
Strategic Directions in Concurrency Research
RANCE CLEAVELAND

Department of Computer Science, North Carolina State University, Raleigh, NC ^rance@csc.ncsu.edu&

SCOTT A. SMOLKA ET AL.1

Department of Computer Science, State University of New York at Stony Brook, Stony Brook, NY
^sas@cs.sunysb.edu&

1. INTRODUCTION

Concurrency is concerned with the fun-
damental aspects of systems of multi-
ple, simultaneously active computing
agents that interact with one another.
This notion is intended to cover a wide
range of system architectures, from
tightly coupled, mostly synchronous
parallel systems, to loosely coupled,
largely asynchronous distributed sys-
tems. We refer to systems exhibiting
concurrency as concurrent systems, and
we call computer programs written for
concurrent systems concurrent pro-
grams.

Concurrency has emerged as a sepa-
rate area of research in response to the
intrinsic difficulties experienced by de-
signers of concurrent systems in diverse
fields within computer science. These
difficulties stem in general from two
main sources. The first is that the pres-

ence of multiple threads of control can
lead to subtle and often unanticipated
interactions between agents—in partic-
ular, issues such as interference, race
conditions, deadlock, and livelock are
peculiar to concurrent programming.
The second arises from the fact that
many concurrent systems, such as oper-
ating systems and distributed data-
bases, are reactive, meaning that they
are designed to engage in an ongoing
series of interactions with their environ-
ments. Unlike traditional sequential
programs, reactive systems should not
terminate, and consequently traditional
notions of correctness that rely on relat-
ing inputs to expected outputs upon ter-
mination no longer apply. Developing
mathematical frameworks that accu-
rately and tractably account for these
phenomena has been a major goal of
researchers in concurrency.

1 Working Group members include Rajeev Alur (University of California, Berkeley), Jos Baeten (C.M.
Technical University, Eindhoven), Jan A. Bergstra (University of Amsterdam), Eike Best (University of
Hildesheim), Rance Cleaveland (North Carolina State University), Rocco De Nicola (University of Firenze),
Helen Gill (Mitre Corp.), Roberto Gorrieri (University of Bologna), Mohamed G. Gouda (University of Texas,
Austin), Jan Friso Groote (CWI), Tom A. Henzinger (University of California, Berkeley), C.A.R. Hoare
(Oxford University), Maj. David Luginbuhl (AFOSR), Albert Meyer (MIT), Dale Miller (University of
Pennsylvania), Jayadev Misra (University of Texas, Austin), Faron Moller (University of Uppsala), Ugo
Montanari (University of Pisa), Amir Pnueli (Weizmann University), Sanjiva Prasad (IIT Delhi), Vaughan
R. Pratt (Stanford University), Joseph Sifakis (VERIMAG Grenoble), Scott A. Smolka—Chair (State
University of New York, Stony Brook), Bernhard Steffen (University of Passau), Bent Thomsen (ICL), Frits
Vaandrager (University of Nijmegen), Moshe Vardi (Rice University), and Pierre Wolper (Univer-
sity of Liège).
The editorial activities of Rance Cleaveland have been supported in part by ONR grant N00014-92-J-
1582, NSF grants CCR-9257963 and CCR-9402807, and AFOSR grant F49620-95-1-0508; and those of
Scott Smolka by NSF grant CCR-9505562 and AFOSR grants F49620-93-1-0250 and F49620-95-1-0508.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and / or a fee.
© 1996 ACM 0360-0300/96/0100–0607 $03.50

ACM Computing Surveys, Vol. 28, No. 4, December 1996

http://crossmark.crossref.org/dialog/?doi=10.1145%2F242223.242252&domain=pdf&date_stamp=1996-12-01

This report focuses on research into
models and logics for concurrency and
their application in specifying, verify-
ing, and implementing concurrent sys-
tems. This general area has become
known as concurrency theory, and its
roots may be traced back to the 1960s
[Dijkstra 1968; Petri 1962]. Our aim is
to survey the rich collection of mature
theories and models for concurrency
that exist; to review the powerful speci-
fication, design, and verification meth-
ods and tools that have been developed;
and to highlight ongoing active areas of
research and suggest fruitful directions
for future investigation.

By focusing on concurrency theory
and its use in verification, we necessar-
ily omit consideration of other concur-
rency-related topics such as concur-
rency control in database systems,
concurrent program debugging, operat-
ing systems, distributed system archi-
tecture, and real-time systems. The in-
terested reader is referred to other
working group reports, which address
many of these topics.

The remainder of this report develops
along the following lines. The next sec-
tion discusses the current state of con-
currency research; the section following
then presents strategic directions for
future investigation. Finally, some con-
cluding remarks are given.

2. CONCURRENCY RESEARCH—THE
STATE OF THE ART

This section gives an overview of the
current state of research in concur-
rency. It reviews work on mathematical
models of concurrency, discusses results
obtained in system specification and
verification, and surveys the practical
impact of concurrency theory.

2.1 Models for Concurrency

As the introduction suggests, concur-
rent systems differ in essential ways
from sequential ones. In order to char-
acterize the fundamental aspects of
these systems, researchers have devel-

oped a variety of mathematical theories
of concurrency over the past two de-
cades. It should first be noted, however,
that there is a basic agreement between
the different schools of thought: unlike
the semantic theories developed for se-
quential computation, models of concur-
rent systems cannot be viewed as map-
pings from inputs to outputs, owing to
the reactive nature of such systems as
well as their capacity for nondetermin-
ism. Instead, it is necessary to take into
account the fact that systems interact
with other systems and hence may ex-
hibit patterns of stimulus/response rela-
tionships that vary over time. Conse-
quently, rather than adopting the
notion of input/output mapping as prim-
itive, theories of concurrency are gener-
ally based on the assumption that cer-
tain aspects of system behavior are
atomic. Systems then execute by engag-
ing in patterns of these “indivisible”
events.

The point of departure for different
theories of concurrency lies in what con-
stitute “patterns” of events. More specif-
ically, models that have been developed
may be classified on the basis of the
stances they adopt with respect to three
basic dichotomies:

—intensionality versus extensionality,
—interleaving versus true concurrency,

and
—branching time versus linear time.

The first dichotomy also arises in the
semantics of sequentiality, but the last
two are peculiar to concurrency. We
elaborate on each in the following.

Intensionality versus extensionality.
Intensional models focus on describing
what systems do, whereas extensional
models are based on what an outside
observer sees. Consequently, inten-
sional theories are sometimes referred
to as operational, and extensional ones
are called denotational, the denotation
of a process being the set of observa-
tions it can engender.

Intensional theories model systems in
terms of states and transitions between

608 • R. Cleaveland

ACM Computing Surveys, Vol. 28, No. 4, December 1996

states. In labeled transition systems
[Keller 1976] transitions are decorated
with atomic actions representing inter-
actions with the environment; these
have been studied extensively in the
context of process algebras such as ACP
[Baeten and Weijland 1990], CCS [Mil-
ner 1989], and CSP [Hoare 1985]. I/O
automata [Lynch and Tuttle 1989] also
follow this approach, but they also allow
distinctions to be made between differ-
ent kinds of actions (e.g., input and
output). Petri nets [Reisig 1985] extend
the state/transition paradigm by allow-
ing states to be “distributed” among dif-
ferent locations. UNITY [Chandy and
Misra 1988] adopts an imperative style,
with transitions corresponding to the
(atomic) execution of conditional assign-
ment statements.

In contrast, extensional models first
define a notion of observation and then
represent systems in terms of the obser-
vations that may be made of them. One
of the most basic observations about a
system is a trace, or sequence of atomic
actions executed by a system [Hoare
1985]. Elaborations of this model in-
clude acceptance trees [Hennessy 1988]
and failure sets [Brookes et al. 1984],
both of which decorate basic trace infor-
mation with information about what
stimuli systems may respond to after
performing a sequence. Synchronization
trees [Milner 1980] encode system be-
havior as a tree with edges labeled by
actions. Mazurkiewicz traces [Mazurk-
iewicz 1987] include an independence
relation between actions to capture pos-
sible concurrency. Kahn nets [Kahn
1974] define the behavior of dataflow
systems, whose components are given
by I/O equations, using fixed-point the-
ory. Other models, such as pomsets
[Pratt 1986], encode concurrency infor-
mation using partial orders on atomic
events possibly enriched with a conflict
relation (event structures [Winskel
1989]) to capture information about
choices made during execution.

