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Abstract. It is demonstrated that the linear programming problem in d variables and n constraints can 
be solved in O(n) time when d is fixed. This bound follows from a multidimensional search technique 
which is applicable for quadratic programming as well. There is also developed an algorithm that is 
polynomial in both n and d provided d is bounded by a certain slowly growing function of n. 
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1. Introduction 

The computational complexity of linear programming is one of the questions that 
has attracted many researchers since the invention of the simplex algorithm [3]. A 
major theoretical development in the field was Khachian's algorithm [7], which 
proved that the problem could be solved in time that is polynomial in the sum of 
logarithms of the (integral) coefficients. This notion of  polynomiality is not alto- 
gether satisfactory (see [10]), and, moreover, it is not expected that the algorithm 
will prove more practical than the simplex method. Khachian's result left an open 
question as to the existence of  an algorithm that requires a number of  arithmetic 
operations which is polynomial in terms of the size nd of the underlying matrix 
(where d is the number of variables and n is the number of constraints). We call 
such an algorithm genuinely polynomial. This question is closely related to other 
interesting open questions in the theory of  convex polytopes [6] concerning the 
diameter, height, etc., ofpolytopes. Obviously, Khachian's results has not advanced 
our knowledge about these problems. 

With the central question still open, it is interesting to investigate special classes 
of linear programming problems. Systems of  linear inequalities with no more than 
two variables per inequality have been shown by the author [ 13] to have a genuinely 
polynomial algorithm. When either n or d is fixed, then the simplex algorithm is 
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of course genuinely polynomial (while Khachian's algorithm is not). However, the 
crude bound of O(n a) (assuming d < n) means that no matter how slowly the 
dimension grows, we have a superpolynomial bound. Even the more refined bound 
of O(n a/2) (see [8]) does not help in this respect. Here we develop an algorithm that 
is genuinely polynomial even if d grows slowly with n. 

In this paper we study the complexity of linear programming in a fixed space. 
In other words, considering linear programming problems of n constraints in R d, 
we study the asymptotic time complexity with respect to n for any fixed value of 
d. Surprisingly, this turns out to be linear in n, the coefficient of proportionality 
rapidly growing with d. We remark that in the worst case any version of the simplex 
algorithm requires O(n) time per pivot and hence is at least quadratic in terms of 
n even in the two-dimensional case. Our result implies a genuinely polynomial 
bound for classes of linear programs, where the dimension grows slowly with n, 
namely, d = O(logn/loglogn)l/2). 

Our results rely on a novel multidimensional search technique developed in the 
present paper. One version of it may be described roughly as follows: to search 
relative to n objects in d space, we solve, recursively, two problems each with n/2 
objects in (d - l) space and then our problem is reduced to one with n/2 objects 
in d space. This should not be confused with Bentley's multidimensional divide- 
and-conquer [2], where an n x d problem is reduced to solving two (n/2) x 
d-problems and then one n x (d - l) problem. 

We note that even though the results of this paper are interesting from the 
theoretical point of view in the general case, they are very practical for a small 
number of dimensions. In a previous paper [ 12] the cases of d -- 2 and 3 were 
described, and other classical problems were shown to succumb to the same method 
of solution. Essentially, some of the common single-facility location problems 
relative to either the Euclidean or the rectilinear metric are solvable by this 
technique. Current computational experience with d = 3 looks very successful. 
Direct applications of linear programming in which the dimension is normally 
small are the following: 

(l) Linear separability Given n points in R d, organized in two disjoint sets; find 
a hyperplane (if there is one) that separates the two sets. This problem is useful in 
statistics and in pattern recognition [4, 14]. 

(2) Chebyshev approximation [16]. Given n points a, = (a,~, . . . ,  a,a) ~ R d (i = 
1 . . . . .  n), we wish to find a linear function 

d - I  

f(x~ . . . . .  xa_~) = ~ ajxj  + ad 
J=l 

so as to minimize max{I Y.d7.~ ajau + aa -- a,al :i = 1 . . . .  , nl. For other related 
problems see [ 18]. We also note that the results can be extended to solve minimi- 
zation convex quadratic programming problems. For the details of the extension 
to quadratic programming, as well as other related problems solvable by similar 
techniques, the reader is referred to [12]. Thus, the problem of finding the smallest 
ball enclosing n points in R d can be solved in O(n) time for fixed d. 

