), then there is a vector x such that Xd = 0 and for i ~ I ' , y d=~ aex~ > 0
(x is a suitable convex combination o fy and z); and this contradicts the assumption
that x ' minimizes the function f. Similarly, if there is a vector z such that
2d~ aozj ~_.z~_ atd (i E It) , then the answer to QI is in the negative. Thus, the
procedure in the present case can be summarized as follows. We consider two sets
of inequalities in d - 1 variables:

d- I

~, a,jyj >- --a,d (i ~ I ') , (1)
Jml
d-I

a,~zj >_ aid (i E I ') . (2)
J=l

If both (1) and (2) are feasible or infeasible, then we conclude that x ' is a global
minimum of the function f a n d the original problem is infeasible. If precisely one
is feasible, then we proceed into the half-space corresponding to the o th~ one; that
is, if (1) is the feasible one, we proceed into {Xd < 0}, whereas if (2) is the feasible
one, we proceed into [Xd > 0}.

This completes the description of what the oracle does.
We note that the oracle may need to solve three (d - D-dimensional problems

of (possibly) n constraints each. However, the number of constraints is usually

126 NIMROD MEGIDDO

much smaller in two of the problems. More precisely, the cardinality of the sets I
and I ' is not greater than d if we assume nondegeneracy [3]. So, two of the three
problems the oracle needs to solve are rather easy.

5. Conclusion

If Approach I is used for the multidimensional search, then by solving not more
than 3.2 d-I problems of order n x (d - 1), we reduce a problem of order n x d t o
a problem of order n(1 - 2 t-2") x d. Hence the total effort LPi(n, d) using this
approach satisfies

LP~(n, d) <_ 3.2d-tLP~(n, d - 1) + LP~(n(1 - 2t-2"), d) + O(nd).

It can be proved by induction on d that for every d there exists a constant C(d)
such that LP~(n, d) < C(d).n. It can further be seen that C(d) <_ 3. 22"+d-2C(d --
1), which implies C(d) < 22"÷2; that is, C(d) < 2 °t2a). It is interesting to compare
this result with the epilogue in [8], where questions are raised with regard to the
average complexity of the simplex algorithm as the number of variables tends to
infinity while the number of constraints is fixed. The answer is highly sensitive to
a probabilistic model to be adopted. Smale [19] has shown that, under a certain
model, the average number of pivot steps is o(n') for every ~ > 0 whenever the
number of constraints is fixed.

Using Approach II, we reduce a problem of order n x d to one of order (n/2) x
d by solving O((21og(n/2))d/(d- 2)!) problems of order n x (d - 1), incurring an
additional effort of O(d2dn). The resulting total effort satisfies

(2 1 ° g (n / 2)) a L P 2 (n , d - 1) + L p 2 (~ d) LP2(n, d) <- c (d - 2)! ' + O(d2an)"

It can be proved that for fixed d, LP2(n, d) = O(n(logn)a2), with a rather unusual
constant C(d) < 2a2/II~-~ k!

The argument that the worst case complexity is linear relies heavily on the fact
that we can find the median in linear time. However the linear-time, median-
finding algorithms [1, 17] are not altogether practical. In practice we would simply
select a random element from the set of critical values rather than the median. It
appears that the best practical selection is of the median of a random 3-sample or
5-sample. Since this is repeated independently many times, we do achieve expected
linear-time performance (where the expectation is relative to our random choices).
The analysis is close to that of algorithm FIND (see [9]). Another approach is to
employ a probabilistic selection algorithm like that in [5], but, again, it is not
required that the exact median be found.

Finally, we remark that a hybrid multidimensional search (i.e., picking, recur-
sively, the better between the two approaches whenever a search is called for) may
improve the bounds presented here.

ACKNOWLEDGMENTS. Fruitful discussions with Zvi Galil are gratefully acknowl-
edged. The author also thanks the referees for their constructive comments.

REFERENCES

(Note. Reference [11] ~s not cited in the text.)
1. AHO, A.V., HOPCROFT, J.E, AND ULLMAN, J.D. The Design and Analysis of Computer Algorithms.

Addison-Wesley, Reading, Mass., 1974.
2. BENTLEY, J.L. Multidimensional divide-and-conquer. Commun ACM 23, 4 (Apr. 1980),

214-229.

Linear Programming When Dimension Is Fixed 127

3. DANTZIG, G.B. Linear Programming and Extensions Princeton University Press, Princeton, N.J.,
1963.

4. DUDA, R.O., AND HART, P.E. Pattern Class~ficatlon and Scene Analysis. Wiley-lnterscience, Hew
York, 1973.

5. FLOYD, R.W., AND RiVEST, R.L. Expected time bounds for selection. Commun. ACM 18, 3 (Mar.
1975), 165-172.

6. GRUNBAUM, B. Convex Polytopes. Wiley, New York, 1967.
7. KHACHIAN, L.G A polynomial algorithm in linear programming. Soviet Math. Dokl. 20 (1979),

191-194.
8. KLEE, V., AND MINTY, G.J. How good is the simplex algorithm? In Inequalities, vol. 3. Academic

Press, New York, 1972, pp. 159-175.
9 KNUTH, D.E. Mathematical analysis of algorithms. In Informatwn Processing 71. Elsevier North-

Holland, New York, 1972, pp. 19-27.
10. MEGIDDO, N. Is binary encoding appropriate for the problem-language relationship? Theor.

Comput. Sct 19 (1982), 337-341.
! 1. MEGIDDO, N. Solving linear programming when the dimension is fixed. Dept. of Statistics, Tel

Avlv UniversRy, April 1982.
12. MEGIDDO, N. Linear.time algonthms for linear programming in R 3 and related problems. SIAM

J Comput 12, 4 (Nov. 1983).
13. MEGIDDO, N. Towards a genuinely polynomial algorithm for linear programming. SIAM J.

Comput. 12, 2 (May 1983), 347-353.
14. MEISEL, W.S. Computer-Ortented Approaches to Pattern Recognition. Academic Press, New York,

1972.
15. MONtER, L. Combinatorial solutions of multidimensional divide-and-conquer recurrences. J.

Algorithms 1 (1980), 60-74.
16 RICE, J. The Approximation of Functions. Vol. 1; The Linear Theory. Addison-Wesley, Reading,

Mass., 1964.
17. SCHONHAGE, A., PATERSON, M., AND PIPPENGER, N. Finding the median. J. CompuL Syst. Sci.

13 (1976), 184-199.
18. SHAMOS, M.I. Computatwnal geometry. Ph.D. dissertation, Dept. of Computer Science, Yale

Univ., New Haven, Conn., 1978.
19. SMALE, S. On the average speed of the simplex method of linear programming. To appear in

Math Program

RECEIVED MAY 1982; REVISED MARCH 1983; ACCEPTED MAY 1983

Journal of the Assooat~on for Compulmg Machinery. VoL 31, No. I. January 1984.