Interleaving versus true concurrency.
Interleaving models “reduce” concur-

rency to nondeterminism by treating
the parallel execution of actions as the
choice between their sequentializations.
This view may be termed a “uniproces-
sor” approach to concurrency. To avoid
anomalies having to do with process
starvation, fairness constraints are
sometimes imposed to ensure that indi-
vidual processes “make progress” if they
are capable of doing so [Francez 1986].
Theories such as ACP, CCS, and CSP
employ interleaving, as do I/O-automata
and UNITY; both of the latter also in-
clude mechanisms for enforcing fairness
constraints. The trace-based and syn-
chronization-tree extensional models
also model concurrency via interleaving.

In contrast, truly concurrent models
treat concurrency as a primitive notion;
the behavior of systems is represented
in terms of the causal relations among
the events performed at different “loca-
tions” in a system. Petri nets represent
concurrency in this manner, as do Ma-
zurkiewicz traces, Kahn nets, pomsets,
and event structures.

Branching time versus linear time.
The difference between branching-time
and linear-time models lies in their
treatment of the choices that systems
face during their execution. Linear-time
models describe concurrent systems in
terms of the sets of their possible (par-
tial) runs, whereas in branching-time
models the points at which different
computations diverge from one another
is recorded. Thus traces and pomsets
are linear-time models and synchroniza-
tion trees and event structures are
branching-time models.

Discussion. Different decisions about
the three dichotomies are appropriate
for different purposes. Extensional mod-
els provide a useful basis for explaining
system behavior, although intensional
ones are often more amenable to auto-
mated analysis, as they typically give
rise to (finite-)state machines. An inter-
leaving semantics is useful for specify-
ing systems, whereas a truly concurrent
semantics might be the basis for de-

Concurrency Research • 609

ACM Computing Surveys, Vol. 28, No. 4, December 1996

scribing possible implementations
where, for example, performance issues
are of interest. A branching-time se-
mantics is useful for modeling future
behavior of a system, whereas linear
time suffices for describing execution
histories.

Although traditional theories have
concerned themselves with modeling
choice and concurrency, more recent
work has focused on extending them to
treat other aspects of system behavior,
including real-time, probability, and se-
curity. This point is addressed in more
detail in Section 3.1.

2.2 Verification Formalisms

In dealing with concurrent programs
care must be taken when defining the
notion of “correctness.” Traditional (de-
terministic) sequential programs may
be viewed as (partial) functions from
inputs to outputs; in such a setting
specifications may be given as a pair
consisting of a precondition describing
the “allowed” inputs and a postcondition
describing the desired results for these
inputs. This notion of specification re-
mains appropriate for a concurrent pro-
gram representing a “parallelized” ver-
sion of some sequential program; in this
case, concurrency (parallelism) has been
introduced solely for performance pur-
poses. For reactive, nonterminating,
and potentially nondeterministic con-
current systems, however, this ap-
proach is too limited. This section pre-
sents alternative notions that have been
developed and discusses related ap-
proaches for reasoning about systems.

2.2.1 Specification. Two general
schools of thought have emerged re-
garding appropriate mechanisms for
specifying concurrent systems. One em-
phasizes the use of logical formulas to
encode properties of interest; another
uses “high-level” systems as specifica-
tions for lower-level ones. What follows
elaborates on each of these.

Logics for concurrency. In a seminal
paper, Lamport [1977] argued that the

requirements that designers wish to im-
pose on reactive systems fall into two
categories. Safety properties state that
“something bad never happens”; a sys-
tem meeting such a property must not
engage in the proscribed activity. Live-
ness properties, on the other hand, state
that “something good eventually hap-
pens”; to satisfy such a property, a system
must engage in some desired activity. Al-
though informal, this classification has
proved enormously useful, and formaliz-
ing it has been a main motivation for
much of the work done on specification
and verification of concurrent systems.
Some of this work has aimed at semantic
characterizations of these properties [Alp-
ern and Schneider 1985]. Others have
developed logics that allow the precise
formulation of safety and liveness proper-
ties. The most widely studied are tempo-
ral logics, which were first introduced
into the computer-science community by
Pnueli [1977] and support the formula-
tion of properties of system behavior over
time. The remainder of this section re-
views some of the research into temporal
logic.

The dichotomies presented earlier in
modeling concurrency also reveal them-
selves in the development of temporal
logics. In particular, two schools of tem-
poral logic have emerged [Emerson and
Halpern 1986]:

—Linear-time logics permit properties
to be stated about the execution se-
quences a system exhibits.

—Branching-time logics allow users to
write formulas that include some sen-
sitivity to the choices available to a
system during its execution.

Numerous variants of linear-time and
branching-time temporal logic have
been proposed, as researchers have in-
vestigated operators that ease the for-
mulation of properties in different set-
tings [Manna and Pnueli 1991]. The
expressiveness of these formalisms has
also been compared and contrasted
[Emerson and Halpern 1986], and a (in
some sense) canonically expressive tem-

610 • R. Cleaveland

ACM Computing Surveys, Vol. 28, No. 4, December 1996

poral logic, the modal mu-calculus
[Kozen 1983], has been developed.

The other two dichotomies—inten-
sional versus extensional and interleav-
ing versus true concurrency—remain
relatively unexplored. Traditional tem-
poral logics have generally adopted an
extensional view of system behavior and
an interleaving model of concurrency,
although recent work has explored log-
ics for true concurrency [Thiagarajan
1994].

Finally, other logics have also been
developed for reasoning about concur-
rent systems, including various dy-
namic logics and logics of knowledge.
The former permit the inclusion of pro-
grams inside formulas [Peleg 1987], and
the latter allow users to express the
understanding that individual agents
have of other agents’ states at a given
point in time [Halpern and Moses 1990;
Halpern and Zuck 1992].

Behavioral relations. Another popu-
lar approach to specifying concurrent
systems involves the use of behavioral
equivalences and preorders to relate
specifications and implementations. In
this framework, which was introduced
by Milner [1980] and has been exten-
sively explored by researchers in pro-
cess algebra [Baetan and Weijland
1990; Hoare 1985; Milner 1989], specifi-
cations and implementations are given
in the same notation; the former de-
scribes the desired high-level behavior,
and the latter provides lower-level de-
tails indicating how this behavior is to
be achieved. In equivalence-based meth-
odologies, proving an implementation
correct amounts to establishing that it
behaves “the same as” its specification;
in those based on preorders, one instead
shows that the implementation provides
“at least” the behavior dictated by the
specification.

In support of this approach, a number
of different equivalences and preorders
have been proposed based on what as-
pects of system behavior should be ob-
servable. Relations may be classified on
the basis of the degree to which they

abstract away from internal details (viz.
the intensional/extensional dichotomy)
of system descriptions; the amount of
sensitivity they display to choices sys-
tems make during their execution (viz.
the linear/branching-time dichotomy);
and the stance they adopt with respect
to interleaving versus true concurrency.
For example, bisimulation equivalence
[Milner 1980] is a branching-time, in-
terleaving-based, intensional equiva-
lence, whereas observational equiva-
lence [Milner 1980] is a branching-time,
interleaving-based extensional equiva-
lence. Other noteworthy relations in-
clude the failures/testing relations (lin-
ear-time, interleaving, extensional)
[Brookes et al. 1984; De Nicola and
Hennessy 1984] and pomset equivalence
(linear-time, truly concurrent, exten-
sional) [Pratt 1986]. Interested readers
are referred to van Glabbeek [1990] for
a detailed study of the relationship
among different equivalences.