We start with an overview of the method, given in Section 2. In Section 3 we 
describe two closely related methods of multidimensional techniques, based on an 
oracle that can decide the "correct" side of any given hyperplane, relative to the 
point we are looking for. The applications of these abstract search techniques to 
linear programming are described in Section 4, where we discuss the linear 
programming oracle. The final estimations of time efforts are given in Section 5. 
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2. An  Overview 

We are interested in solving a d-dimensional linear programming problem of n 
constraints: 

minimize 
jml  

d 

so that 
J~ l  

It is well known [3] that usually 

d 

2 6x~ 

aoxj >- bi (i = 1 . . . . .  n). 

only relatively few constraints are tight at the 
optimal solution and hence, if we could identify those active constraints, we could 
solve our problem by solving a set of  equations. The fundamental idea of our 
algorithm is to repeatedly reduce the set of  constraints until the problem can be 
solved directly. For this idea to be successful, we need to drop relatively many 
constraints simultaneously. Fortunately, there is a way to drop a fixed fraction of 
the set of  constraints regardless of  the size of  that set. 

For the convenience of the presentation, let us transform the problem into the 
form 

minimize xa 
d - I  

so that Xd >-- Y, a,jxj + b, (i E I0 ,  
J--I 
d - I  

Xd <-- ~, a,,xj + b, (i E I2), 
j=l 
d-I  

~, a,jxj + b, <_ 0 (i ~ I3), 

where l l, I + 1121 + 1131 = n. This transformation is always possible. (Set Z -- 
Y. Gxj; eliminate Xd; rename Z to be Xd.) In other words, our problem is 

minimize xa 
so that Xd >--- max{]~ auxj + b,:i E I~}, 

Xd <- min{]~ a,jxj + b,:i ~ I2}, 
max{Z auxj + b,:i ~ I3} --- 0. 

It should be noted that the transformation is made only for the convenience of 
presentation. It merely reflects our consideration of the behavior of constraints in 
a subspace orthogonal to the gradient of  the objective function. Repeated transfor- 
mations might cause difficulties from the point of view of numerical analysis. 
However, the algorithm can be programmed with no transformations. 

Consider a pair of inequalities with indices i, k in the same set L (1 ___ v < 3). 
For example, suppose {1, 2} C Ii and consider the constraints Xd >-- ~ j ~  aox j  + b~ 
and xa > Yff-~ a2jx~ + b2. The relationship between these two constraints can be 
summarized as follows: 

( 1 ) If (a~ ~ . . . .  , a l,d-,) = (a2 ~ . . . . .  a2,d-l), then one of the constraints is redundant 
and can readily be dropped. 

(2) If(al~, . . . ,  al,d-,) ~ (a2, . . . . .  a2,d-0, then the equation 
d - I  d - I  

Y, aijx~ + bt = Y, a2sxj + b2 
J~l J=l 
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describes a hyperplane in R d-~ which divides the space into two domains of  
domination; namely, on one side of this hyperplane ~a=1 a~jxj + bt < Y..~rl avxj + 
b2, whereas on the other side the reverse inequality prevails. Thus, if we could tell 
on what side of this hyperplane the optimal solution lies, then we could drop one 
of our constraints. 

In general, the task of finding out on what side of a hyperplane the solution lies 
is not so easy, and we are certainly not going to test a hyperplane merely for 
dropping one constraint. We test relatively few hyperplanes, and our particular 
method of selecting those hyperplanes enables us to drop relatively many con- 
straints. ]'his seems paradoxical; however, by carefully choosing the hyperplanes 
we can know the outcomes of tests relative to many other hyperplanes without 
actually performing those tests. We can summarize the characteristics of the method 
in general terms as follows. Given n inequalities in d variables, we test a constant 
number of hyperplanes (i.e., a number that is independent of n but does depend 
on the dimension) as to their position relative to the optimal solution. A single test 
amounts to solving up to three ( d -  1)-dimensional linear programs ofn  constraints. 
Given the results of the tests for B. n pairs of inequalities (where 0 < B _< ½ is a 
constant independent of n but dependent on d), we can tell which member of the 
pair may be dropped without affecting the optimal solution. At this point the 
problem is reduced to a d-dimensional linear programming problem o f ( l  - B).n 
constraints, and we proceed recursively. 