These relations may also be used to
bridge the gap between the intensional
and extensional models of concurrency
described previously. That is, in order to
define a relation over intensional mod-
els, one first selects the extensional, or
“observable,” information that processes
may exhibit and then uses this as the
basis for relating models.

Comparison. The chief distinction
between the two specification ap-
proaches arises in the amount of infor-
mation they require users to specify.
Logic-based approaches support very
loose specifications, as one is allowed to
identify single properties that systems
should have. System-based approaches
require fairly complete specifications of
required observable behavior, although
in this respect preorders generally allow
looser specifications than equivalences.
On the other hand, behavioral relations
provide support for stepwise refinement
of systems as well as compositional ap-
proaches to analyzing system behavior,
which temporal logics in general do not,
since the specification and system nota-
tions differ.

Concurrency Research • 611

ACM Computing Surveys, Vol. 28, No. 4, December 1996

Connections between the two ap-
proaches have also been explored. In
particular, a temporal logic induces an
equivalence on systems as follows: two
systems are equivalent if and only if
they satisfy the same formulas. Using
this framework, relationships between
different linear- and branching-time
logics and equivalences have been es-
tablished [Hennessy and Milner 1985;
Browne et al. 1988].

2.2.2 Verification Methodologies and
Algorithms. Verification is the process
of establishing that a system satisfies a
specification given for it. The previous
subsections described different ap-
proaches to specifying concurrent sys-
tems; this one gives an overview of tech-
niques for establishing that systems
meet such specifications.

Proof systems. One verification meth-
odology involves using axioms and in-
ference rules to prove that systems sat-
isfy specifications. Researchers have in-
vestigated proof systems for several
different specification formalisms, in-
cluding variants of temporal logic and a
variety of behavioral relations, and we
briefly review these here.

Early proof systems aimed at general-
izing frameworks for sequential pro-
grams to cope with concurrency [Owicki
and Gries 1976]. In particular, specifi-
cations were given as pairs of conditions
circumscribing the allowed inputs and
desired outputs, and consequently this
approach was not appropriate for reac-
tive systems. However, it was in the
context of this work that interference
emerged as a crucial complicating factor
in verifying concurrent programs. To
cope with nonterminating systems,
other researchers focused their atten-
tion on developing proof methodologies
for establishing that systems satisfied
different specifications given as invari-
ants [Lamport 1980].

Traditional temporal-logic-based proof
systems rely on proving implications be-
tween temporal formulas [Pnueli 1977].
To prove a system correct, one first

translates it into an “equivalent” tempo-
ral formula and proves that this for-
mula entails the specification. The vir-
tue of this approach is that one can use
(existing) axiomatizations of temporal
logic to conduct proofs; the disadvan-
tage is the translation requirement,
which usually obscures the structure of
the system. More recent proof systems
such as UNITY [Chandy and Misra
1988] adopt proof rules for specific sys-
tem notations and temporal logics;
other work has been devoted to the de-
velopment of domain-specific rules for
establishing certain classes of proper-
ties [Manna and Pnueli 1991, 1995].

Behavioral-relation-based proof sys-
tems have typically been algebraic
(hence the term process algebra) [Milner
1989; Baeten and Weijland 1990]; in
order to prove that two systems are
equivalent, one uses equational reason-
ing. Sound and complete proof systems
have been devised for a number of dif-
ferent equivalences, preorders, and de-
scription languages.

Algorithms. Finite-state systems turn
out to be amenable to automatic verifi-
cation, since their observable behavior
can be finitely represented. These sys-
tems arise in practice in areas such as
hardware design and communication
protocols; this fact has spurred interest
in the development of verification algo-
rithms for temporal logic and relation-
based specifications.

The task of determining automati-
cally whether a system satisfies a tem-
poral formula is usually referred to as
model checking. One may identify two
basic approaches to model checking.
The first, which came out of the branch-
ing-time logic community, relies on an
analysis of the structure of the formula
to determine which system states sat-
isfy the formula [Clarke et al. 1986;
Cleaveland and Steffen 1993]. The sec-
ond, which arose from the linear-time
community, is automaton-based [Vardi
and Wolper 1986]; one constructs an
automaton from the negation of the for-
mula in question and then determines

612 • R. Cleaveland

ACM Computing Surveys, Vol. 28, No. 4, December 1996

whether the “product” of this automaton
and the automaton representing the
system is empty (if so, the system is
correct). The two approaches turn out to
be related, and indeed automaton-based
approaches have been developed for
branching-time logics and “structure-
based” ones have been devised for lin-
ear-time logics [Bernholtz et al. 1994;
Bhat et al. 1995]. The time complexities
of the best algorithms in each case are
proportional to the product of the num-
ber of system states and the size of the
formula (branching-time) or an expo-
nential of the size of the formula (lin-
ear-time).

Algorithms have also been devised for
determining whether systems are re-
lated by semantic relations. Traditional
approaches for calculating equivalences
combine partition-based algorithms for
bisimulation equivalence [Paige and
Tarjan 1987; Kanellakis and Smolka
1990] with automaton transformations
that modify the automata corresponding
to the systems being checked [Cleave-
land et al. 1993]. Methods for comput-
ing preorders follow a similar scheme,
with the “base” relation being a variant
of the simulation preorder.

The key impediment to the practical
application of these algorithms is the
state-explosion problem. In general, the
number of states a system has will be
exponential in the number of concurrent
processes; thus, as the number of pro-
cesses grows, enumerating all possible
system states rapidly becomes infeasi-
ble. Much of the recent work on model
and relation checking has been devoted
to techniques for ameliorating the ef-
fects of state explosion. Some of the
techniques that have been developed in-
clude:

—symbolic representations of state spaces
via, for example, binary decision dia-
grams [Burch et al. 1992], support the
compact encoding of system states;

—on-the-fly algorithms rely on a de-
mand-driven generation of states to
avoid the construction of irrelevant

system configurations [Andersen
1994; Bhat et al 1995]; and

—redundancy elimination strives to re-
duce the number of redundant system
states that algorithms analyze, and
includes partial-order reduction tech-
niques [Holzmann et al. 1996], se-
mantic minimization [Roy and de Si-
mone 1990], and symmetry-based
approaches [Clarke et al. 1993; Emer-
son and Sistla 1993].

Finally, researchers have also devel-
oped techniques for handling certain
kinds of infinite-state systems, includ-
ing context-free processes [Baeten et al.
1993] and those based on dense real
time [Alur and Dill 1994].

2.2.3 Tools. The past decade has
also witnessed the development of tools
that use concurrency theory as a basis
for automating the design and analysis
of concurrent systems. What follows is
essentially a categorization of tools
based on the degree of interaction de-
manded from the user during the verifi-
cation process. The interested reader is
also referred to the report of the formal
methods working group ^/a116-clarke/&
for additional tool information.

Interactive tools. These typically em-
ploy a theory for reasoning about con-
current systems in conjunction with a
deduction engine to allow users to con-
duct proofs that systems enjoy certain
properties. The virtue of such tools is
that they permit the analysis of sys-
tems—such as those that are parame-
terized or manipulate data—that lie be-
yond the scope of fully automated tools;
their disadvantage is that they can re-
quire substantial user interaction. Sam-
ple tools include PVS [Owre et al. 1992]
and Coq/mCRL [Bezem and Groote
1993], both of which enrich type theo-
ries for manipulating values with no-
tions of concurrency and which have
been used to prove the correctness of
parameterized systems and distributed
algorithms and protocols; STeP [Alur
and Henzinger 1996a], which provides
automated support for establishing that

Concurrency Research • 613

ACM Computing Surveys, Vol. 28, No. 4, December 1996

concurrent systems satisfy temporal for-
mulas as well as a decision procedure
for temporal logic and a model checker;
and PAM [Lin 1991], which oversees the
construction of algebraic proofs of
equivalence between terms in a process
algebra that the user specifies.

Automatic tools. These provide im-
plementations of one or more of the
verification algorithms discussed above.
The chief virtue of these tools is that
they are automatic; the disadvantage is
that the classes of systems that may be
analyzed are restricted to those having
some appropriate finitary representa-
tion. Sample tools include SPIN [Alur
and Henzinger 1996a] and COSPAN
[Alur and Henzinger 1996a], which sup-
port model checking in linear-time for-
malisms; the Concurrency Workbench
[Cleaveland et al. 1993], FDR [Roscoe
1994], and AUTO [Roy and de Simone
1990], which compute various semantic
relations and (in the case of the Work-
bench) implement branching-time
model checkers; and Xesar [Queille and
Sifakis 1982] and SMV [Alur and Henz-
inger 1996a], which support branching-
time model checking. UV [Kaltenbach
1996] is a model checker for UNITY
that combines automatic checking of
linear-time temporal properties with in-
teractive features that allow a user to
supply hints for speeding up the check-
ing procedure. PEP [Margaria and Stef-
fen 1996] allows the automatic analysis
of Petri-net-based systems. Other tools
have been developed for verifying real-
time and hybrid systems; these include
HyTech [Henzinger et al. 1995], Kronos
[Daws and Yovine 1995] and UppAal
[Margaria and Steffen 1996]. Some
tools, such as Statemate [Harel et al.
1990] and the Concurrency Factory
[Alur and Henzinger 1996a], also pro-
vide support for the generation of code
from system models.

Metatools. The multitude of concur-
rency models and verification formal-
isms has also spurred interest in the
development of metatools that support

the customization and collaborative use
of existing tools. Examples include PAM
[Lin 1991], which allows users to
change the process algebra and equa-
tional axiomatization being used; the
Process Algebra Compiler [Cleaveland
et al. 1995], which can be used to gener-
ate new front ends for the Concurrency
Workbench; and MetaFRAME [Alur and
Henzinger 1996a], which provides a
framework for integrating tools so that
they may be used in conjunction with
one another.

2.2.4 Applications. The remainder
of Section 2 reviews some of the applica-
tions in the area of programming lan-
guages and system verification to which
concurrency theory has been put.

Concurrent programming languages.
Traditionally, the inclusion of concur-
rency into programming languages has
been done in a somewhat ad hoc man-
ner; the general paradigm has been to
augment sequential languages such as
C with facilities for using operating-
system-supplied primitives such as pro-
cess creation and semaphores. This
meant that programs written in these
languages were not portable across dif-
ferent operating systems; in addition,
the low-level nature of system calls led
to programs that were difficult to main-
tain.

Programming language researchers
have over the past decade begun to in-
vestigate the design of programming
constructs based on models of concur-
rency described above as a means of
remedying this problem. Examples in-
clude OCCAM [Inmos International
1988], which arose out of the work done
on CSP [Hoare 1985]; synchronous pro-
gramming languages such as ESTEREL
[Berry and Ganthier 1992] and LUS-
TRE [Halbwachs 1993], which evolved
from dataflow models [Kahn 1974;
Kahn and MacQueen 1977]; and PICT
[Pierce and Turner 1995], CML [Reppy
1992], and Facile [Thomsen et al. 1996],
which are functional concurrent pro-
gramming languages based on process

614 • R. Cleaveland

ACM Computing Surveys, Vol. 28, No. 4, December 1996

algebras (CCS [Milner 1989], p-calculus
[Milner et al. 1992]), and their higher-
order extensions (Higher Order p-calcu-
lus [Sangiorgi 1992] and CHOCS
[Thomsen 1995]). Other languages, such
as Linda [Carriero and Gelernter 1989],
have been given rigorous semantics us-
ing techniques borrowed from concur-
rency theory [Jagannathan and Weeks
1994]. See Section 3.4 for a discussion of
the use of concurrency models in pro-
gramming language design as a strate-
gic research direction.

System verification. Significant case
studies to which concurrency theory has
been brought successfully to bear are
too numerous to list completely. Those
that follow are taken from a forthcom-
ing special issue of the journal Science
of Computer Programming devoted to
industrial applications; the interested
reader is also referred to the formal
methods report for others.

—The XTP and DREX communications
protocols are proved correct, as is
Bull’s Flowbus architecture.

—Several hardware protocols are for-
malized and verified, including the
Futurebus cache coherence protocol,
the PCI localbus, and the I2C bus.

—The timing properties of earthquake-
resistant active structural control sys-
tems are shown to satisfy given
bounds.

—A failure recovery protocol for the
Heathrow air-traffic information sys-
tem is described and verified using
modal process logic.

—The timing constraints between inter-
lockings guarding the safety of Brit-
ish railyards are analyzed and de-
bugged.

—A commonly used distributed leader
election algorithm for unidirectional
ring networks is shown to be incor-
rect, and a corrected version is veri-
fied.

—Formal approaches to eliminating un-
desired feature interactions in tele-
phony services are discussed and ap-
plied.

—Grid protocols being used in multipro-
cessor environments are proved cor-
rect.

3. STRATEGIC DIRECTIONS

We present a number of strategic direc-
tions for future concurrency research,
each of which is accompanied by a
“grand challenge.” The challenges are
intended to serve as a yardstick for
progress made along the various re-
search directions.

3.1 Beyond Correctness

In the sequential world, programs are
typically modeled as (partial) functions
mapping inputs to outputs, and verifica-
tion formalisms generally require the
use of preconditions (to constrain in-
puts) and postconditions (to constrain
outputs). A correct sequential program
should also terminate for all inputs. See
Jones [1992] for comprehensive cover-
age of proof techniques for sequential
programs. Researchers have also fo-
cused on certain “nonfunctional” aspects
of programs, most notably efficiency
(time and space). See the ACM SDCR
Theory of Computation working group
report in this issue and at http://
geisel.csl.uiuc.edu/;loui/complete.html.

For concurrent systems, particularly
those of the reactive variety, many non-
functional requirements are of interest
to system builders. These include the
following.

Timeliness. Concurrent systems are of-
ten subject to timing constraints; for
example, if the amount of water in a
water pump exceeds a certain level,
then the pump should shut off within
t seconds. Embedded systems, which
interact with their environment
through sensors and actuators, are a
typical example of a class of concur-
rent systems for which real-time be-
havior is a major concern and perfor-
mance requirements must be met.

Fault tolerance. Concurrent systems
must often provide reliable service de-
spite the occurrence of various types

Concurrency Research • 615

ACM Computing Surveys, Vol. 28, No. 4, December 1996

of failures. Such fault tolerance is in-
variably achieved through redun-
dancy of system components.

Probability. Although not a requirement
per se, equipping specifications with
probability information can be useful
for specifying system fault character-
istics, for example, the rate at which a
faulty communications channel drops
messages.

Continuous behavior. A hybrid system
consists of a nontrivial mixture of dis-
crete and continuous components,
such as a digital controller that con-
trols the continuous movement of con-
trol rods in a nuclear reactor.

Security. As systems become more dis-
tributed and more accessible, it is in-
creasingly important to make them
resistant to passive or active misuse
by intruders.

Mobility. Mobile processes are processes
that can exchange communication
links, thereby introducing the possi-
bility of dynamically reconfigurable
network architectures. Higher-order
processes, which are closely related to
mobile processes, permit process pass-
ing.

Note that these different types of re-
quirements are sometimes contradic-
tory. Reliability, for instance, requires
the use of additional resources, which
may degrade system performance and
thus endanger timeliness (see Kanel-
lakis and Shvartsman [1992] for a treat-
ment of the reliability versus efficiency
tradeoff in parallel programs).

Recognizing their importance, concur-
rency researchers have been turning
their attention more and more to the
nonfunctional requirements of concur-
rent programs. For example, substan-
tial progress has been made on models
and logics for real-time [De Bakker et
al. 1992], probability [Hansson 1994,
Larsen and Skou 1992, and van
Glabbeek et al. 1995], mobility [Milner
et al. 1992, Sangiorgi 1992, Thomsen
1995], and hybrid systems [Pnueli and
Sifakis 1995].