For the complete description of the algorithm, we need to specify the following 
things. We need to explain what we mean by testing a hyperplane and we have to 
design an algorithm for a single test. Then we have to design the organization of 
the tests so as to establish a complete linear programming algorithm. These issues 
are discussed separately in the following sections. In Section 3 we discuss an 
abstract multidimensional search problem which we believe may also be applicable 
to problems other than linear programming. The implementation for linear pro- 
gramming is then discussed in Section 4. 

3. A Multidimensional Search Problem 

3.1 THE PROBLEM. Consider first a familiar one-dimensional search problem. 
Suppose there exists a real number x* which is not known to us; however, there 
exists an oracle that can tell us for any real number x whether x < x*, x -- x*, or 
x > x*. Now, suppose we are given n numbers x~ . . . .  , xn, and we wish to know 
the position of each of them relative to x*. The question is how many queries we 
need to address the oracle (and also what is the other computational effort) in 
order to tell the position of each x, relative to x*. Obviously, we may sort the 
numbers in O(nlogn) time and then perform a binary search for locating X* in the 
sorted set. This amounts to O(logn) queries. An asymptotically better performance 
is obtained if we employ a linear-time median-finding algorithm [1, 17]. We can 
first find the median ofx,'s, inquire about its position relative to x*, and then drop 
approximately one-half of the set of the x,'s and proceed recursively. Thus, one 
query at the appropriate point suffices for telling the outcome with respect to half 
of the set. This yields a performance of O(n) time for median finding in sets of 
cardinalities n, n/2, n/4 . . . .  plus O(log n) queries. It is also important to note that 
a practical version of this idea is as follows. Pick a random x, and test it. Then 
drop all the elements on the wrong side and pick another element from a uniform 
distribution over the remaining set. This approach also leads to the expected 
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number of O(logn) queries and O(n) comparisons. An analysis of essentially the 
same thing appears in [9]. An even more efficient idea is to select the median of a 
random sample of three or five. 

We now generalize the one=dimensional problem to higher dimensions. Suppose 
that there exists a point x*  ~ R a which is not known to us, but that there is an 
oracle that can tell us for any a ~ R d and a real number b whether aTx * < b, aTx * 
= b, or a r c  * > b. In other words, the oracle can tell us the position of x* relative 
to any hyperplane in R d. 

Suppose we are given n hyperplanes and we wish to know the position of x* 
relative to each of them. The question, again, is how many queries will we need to 
address the oracle and what is the other computational effort involved in finding 
out the position of x* relative to all the n given hyperplanes? The general situation 
is of course extremely more complicated than the one-dimensional case. The major 
difference is that in higher dimensions we do not have the natural linear order that 
exists in the one-dimensional case. It is therefore quite surprising that the result 
from the one-dimensional case generalizes to higher dimensions in the following 
way. We show that for every dimension d there exists a constant C = C(d)  (i.e., C 
is independent of n) such that only C.logn queries suffice for determining the 
position of x* relative to all the n given hyperplanes. There is naturally some 
additional computational effort involved, which turns out to be proportional to n 
(linear time), the coefficient of proportionality depending on d. 

3.2. THE SOLUTION. The procedure that we develop here is described recur- 
sively. The underlying idea is as follows. We show that for any dimension d there 
exist constants A = A ( d )  (a positive integer) and B = B ( d )  (0 < B <_ ½), which are 
independent of n, such that A queries suffice for determining the position of  x*, 
relative to at least Bn hyperplanes out of n given ones in R d. The additional 
computational effort is linear in terms ofn. Given that this is possible, we can drop 
B n  hyperplanes and proceed recursively. Each round of A queries reduces the 
number of remaining hyperplanes by a factor of I - B. Thus, after approximately 
logi/(l-B)n rounds we will know the position of x* relative to all the hyperplanes. 
Thus the total number of queries is O(logn). The other computational effort 
amounts to cn + c(l - B)n  + c(l - B) 2 + . . . ,  which is no more than ( c / B ) . n ,  
and hence linear in terms of n. 

The constants A and B are derived recursively with respect to the dimension. 
We already know that when d = 1, we can inquire once and drop half of the set of 
hyperplanes. We may therefore define A(I) = 1, B(I) = ½. Henceforth, we assume 
d ~ 2 .  