Challenge. Solidify our understand-
ing of phenomena such as real-time and
mobility and at the same time develop
new formalisms for those phenomena
that remain largely unexplored (e.g., se-
curity, although see Focardi and Gorri-
eri [1995] and Roscoe [1995]). Achieving
these goals is likely to necessitate inter-
action with researchers from other com-
puter-science disciplines (security ex-
perts, system engineers, etc.), and from
noncomputer-science disciplines such as
electrical and mechanical engineering
and control theory.

We should also strive to develop seman-
tic partnerships between formalisms
that would facilitate the construction of
a model capturing the requirements
most relevant to a given problem, for
example, a model that embodies timing
and probability information in the con-
text of mobile systems (see also Section
3.2, which treats, in greater detail, the
challenge of taxonomizing and unifying
semantic models of concurrency).

Finally, these formalisms must be
brought out of the “test-tube” environ-
ment and applied in an integrated way to
the specification, verification, and design
of complex real-life systems. A concrete
challenge here is the formal analysis of
the emerging micro-electromechanical
systems (MEMS) technology, which pre-
sents a host of modeling challenges. The
interested reader should see Gabriel
[1995].

Another challenging application is
air-traffic control, whose safety-critical
nature and high degree of concurrency
make it an ideal test-case for concur-
rency research. The utility of a formal
approach is already evident in the work
of Heimdahl and Leveson [1996], where
a formal requirements specification of
the commercial traffic collision avoid-
ance system (TCAS II) was produced
and tested. Greater challenges lie in the
future, particularly if today’s central-
ized solutions that require airplanes to
use specific approach patterns to run-
ways are abandoned in favor of decen-
tralized “free-flight” solutions. Although
free-flight solutions can improve effi-

616 • R. Cleaveland

ACM Computing Surveys, Vol. 28, No. 4, December 1996

ciency and solve congestion problems,
the complexity of their design demands
use of formal approaches. Principal to
this design are problems of coordination
and conflict resolution among multiple
agents [Sastry et al. 1995].

3.2 A Unifying Semantic Framework of
Concurrency

The progress of science involves a
constant interplay between diversi-
fication and unification. Diversifica-
tion extends the boundaries of sci-
ence to cover new and wider ranges
of phenomena; successful unifica-
tion reveals that a range of experi-
mentally validated theories are no
more than particular cases of some
more general principle. The cycle
continues when the general princi-
ple suggests further specialisations
for experimental investigation.

From C.A.R. Hoare’s position
statement (http://www.acm.org/
surveys/1996/HoareUnifying/)

During the past twenty years, concur-
rency theory has produced a mature but
loose collection of models, theorems, al-
gorithms, and tools. The collection is
mature because it is based on a solid
mathematical foundation (see Section
2.1) and has made possible documented
successes in system design and analysis
(see Section 2.2.4). The collection is
loose because a theoretical result or a
practical application is typically carried
out within a particular formalism,
whose idiosyncrasies may support the re-
sult or application in undeclared ways.

Overall, myriad formalisms have led
to healthy diversity rather than frag-
mentation of the discipline: existing
concurrency theories have proved suit-
able for a wide range of application do-
mains, and comparative concurrency the-
ory2 has identified deep mathematical
relationships among individual theories.

Yet potential users, such as designers
of communication protocols and embed-
ded systems, have been reluctant in ap-

plying concurrency-theoretic methods.
This reluctance is reinforced by the per-
ceived need of having to buy into one
particular formalism and tool from what
must seem, to the bystander, a bewil-
dering array of choices.

Challenge. Develop a systematic and
coherent way of presenting concurrency
theory to its potential users. This
should be achieved by a simple uniform
framework that permits an application-
oriented taxonomy of the major models
of concurrency and a structured organi-
zation of the core results.

A uniform framework for concurrency
will aid not only potential users of con-
currency-theory-based tools, but also
students and researchers. In particular,
such a framework could provide a basis
for concurrency education in the com-
puter science curriculum (see Section
3.5). It could also aid the development of
new methods and tools for the design
and analysis of heterogeneous systems,
consisting of synchronous and asynchro-
nous, discrete and continuous, hard-
ware and software components. For ex-
ample, a sufficiently broad framework
could support the implementation of
asynchronous protocols using synchro-
nous circuits.

The literature already contains many
proposals for highly abstract, general-
purpose models of concurrency,3 and the
uniform framework we seek could very
well evolve from this body of work. To
make this discussion more concrete and
to illustrate the rich diversity among
the proposed models, we briefly describe
three of these efforts.

A reactive module [Alur and Henz-
inger 1996b] is a kind of state transition
system that has been proposed as a
uniform framework for synchronous and
asynchronous computation in the con-
text of hardware-software codesign. It
supports an abstraction operator that

2 Winskel [1987], van Glabbeek [1990], Olderog
[1991], and Abramsky [1996].

3 Groote and Vaandrager [1992], Best et al.
[1992], Milner [1993], Glabbeek [1993], Aceto et
al. [1994], Winskel and Nielsen [1995], Mifsud et
al. [1995], Montanari and Rossi [1996], Abramsky
[1996], and Alur and Henzinger [1996b].

Concurrency Research • 617

ACM Computing Surveys, Vol. 28, No. 4, December 1996

can be used to collapse an arbitrary
number of consecutive computation
steps into a single step, thereby provid-
ing the ability to turn an asynchronous
system into a synchronous one (tempo-
ral scalability). It supports a hiding op-
erator that changes external variables
into internal ones, which can be used to
change a synchronous system into an
asynchronous one (spatial scalability).
Finally, the model is equipped with a
natural notion of composition that per-
mits compositional reasoning, that is,
the ability to reason about a composite
system in terms of the system compo-
nents.

Causal computing [Montanari and
Rossi 1996] is a general framework for
concurrent computation based on the
“true concurrency” concurrency model.
In the causal approach, concurrent com-
putations are defined as those equiva-
lence classes of sequential computations
that are obtained by executing concur-
rent events in any order. A causal pro-
gram consists of a set of rewriting rules,
events are rule applications, and simul-
taneous rewritings correspond to con-
current events. Causal computing has
been used as a model of computation for
process algebras, constraint and logic
programming, term and graph rewrit-
ing, and mobile and coordination sys-
tems; please see the position statement
of Ugo Montanari ^a51-montanari&, see
Table of Contents for Volume 28(4es),
this issue for a complete address and a
closer look at causal computing.

A Chu space [Gupta and Pratt 1993]
is an event-state-symmetric generaliza-
tion of the notion of event structure
consisting of a set of events, a set of
states, and a binary relation of occur-
rence between them. The interpretation
of process algebra over event structures
extends straightforwardly to Chu
spaces, whereas the language of process
algebra expands to include the opera-
tions of linear logic, compatibly inter-
preted. Chu spaces may be equivalently
formulated in terms of unfolded Petri
nets, propositional theories, or history-
preserving process graphs [van

Glabbeek and Plotkin 1995]. Chu spaces
are of independent mathematical inter-
est, forming a bicomplete self-dual
closed category first studied by Barr
and Chu [Barr 1979] that has found
applications elsewhere in proof theory,
game theory, and Stone duality [Pratt
1995]. Chu spaces are the subject of
Vaughan Pratt’s position statement, ac-
cessible at ^/a54-pratt/& (see Table of
Contents, Vol. 28(4es) for complete
address).

3.3 Design and Verification Methodologies

There are two important observations
about the current state in the design
and verification of concurrent systems.

—There are many proposed techniques,
and guidelines for using these tech-
niques, that differ in quality and ap-
plicability. For example, an approach
to design and verification based on a
true concurrency model may yield
greater computational efficacy than
one based on interleaving, since the
former admits the application of par-
tial-order reduction techniques. Simi-
larly, certain correctness properties
(e.g., of the form “from any state is it
possible to get to a state satisfying
proposition p”) are expressible in
branching-time temporal logic but not
in linear-time temporal logic [Clarke
et al. 1995].