Let H, = {x ~ Rd:aT, x ----- b,I (i = 1 . . . . .  n) be n given hyperplanes (where a, = 
( a , j , . . . ,  a,d) r ÷ 0 and b, is a real number, i -- 1, . . . .  n). We first note that it will 
be convenient (for the description of the procedure) to transform the coordinate 
system. Of course, we cannot transform the unknown point x*, but we can always 
transform a hyperplane back to the original system before asking the oracle about 
the position of the hyperplane. More precisely, if a vector x ~ R d is represented as 
x -- M y ,  where M is a (d x d) nonsingular matrix, then a hyperplane a r x  -- b is 
represented by ( a T M ) y  = b, and we may work with the vectors a '  = MXa. If we 
need to inquire about a hyperplane a ' T y  = b, then we look at aXx = b, where a "r = 
a ' T M - l .  

We would like to choose the coordinate system so that each hyperplane intersects 
the subspace of x~ and x2 in a line (i.e., the intersection should be neither empty 
nor equal to the entire subspace). Since we have a finite number of hyperplanes, it 



Linear Programming When Dimension Is F i xed  119 

is always possible to achieve this situation by applying a nonsingular transforma- 
tion. Specifically, we would like to have (a,l, a,2) ~ (0, 0) for every i (i = 1 . . . . .  
n). It is possible to find (in O(n) time) a basis for R d relative to which a,j ~ 0 for 
all t, j. This is based on the observation that v -- v(~) -- (1, ~, ~2, . . . .  ~a-a)T is 
orthogonal to some a, for at most n(d  - 1) values of e. Using this observation, we 
can successively select our basic vectors so that none is orthogonal to any a~. 
Alternatively (just for arguing that the linear-time bound is correct), in order to 
avoid repeated transformation of this kind, we can say that we can simply ignore 
those hyperplanes with a,~ = a,2 = 0; if there are too many of them, then we can 
simply select variables other than x~ and x2, and if the same trouble arises with 
every pair, then the entire situation is extremely simple (i.e., many constraints with 
only one positive cofficient au). 

Now, each hyperplane 11, intersects the (xt,  xz) subspace in a straight line a, txt  
+ a,2xz = b,. We define the slope of H, to be the slope of that straight line. More 
precisely, this slope equals +~  i f  a,2 = 0 and -a,~/a,2 i f a a  .~ 0. We would like at 
least half of  our hyperplanes to have a nonnegative slope and at least half of  them 
to have a nonpositive slope. This can be achieved by a linear transformation of the 
(x~, x2) subspace. In particular, we may find the median of the set of  slopes and 
apply a linear transformation that will take this median slope to zero. The 
transformation takes linear time and in fact is needed here only for simplicity of 
presentation. The algorithm can be programmed so that the same manipulations 
are applied to the original data. Thus, assume for simplicity of presentation that 
the original coefficients satisfy this requirement. 

The first step in our procedure is to form disjoint pairs of  hyperplanes where 
each pair has at least one member with a nonnegative slope and at least one 
member with a nonpositive slope. We now consider the relationship between two 
members of a typical pair. Suppose, for example, that H, has a nonnegative slope, 
while H~ has a nonpositive slope, and that we have matched H, with Hk. Assume, 
first, that the defining equations of 11, and Hk are linearly independent. Let H~)) 
denote the hyperplane defined by the equation 

d 

Y. (ak,atj -- a, jakj)Xj = aklb, - a, ibk. 
J = l  

This equation is obtained by subtracting a,~ times the equation of  Hk from akl 
times the equation of H,. Thus, the intersection of H,, Hk and H~ ) is (d - 2) 
dimensional. Moreover, the coefficient of x~ in H~ ) is zero. This property is 
essential for our recursive handling of hyperplanes of the form of H~], ), which takes 
place in a lower dimensional setting. Analogously, let ~(2) denote the hyperplane at ~t l k  

defined by 
d 

(ak2a,j -- a,2akj)xj = ak2b , -  a,2bk. 
.1=1 

The hyperplane ,.~(2),k has characteristics similar to those of/a~,~ ). To understand the 
significance of H~ ) and ~(2) note that if we know the position of x* relative to J Z t k ,  

both of these hyperplanes, then we can readily tell the position of x* relative to 
one of either H, or Hk. This is illustrated in Figure 1. Note that the intersection of 
the four hyperplanes is still (d - 2) dimensional, and their relative positions are 
fully characterized by their intersection with the (x~, x2) subspace. The fact that H, 
and Hk have slopes of opposite signs is essential for our conclusion. If, for example, 
x* is known to lie to the "left" of  H~ 2) and "above" H~t~ ), then we definitely know 
that it lies "northwest" of / / , .  
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14 (2) [ 14(2) [ 

H (l) 

X! 

FIGURE I 

For a more precise argument for why this is true, suppose, for example, that H, 
has positive slope and a,i < 0 < a,2. (All other cases are handled similarly.) Suppose 

d 
Y. (a~lau - a, lak j )x*  < aklb,  - a, lb,, 

J=l 

and 
d 

(akzau - a,za~j)x* < ak2b, - a, zb,,. 
J=l 

These relations tell us that x* lies on certain sides of H~ ) and ,,~<2),~. Multiplying the 
former by a,2 and the latter by a,i yields (after adding the two) either ~d=l a, jx*  > 
b, or ~f=l a u x *  < b,, depending on the sign of akla,2 - akza, l. In other words, in 
this example the side of H ,  is known. 

If H, and Hk are linearly dependent, then we claim that a,l = ak~ = O. This 
follows from the fact that H, and Hk have the same slope, which must be both 
nonnegative and nonpositive. In this case let H[~ ) be defined as the hyperplane that 
is parallel to both H, and Hk and lies in the middle between them. Formally, there 
is a real number ~ ~ 0 such that a,j = )~akj ( j  = 1 . . . . .  d). The equation which 

rr( l )  defines n , k  is therefore 

1 
Y. a, jxj  = ~ (b, + Xbk). 

Obviously, o~l) has a zero coefficient for x~ in this case too. Moreover, if the / /~k  
• i0) is known, then we readily know its position relative position of x* relative to n,k 

to one of either H, or H k  (see Figure 2). 
The next step is to consider the hyperplanes H~ ) (for those pairs (i, k) that we 

have formed). Since all of  them have zero coefficients for xb they may be perceived 
as hyperplanes in the ( d -  l)-dimensional subspace of(x2 . . . . .  xa).  More precisely, 
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we may apply to the collection of these hyperplanes the search procedure that is 
recursively known for hyperplanes in R d-~. The oracle we have for x* in R d may 
be used as an oracle for the projection of x* on the subspace of(x2, . . . .  Xd). More 
specifically, since H~. ) has a zero coefficient for Xl, it follows that the projection of 
x* on {(x2 . . . . .  Xd)I lies on a certain side of the projection of H~ ) on that space if 
and only if x* lies on the corresponding side of HI]) in the grand space. There are 
two different approaches toward applying the recursion (see Figure 3): 

Approach I. We may inquire A(d - 1) times and obtain the information about 
the position of x* relative to B(d - 1). (n/2) hyperplanes of the form H~ ~ (where 
(i, k) is a pair that we have formed). We now turn to the hyperplanes of the form 
Ht2) but here we consider only those pairs (i, k) for which the position of x* is I k ,  

known relative to HI] ). Analogously, we can inquire A(d - 1) more times and 
obtain the information about B(d "-- 1). B(d - 1). (n/2) hyperplanes. At this point 
we have (B(d - 1))2(n/2) pairs of hyperplanes H,, Hk such that for each pair we 
know the position of x* relative to at least one member of the pair. It therefore 
follows that we have inquired 2A(d - 1) times and have obtainexl the information 
about a fraction of ~(B(d - 1))2 of the hyperplanes. Thus, we may define A(d) = 
2A(d - 1) and B(d) = ½(B(d - 1)) 2. The solution of these recursive equations is 
simple: A(d) = 2 d-j and B(d) = 2 t-2a. This implies that within C(d).logn queries 
and an additional effort of O(F(d). n), we find the position relative to all hyper- 
planes. The coefficients C(d) and F(d) are of order 2 °t2a~. 