—The design and also the verification of
many concurrent systems follow a
similar paradigm. For example, a
number of the applications reported
in Section 2.2.4 consisted of first at-
taining a thorough understanding of
the application at hand, then coding
the application in the abstract specifi-
cation language of a model checking
or bisimulation checking tool, and fi-
nally running the tool on the problem.
In some cases, this process was re-
peated several times due to an initial
misunderstanding of some part of the
specification, a lack of a successful
strategy for dealing with state-space
explosion, and so on.

618 • R. Cleaveland

ACM Computing Surveys, Vol. 28, No. 4, December 1996

Challenge. Transform the existing
array of design and verification tech-
niques into sound and tested methodol-
ogies. The resulting methodologies
should extend the range of existing
techniques to applications orders of
magnitude larger in size and complex-
ity. Similar to concerns raised in Sec-
tion 3.2 regarding a uniform semantic
framework for concurrency, we should
also seek ways to combine methodolo-
gies to better suit the demands of a
given application, and, relatedly, de-
velop an application-oriented taxonomy
of methodologies.

To produce a next generation of truly
usable methodologies, the following is-
sues must be addressed.

Algorithmic support. Further advances
(i.e., beyond those listed in Section
2.2.2) are needed to better cope with
the state-space explosion problem in-
herent in concurrent system design
and verification. Compositional meth-
ods, in which the analysis of a system
is decomposed into an analysis of its
components, and refinement methods,
in which a system is analyzed at
varying levels of abstraction, may
play a key role. The issue of algorith-
mic support is addressed more fully in
the position statement of Pierre Wol-
per: ^a127-wolper&, see the Table of
Contents, Vol. 28(4es), this issue.

Tool support. The problems confronting
today’s tools, such as lack of portabil-
ity and scalability, need to be ad-
dressed. Furthermore, tools should be
better integrated into the software en-
gineering lifecycle. Traditionally, soft-
ware engineering devotes much atten-
tion to organizational and procedural
issues in software development and
relatively little to methods for system
analysis; in this respect, it resembles
a management discipline rather than
an engineering one. Tools based on
concurrency theory offer a particu-
larly appropriate starting point for
putting the engineering into software
engineering.

Technology transfer. The capacity of to-

day’s design and verification technol-
ogy will improve only if subjected to
protracted exposure to real-life indus-
trial and government (i.e., defense)
applications. The transfer of this tech-
nology to these arenas is thus a key
issue, and will be facilitated by in-
creased tool support (including im-
proved user interfaces) and education.
The role of tool support in technology
transfer is the subject of the new
Springer-Verlag journal Software
Tools for Technology Transfer, to be-
gin publication in September 1997.
Education should include training in
both tool usage and in the concur-
rency-theoretic concepts underlying
the tools (see Section 3.5). Further-
more, one can expect a domino effect:
as companies and agencies achieve
positive results in the use of the latest
design and verification methodolo-
gies, more users are likely to follow
suit.

3.4 Programming Languages for
Concurrency

In Section 2.2.4, we briefly discussed
the impact models of concurrency have
had on the design of concurrent pro-
gramming languages. Strategically, we
believe that the continued use of concur-
rency theory—especially as this theory
continues to evolve—in the design and
implementation of programming lan-
guages is an important research direc-
tion. The main rationale behind this
belief is simple and powerful: the devel-
opment of programming languages with
strong foundations in concurrency the-
ory would blur, and in some cases com-
pletely eliminate, the distinction be-
tween a system model and a system
implementation. As such, the task of
designing, coding, and verifying concur-
rent systems would be significantly
eased.

Designing programming languages
for concurrency is a nontrivial task.
Adding a notion of concurrency to an
existing language may break some of
the tacit assumptions of the language’s

Concurrency Research • 619

ACM Computing Surveys, Vol. 28, No. 4, December 1996

design, such as determinism and no (in-
terprocess) interference on variables.
Thus, designing a language with an ex-
plicit concurrency model from scratch is
likely to produce a language with a
cleaner and better-understood seman-
tics. Moreover, rooting a programming
language in a sufficiently expressive
concurrency model could lead to the con-
struction of reusable abstractions for so-
phisticated synchronization mecha-
nisms, in much the same way as objects
are used in sequential systems today.

A concurrency model underlying the
design of a parallel programming lan-
guage might also increase our ability to
efficiently port a program across a wide
spectrum of system architectures, with-
out unduly restricting the parallelism in
the ported version of the program. Con-
currency models by their very nature
tend to be abstract, meaning that they
are largely architecture-independent. In
particular, they typically assume no a
priori limit on the number of processors
available for running processes (but see
Gerber and Lee [1994] for an exception),
and hence capture a notion of maximal
parallelism.

To better address the portability is-
sue, we should more closely examine the
interplay between true concurrency
models and interleaving-based models
(Section 2.1). The former come into play
when mapping individual processes to
individual processors in the target ar-
chitecture; the latter are relevant when
multiple processes must be mapped to
the same processor. A better under-
standing of this interplay is one of the
potential benefits of a unifying frame-
work for concurrency (Section 3.2).

Concurrency theory has also begun to
influence the design of type systems for
functional concurrent programming. In
Nielson and Nielson [1993, 1994] func-
tion types of the form f;t13

b t2 are
allowed, where b is a process algebra
behavior expression. The type is to be
read: function f takes a value of type t1
and produces a value of type t2 and in
doing so has behavior b. Under some
conditions these behaviors will be infer-

able and “principal” in a sense similar
to that of SML [Milner et al. 1990]. A
similar approach has been proposed in
Nierstrasz [1990] for concurrent object-
oriented languages based on process al-
gebra.

Type systems of this nature seem like
a particularly promising technique for
integrating a concurrency model into a
programming language. For instance,
we could devise new type systems that
guarantee safety and liveness proper-
ties in the same way that traditional
type systems guarantee safety in calling
functions and procedures [Abramsky et
al. 1996].

Challenge: Design usable, safe, and
secure languages incorporating a well
understood concurrency model. The
need for such languages is particularly
urgent now that mobile agents or ap-
plets have started to roam the Internet.
Currently, mobile agents are written in
languages such as Java, Telescript, and
Safe Tcl/Tk, all providing rudimentary
support for concurrency in the form of
threads and semaphores. There is, how-
ever, a growing need to extend the con-
currency constructs of these languages
or design new languages with more ad-
vanced synchronization mechanisms,
including synchronous channels, multi-
cast groups and constraint variables.
Concurrency theory—in particular,
higher-order and mobile theories4—can
play an important role in achieving
these goals. The resulting languages
would help system designers analyze
sophisticated software systems built us-
ing mobile agents.

3.5 Concurrency Education

It is unlikely that concurrency-based
design and verification methodologies
will gain widespread acceptance until
the user community is educated in these
methodologies and the concepts under-
lying them. Concurrency education

4 Thomsen [1995], Milner et al. [1992], Sangiorgi
[1992], and Nielson and Nielson [1994].

620 • R. Cleaveland

ACM Computing Surveys, Vol. 28, No. 4, December 1996

should start in the undergraduate cur-
riculum. Moreover, as aptly pointed out
in Rosenberg [1995], concurrency,
whether we recognize it or not, pervades
many areas of computer science (e.g.,
hardware, operating systems, lan-
guages, compilers, and algorithms) and
an undergraduate well versed in concur-
rency basics will be better prepared for
these courses.

Challenge. Introduce a course on
concurrency basics into the official ACM
Undergraduate Computer Science Cur-
riculum by the year 2000.

An undergraduate course on concur-
rency basics (a course entitled “Concur-
rency Theory” may sound too intimidat-
ing) should include coverage of the
following essential concepts.

—What is concurrency? provide basic
definition and show how this concept
pervades the undergraduate com-
puter science curriculum.