Approach H. Suppose that we recursively find out the position of x* relative to 
all the hyperplanes ~o)  ~t2) (where i, k is a pair that we have formed). Let ~ l t k ,  111k 

Q(n, d) denote the number of queries required for n hyperplanes in R d and let 
T(n, d) denote the additional effort (i.e., pairing hyperplanes, median finding, etc.) 
in the same problem. Then, by solving two (d - l)-dimensional problems with 
n/2 hyperplanes (i.e., the collection of H~)'s and the collection of H~)'s), we know 
the outcome relative to half of the n given hyperplanes. Obviously, Q(n, d) <_ n. 
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, k  

FIGURE 3 

We can therefore write down the following recurrence: 

Q(n, d ) =  min {n, 2Q (2,  d - I ) + Q  (2 d)}  

with boundary conditions Q(n, l) = l + llog2nJ and Q(1, d) = I. It is easier to 
solve Q~(n, d) = 2Q~(n/2, d - l) + Q~(n/2, d) with the same boundary condi- 
tions and then use the relation Q(n, d) <- rain(n, Q~(n, d)). However, note that 
Q(n, d) is not necessarily equal to min(n, Ql(n, d)); for example, Q(32, 2) = 26, 
Q1(32, 2) = 31. 

If n = 2 L where L is an integer, then instead of Q~ we may consider a recurrence 
of the form 

F(L, d) = 2F(L - 1, d - 1) + F(L  - 1, d) 

with boundary conditions F(L,  1) = L + 1 and F(0, d) = 1. The solution is (see 
[ 15] for an interesting solution method): 

F(L,  d) = 2 d ~, i + 2 j. 
I~l j=O 

It follows that F(L, d) < (2L)d/(d - 2)! so that for fixed d we have Q(n, d) = 
O(logdn) with a surprisingly favorable constant C = C(d) = 2d/(d -- 2)!. 
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The other effort involved in preparations for queries satisfies 

Consider the recurrence 

F(L, d) = 2F(L - 1, d - 1) + F(L - 1, d) + 2Ld 

with boundary conditions F(0, d) = 1 and F(L, 1) = 2 L. Surprisingly, this turns 
out to be linear in 2 L for every fixed d, with constants C(d) that satisfy C(d) ~- 
2(C(d - 1) + d). Thus T(n, d) < d2 d. n. 

It thus appears that the second approach may be more practical than the first, 
provided n is not extremely large relative to d. These two different approaches to 
multidimensional search give rise to two different algorithms for the linear pro- 
gramming problem. These algorithms are discussed after we provide the details of 
the oracle for linear programming. 

4. The Oracle for Linear Programmmg 

In this section we specify what we mean by testing a hyperplane in R d. We first 
define what we require from a procedure for linear programming. 

Given a d-variable linear programming problem 
e 

minimize Y~ cjxj 
J ~ |  

d 

so that ~ auxj --- b, (i = 1 . . . .  , n), 
J=l  

we require that the procedure either provide an optimal solution, report that the 
problem is unbounded, or (in case the problem is infeasible) provide a vector x '  = 
(x[ . . . . .  xb) which minimizes the function fix|,  . . . ,  xa) = max{b, - ~d=| a,jxj:i 
= 1 . . . .  , n}. Note that the requirement in case the problem is infeasible is rather 
unusual; it is needed here for recursive purposes. 

The procedure we have developed so far solves this extended notion of  a linear 
programming problem, provided we have a suitable oracle. Specifically, when given 
a hyperplane ~d.| ajxj -----  b, we need to know one of the following: 

(1) The hyperplane contains the final outcome; that is, either there is an optimal 
solution on the hyperplane, the problem is unbounded even on the hyperplane, or 
the hyperplane contains a minimizer of the function f 

(2) The final outcome is on a certain side of the hyperplane. However, in this 
case we do not expect to know the nature of the final outcome, that is, whether 
the problem is feasible and bounded. 

We have to clarify that such an approach is valid even if the linear programming 
problem has multiple optima. This follows from convexity of the set of  optimal 
solutions. If the hyperplane does not contain an optimal point (i.e., a point that 
may be interpreted as x*), then all optimal points lie on one side of the hyperplane 
(i.e., the oracle will respond in the same way for all possible choices of x* in the 
optimal set). 

We now show that the oracle is no more than a recursive application of the 
master problem (i.e., the extended linear programming problem discussed earlier 
in this section) in a lower dimensional space. 
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Given the linear programming problem and the hyperplane, we first consider 
the same problem with the equation of the hyperplane as an additional constraint. 
This is a d-variable problem of n + 1 constraints, but we can eliminate one variable 
and thus have an equivalent ( d  - 1)-variable problem of n constraints. Moreover, 
for simplicity of presentation we may assume that the given hyperplane is simply 
{Xd = 0}. (Otherwise, apply an affine transformation that takes the given hyperplane 
to the latter.) Thus the (d - D-dimensional problem is obtained by dropping the 
variable Xd. We assume of course that d -> 2; the case d = 1 is easy since then the 
"hyperplane" is a single point. If the problem is feasible and unbounded even when 
confined to {Xd = 0}, we are done. Otherwise, we obtain (recursively) either an 
optimal solution x* = (x* . . . . .  x~_,, 0) (optimality is relative to {Xd = 0}) or a 
vector x '  = (x¢ . . . .  , x~-i, 0) which minimizes the function f o n  {Xd = 0}. We now 
need to determine whether we already have the final outcome or, alternatively, 
which side of {Xd = 0} should be searched. Distinguish two cases: 

Case I. First consider the case in which we obtain an optimal solution x*. We 
would like to know whether there exists a vector y = (y, . . . .  , yd) such that Yd > 0, 
Y~ C~yj < ~ CjX* and Y, a,~yj > b, (i = 1 . . . . .  n). Convexity of the feasible domain 
and linearity of the objective function imply that if a vector y satisfies these 
requirements, then so does the vector (1 - e)x* + ~y for any e (0 < E < 1). It is 
therefore sufficient to look only in the neighborhood of x*. Specifically, consider 
the following ( d -  l)-dimensional problem: 

d- I  

minimize Y, c~xj 
j= l  

d- I  

so that Y. auxj + a,d >-- 0 (i ~ I), 
J=l 

where I = {i:Y~ aox* = b,}. Here we impose only those constraints that are tight at 
x* and we set Xd = 1. This is because we are interested only in the local behavior 
in the neighborhood of x* and we wish to determine the existence of a direction of 
improvement. It is easy to see that this (d - l)-dimensional problem has a solution 
with a negative objective-function value if and only if there is a direction with the 
following property: Moving from x* in that direction into the half-space {Xd > 01, 
we remain in the feasible domain if the move is sufficiently small (yet positive) 
while the objective function decreases. Thus, if the problem is infeasible or if, in 
turn, its optimal value is nonnegative, then there is nothing to look for in that half- 
space. In the latter case we then consider the other half-space by solving the 
following problem: 

d- !  

minimize ~ cjxj 

d-I  

so that Y, a,jxj - a,d >- 0 (i E I). 
j s  l 

Analogously, the half-space {Xd < O} contains solutions that are better than x* if 
and only if this problem has a solution with a negative objective-function value. 
We note that since x* is a relative optimum, it follows that at most one of these 
auxiliary problems can have a solution with a negative objective-function value. If 
neither has solutions with negative values, then x* is a global optimum and we are 
done with the original problem. 
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Case I1. The second case is that in which the problem is i n f ~ i b l e  on 
the hyperplane {Xd = 0}. Here we obtain a vector x '  = ( x ' , . . . ,  x,~-~, 0) that mini- 
mizes the function f(x~ . . . . .  Xd) (defined above) on {Xd = 0}. Note that this 
function is convex so that it is sufficient to look at the neighborhood of x '  in 
order to know which half-space may contain a feasible point. Formally, let 1' - 
[i: f(x~ . . . .  , x[~-t, O) = b, - ~dT,~ a,j~j}. We are now interested in the following 
questions: 

Q I. Is there a vector y = (y~ . . . . .  Yd) such that Yd > 0 and 
d 

Y, a v y j > 0  for i E I ' ?  
j= l  

Q2. Is there a vector z = (z~ . . . . .  Zd) such that Zd < 0 and 
d 
Y, a , j z j > 0  for i ~ I ' ?  

Jml 

Note that if the answer to QI is in the affirmative, then we proceed into the half- 
space {Xd > 0]; if the answer to Q2 is in the affirmative, then we proceed into 
{Xd < 0}; if both answers are in the negative, then we conclude that the original 
problem is infeasible and that x '  is a global minimum of the function f 

We answer the above questions in a somewhat tricky way. Consider the following 
( d -  1)-dimensional problem: 

minimize 0 
d - l  

so that Y, au y J >-- --aid 
J=l 

(i e I ') .  