—State transition systems: structural
(graph isomorphism) versus behav-
ioral (bisimilarity, language equiva-
lence) equivalence.

—Systems specification: CCS [Milner
1989], CSP [Hoare 1985], Petri nets
[Reisig 1985], statecharts [Harel
1987].

—From syntax to state transition sys-
tems: structural operational seman-
tics [Plotkin 1981], compositionality,
refinement.

—Requirements specification: finite exe-
cutions and invariant assertions; infi-
nite executions, fairness, and tempo-
ral assertions [Manna and Pnueli
1991].

—Requirements verification: model
checking, proof checking, behavioral
relation checking.

—Case studies: choose sampling of ap-
plications from the undergraduate
computer science curriculum, for ex-
ample, circuit design and avoidance of
race conditions (hardware), mutual
exclusion (operating systems), concur-
rency control (database systems), par-
allel prefix computation (algorithms).

4. CONCLUSIONS

We have outlined the current state of
the art in concurrency research and pro-
posed strategic directions and chal-
lenges for further investigation. We
hope that we have convinced the reader
that the field of concurrency is thriving.
Mature theories and models exist; spec-
ification, design, and verification meth-
ods and tools are under active develop-
ment; many successful applications of
substantial complexity have been car-
ried out and the potential for further
and more sophisticated application is
enormous.

The future of computing is interactive
and networked. Consequently the role
of concurrency theory, which aims at
understanding the nature of interac-
tion, will continue to grow.

An active mailing list for the field can
be subscribed to by sending email to
concurrency@cwi.nl.

ACKNOWLEDGMENTS

This report has benefited from helpful
comments from Chris Hankin, Michael
Loui, Jack Stankovic, and Peter Weg-
ner.

REFERENCES

ABRAMSKY, S. 1996. Retracing some paths in
process algebra. In Proceedings of CONCUR
’96—Seventh International Conference on
Concurrency Theory, Lecture Notes in Com-
puter Science, Vol. 1119, (Pisa, Italy, Aug.) U.
Montanari and V. Sassone, Eds., Springer-
Verlag, Berlin, New York, 1–17.

ABRAMSKY, S., GAY, S., AND NAGARAJAN, R.
1996. Specification structures and proposi-
tions-as-types for concurrency. In Logics for
Concurrency: Structure vs. Automata, F.
Moller and G. Birtwistle, Eds. Lecture Notes
in Computer Science, Vol. 1043, (Banff, Can-
ada, Aug) Springer-Verlag. Berlin, New York,

ACETO, L., BLOOM, B., AND VAANDRAGER, F. W.
1994. Turning SOS rules into equations. Inf.
Comput. 111, 1 (May), 1–52.

ALPERN, B. AND SCHNEIDER, F. B. 1985. Defining
liveness. Inf. Process. Lett. 21, 181–185.

ALUR, R. AND DILL, D. 1994. The theory of
timed automata. TCS 126, 2.

ALUR, R. AND HENZINGER, T. A. 1996a. Computer
Aided Verification (CAV ’96), Lecture Notes in

Concurrency Research • 621

ACM Computing Surveys, Vol. 28, No. 4, December 1996

Computer Science, Vol. 1102, (New Brunswick,
NJ, July) Springer-Verlag. Berlin, New York.

ALUR, R. AND HENZINGER, T. A. 1996b. Reactive
modules. In Proceedings of the Eleventh IEEE
Symposium on Logic in Computer Science,
IEEE Computer Society, Washington, DC,
207–218.

ANDERSEN, H. R. 1994. Model checking and
Boolean graphs. Theor. Comput. Sci. 126, 1.

BAETEN, J. C. M. AND WEIJLAND, W. P.
1990. Process Algebra. Cambridge Tracts in
Theoretical Computer Science 18. Cambridge
University Press, New York.

BAETEN, J. C. M., BERGSTRA, J. A., AND KLOP, J.
W. 1993. Decidability of bisimulation
equivalence for processes generating context-
free languages. J. ACM 40, 653–682.

BARR, M. 1979. *-Autonomous Categories, Lec-
ture Notes in Mathematics, Vol. 752, Springer-
Verlag. Berlin, New York.

BERNHOLTZ, O., VARDI, M. Y., AND WOLPER, P.
1994. An automata-theoretic approach to
branching-time model checking. In Computer
Aided Verification (CAV ’94), Lecture Notes in
Computer Science, D. L. Dill, Ed., Vol. 818,
(Stanford, CA, June) Springer-Verlag, Berlin,
New York. 142–155.

BERRY, G. AND GONTHIER, G. 1992. The ESTEREL
synchronous programming language: design,
semantics, implementation. Science of Com-
puter Programming 19, 2 (Nov.), 87–152.

BEST, E., DEVILLERS, R., AND HALL, J. G.
1992. The Petri box calculus: A new causal
algebra with multilabel communication. In
Advances in Petri Nets 1992, G. Rozenberg,
Ed., Lecture Notes in Computer Science, Vol.
609, Berlin, New York. Springer-Verlag, 21–
69.

BEZEM, M. AND GROOTE, J. F. 1993. A formal
verification of the alternating bit protocol in
the calculus of constructions. Logic Group
Preprint Series 88, Dept. of Philosophy, Utre-
cht University, March.

BHAT, G., CLEAVELAND, R., AND GRUMBERG, O.
1995. Efficient on-the-fly model checking for
CTL*. In Tenth Annual Symposium on Logic
in Computer Science (LICS ’95) (San Diego,
July), Computer Science Press, New York,
388–397.

BROOKES, S. D., HOARE, C. A. R., AND ROSCOE, A.
W. 1984. A theory of communicating se-
quential processes. J. ACM 31, 3 (July), 560–
599.

BROWNE, M. C., CLARKE, E. M., AND GRUMBERG, O.
1988. Characterizing finite Kripke struc-
tures in propositional temporal logic. Theor.
Comput. Sci. 59, 1,2, 115–131.

BURCH, J. R., CLARKE, E. M., MCMILLAN, K. L.,
DILL, D. L., AND HWANG, L. J. 1992.
Symbolic model checking 1020 states and be-
yond. Inf. Comput. 98, 2 (June), 142–170.

CARRIERO, N. AND GELERNTER, D. 1989. Linda in
context. Commun. ACM, 32, 4 (April), 444–
458.

CHANDY, K. M. AND MISRA, J. 1988. Parallel
Program Design. A Foundation. Addison-Wes-
ley, Reading, MA.

CLARKE, E. M., EMERSON, E. A., AND SISTLA, A.
P. 1986. Automatic verification of finite-
state concurrent systems using temporal logic
specifications. ACM Trans. Program. Lang.
Syst. 8, 2, 244–263. Lecture Notes in Com-
puter Sci. Vol. 697.

CLARKE, E. M., FILKORN, T., AND JHA, S.
1993. Exploiting symmetry in model checking.
In Computer Aided Verification (Elounda,
Greece, June), C. Courcoubetis, Ed., Springer-
Verlag, Berlin, New York, 450–462.

CLARKE, E. M., GRUMBERG, O., HIRAISHI, H., JHA,
S., LONG, D. E., MCMILLAN, K. L., AND NESS, L.
A. 1995. Verification of the Future1 cache
coherence protocol. Formal Methods Syst. Des.
6, 217–232.

CLEAVELAND, R. AND STEFFEN, B. U. 1993. A
linear-time model checking algorithm for the
alternation-free modal mu-calculus. Formal
Methods Syst. Des. 2, 121–147.

CLEAVELAND, R., MADELAINE, E., AND SIMS, S.
1995. A front-end generator for verification
tools. In Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS
’95), (Aarhus, Denmark, May), E. Brinksma,
R. Cleaveland, K. G. Larsen, and B. Steffen,
Eds., Lecture Notes in Computer Science, Vol.
1019, Springer-Verlag, Berlin, New York,
153–173.

CLEAVELAND, R., PARROW, J., AND STEFFEN, B. U.
1993. The Concurrency Workbench: A se-
mantics based tool for the verification of con-
current systems. ACM Trans. Program. Lang.
Syst. 1, 15, 36–72.