If this problem is feasible, then there is a vector y such that Yd > 0 and ]~.t  aoYj >- 
0 (i E I'). We claim that in this case the answer to Q2 is in the negative. This 
follows from the fact that if there is also a vector z such that za < 0 and ~ d  aozj 
> 0 (i ~ I '),  then there is a vector x such that Xd = 0 and for i ~ I ' ,  y d=~ aex~ > 0 
(x is a suitable convex combination o fy  and z); and this contradicts the assumption 
that x '  minimizes the function f. Similarly, if there is a vector z such that 
2d~  aozj ~_.z~_ atd (i E It) ,  then the answer to QI is in the negative. Thus, the 
procedure in the present case can be summarized as follows. We consider two sets 
of inequalities in d -  1 variables: 

d- I  

~, a,jyj >- --a,d (i ~ I ' ) ,  (1) 
Jml 
d-I 

a,~zj >_ aid (i E I ' ) .  (2) 
J=l 

If both (1) and (2) are feasible or infeasible, then we conclude that x '  is a global 
minimum of the function f a n d  the original problem is infeasible. If precisely one 
is feasible, then we proceed into the half-space corresponding to the o th~  one; that 
is, if (1) is the feasible one, we proceed into {Xd < 0}, whereas if (2) is the feasible 
one, we proceed into [Xd > 0}. 

This completes the description of what the oracle does. 
We note that the oracle may need to solve three (d - D-dimensional problems 

of (possibly) n constraints each. However, the number of constraints is usually 



126 NIMROD MEGIDDO 

much smaller in two of the problems. More precisely, the cardinality of the sets I 
and I '  is not greater than d if we assume nondegeneracy [3]. So, two of the three 
problems the oracle needs to solve are rather easy. 

5. Conclusion 

If Approach I is used for the multidimensional search, then by solving not more 
than 3.2 d-I problems of order n x ( d -  1), we reduce a problem of order n x d t o  
a problem of order n(1 - 2 t-2") x d. Hence the total effort LPi(n, d) using this 
approach satisfies 

LP~(n, d) <_ 3.2d-tLP~(n, d - 1) + LP~(n(1 - 2t-2"), d) + O(nd). 

It can be proved by induction on d that for every d there exists a constant C(d) 
such that LP~(n, d) < C(d).n. It can further be seen that C(d) <_ 3. 22"+d-2C(d -- 
1), which implies C(d) < 22"÷2; that is, C(d) < 2 °t2a). It is interesting to compare 
this result with the epilogue in [8], where questions are raised with regard to the 
average complexity of the simplex algorithm as the number of variables tends to 
infinity while the number of constraints is fixed. The answer is highly sensitive to 
a probabilistic model to be adopted. Smale [19] has shown that, under a certain 
model, the average number of pivot steps is o(n') for every ~ > 0 whenever the 
number of constraints is fixed. 

Using Approach II, we reduce a problem of order n x d to one of order (n/2) x 
d by solving O((21og(n/2))d/(d- 2)!) problems of order n x ( d -  1), incurring an 
additional effort of  O(d2dn). The resulting total effort satisfies 

( 2 1 ° g ( n / 2 ) ) a L P 2 ( n , d - 1 ) + L p 2 ( ~ d )  LP2(n, d) <- c ( d -  2)! ' + O(d2an)" 

It can be proved that for fixed d, LP2(n, d) = O(n(logn)a2), with a rather unusual 
constant C(d) < 2a2/II~-~ k! 

The argument that the worst case complexity is linear relies heavily on the fact 
that we can find the median in linear time. However the linear-time, median- 
finding algorithms [ 1, 17] are not altogether practical. In practice we would simply 
select a random element from the set of critical values rather than the median. It 
appears that the best practical selection is of the median of a random 3-sample or 
5-sample. Since this is repeated independently many times, we do achieve expected 
linear-time performance (where the expectation is relative to our random choices). 
The analysis is close to that of  algorithm FIND (see [9]). Another approach is to 
employ a probabilistic selection algorithm like that in [5], but, again, it is not 
required that the exact median be found. 

Finally, we remark that a hybrid multidimensional search (i.e., picking, recur- 
sively, the better between the two approaches whenever a search is called for) may 
improve the bounds presented here. 
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