DAWS, C. AND YOVINE, S. 1995. Two examples of
verification of mutirate automata using KRO-
NOS. In Sixteenth Annual IEEE Real-Time
Systems Symposium (Pisa, Italy, Dec.), Com-
puter Society Press, 66–75.

DE BAKKER, J. W., HUIZING, C., DE ROEVER,W.-P.,
AND ROZENBERG, G. 1992. Proceedings of
REX Workshop on Real-Time: Theory in Prac-
tice. Lecture notes in Computer Science, vol.
600, (Mook, the Netherlands, June 1991)
Springer-Verlag, Berlin, New York.

DE NICOLA, R. AND HENNESSY, M. 1984. Testing
equivalences for processes. Theor. Comput.
Sci. 34, 83–133.

DIJKSTRA, E. W. 1968. Cooperating sequential
processes. In Programming Languages, Aca-
demic Press, London, 43–112. Originally ap-
peared as Tech. Rep. EWD-123, Technical
University of Eindhoven, the Netherlands,
1965.

EMERSON, E. A. AND HALPERN, J. Y. 1986.
‘Sometime’ and ‘not never’ revisited: On

622 • R. Cleaveland

ACM Computing Surveys, Vol. 28, No. 4, December 1996

branching versus linear time temporal logic.
J. ACM 33 1, 151–178.

EMERSON, E. A. AND SISTLA, A. P. 1993.
Symmetry and model checking. In Computer-
Aided Verification (CAV ’93), C. Courcoubetis,
Ed., Springer-Verlag, Berlin, New York, 463–
478.

FOCARDI, R. AND GORRIERI, R. 1995. A classifica-
tion of security properties for process alge-
bras. J. Comput. Sec. 3, 1, 5–33.

FRANCEZ, N. 1986. Fairness. Springer-Verlag,
Berlin, New York.

GABRIEL, K. J. 1995. Engineering microscopic
machines. Sci. Am. (Sept.).

GERBER, R. AND LEE, I. 1994. A resource-based
prioritized bisimulation for real-time systems.
Inf. Comput. 113, 1 (Aug.), 102–142.

VAN GLABBEEK, R. J. 1990. Comparative concur-
rency semantics and refinement of actions.
Ph.D. Thesis, Free University of Amsterdam,
1990. Available through URL http://theory.
stanford.edu/;rvg/thesis.html.

VAN GLABBEEK, R. J. 1993. Full abstraction in
structural operational semantics. In Proceed-
ings of the Third AMAST Conference,
(Twente, The Netherlands, June), M. Nivat,
C. Rattray, T. Rus, and G. Scollo, Eds. Work-
shops in Computing, Springer-Verlag, Berlin,
New York, 77–84.

VAN GLABBEEK, R. J. AND PLOTKIN, G.
1995. Configuration structures. In Logic in
Computer Science, IEEE Computer Society,
Washington, DC, 199–209.

VAN GLABBEEK, R. J., SMOLKA, S. A., AND STEFFEN,
B. 1995. Reactive, generative, and strati-
fied models of probabilistic processes. Inf.
Comput. 121, 1 (Aug.), 59–80.

GROOTE, J. F. AND VAANDRAGER, F. W.
1992. Structured operational semantics and
bisimulation as a congruence. Inf. Comput.
100, 2 (Oct.), 202–260.

GROSSMAN, R. L., NERODE, A., RAVN, A. P., AND
RISCHEL, H., Eds. 1993. Hybrid Systems,
vol. 736, (Lyngby, Denmark, Oct. 1992) Lec-
ture Notes in Computer Science, Springer-
Verlag. Berlin, New York.

GUPTA, V. AND PRATT, V. R. 1993. Gates accept
concurrent behavior. In Proceedings of the
Thirty-Fourth Annual IEEE Symposium on
Foundations of Computer Science, (Nov.), 62–
71.

HALBWACHS, N. 1993. Synchronous Program-
ming of Reactive Systems. Kluwer Academic,
Boston, MA.

HALPERN, J. AND MOSES, Y. 1990. Knowledge
and common knowledge in a distributed envi-
ronment. J. ACM 37, 3 (July), 549–587.

HALPERN, J. AND ZUCK, L. 1992. A little knowl-
edge goes a long way: Knowledge-based deri-
vations and correctness proofs for a family of
protocols. J. ACM 39, 3 (July), 449–478.

HANSSON, H. A. 1994. Time and Probability in
Formal Design of Distributed Systems, Real-
Time Safety Critical Systems, Vol. 1, Elsevier,
Amsterdam.

HAREL, D. 1987. Statecharts: A visual formal-
ism for complex systems. Sci. Comput. Pro-
gram. 8, 231–274.

HAREL, D., LACHOVER, H., NAAMAD, A., PNUELI, A.,
POLITI, M., SHERMAN, R., SHTULL-TRAURING,
A., AND TRAKTENBROT, M. 1990. Statemate:
A working environment for the development
of complex reactive systems. IEEE Trans.
Softw. Eng. 16, 4 (April), 403–414.

HEIMDAHL, M. AND LEVESON, N. 1996.
Completeness and consistency in hierarchical
statebased requirements. IEEE Trans. Softw.
Eng. SE-22, 6, 363–377.

HENNESSY, M. 1988. Algebraic Theory of Pro-
cesses. MIT Press, Cambridge, MA.

HENNESSY, M. AND MILNER, R. 1985. Algebraic
laws for nondeterminism and concurrency. J.
ACM 32, 1, 137–161.

HENZINGER, T. A., HO, P.-H., AND WONG-TOI, H.
1995. HyTech: The next generation. In Six-
teenth Annual IEEE Real-Time Systems Sym-
posium, (Pisa, Italy, Dec.), Computer Society
Press, 56–65.

HOARE, C. A. R. 1985. Communicating Sequen-
tial Processes. Prentice-Hall, London.

HOLZMANN, G., PELED, D., AND PRATT, V.
R. 1996. Partial-Order Methods in Verifi-
cation (POMIV ’96). DIMACS Series in Dis-
crete Mathematics and Computer Science.
American Mathematical Society, Providence,
RI.

INMOS INTERNATIONAL 1988. OCCAM-2 Reference
Manual, Prentice-Hall International, Engle-
wood Cliffs, NJ.

JAGANNATHAN, S. AND WEEKS, S. 1994. Analyz-
ing stores and references in a parallel sym-
bolic language. In ACM Conference on LISP
and Functional Programming, 294–305.

JONES, C. B. 1992. The search for tractable
ways of reasoning about programs. Tech. Rep.
TR UMCS-92-4-4, Department of Computer
Science, University of Manchester, 1992.
Available through URL http://www.cs-
.man.ac.uk/csonly/cstechrep/Abstracts/UMCS-
92-4-4.html.

KAHN, G. 1974. The semantics of a simple lan-
guage for parallel programming. In Informa-
tion Processing 74, J. L. Rosenfeld, Ed.,
North-Holland, Amsterdam.

KAHN, G. AND MACQUEEN, D. B. 1977. Corou-
tines and networks of parallel processes. In
Information Processing 77, North-Holland,
Amsterdam, 993–998.

KALTENBACH, M. 1996. Interactive verification
exploiting program design knowledge: A
model checker for UNITY. PhD thesis, Uni-
versity of Texas, Austin. Available through

Concurrency Research • 623

ACM Computing Surveys, Vol. 28, No. 4, December 1996

URL http://www.cs.utexas.edu/users/markus/
diss.html.

KANELLAKIS, P. C. AND SHVARTSMAN, A. A.
1992. Efficient parallel algorithms can be
made robust. Distrib. Comput. 5, 4, 201–217.

KANELLAKIS, P. C. AND SMOLKA, S. A. 1990. CCS
expressions, finite state processes, and three
problems of equivalence. Inf. Comput. 86, 1
(May), 43–68.

KELLER, R. 1976. Formal verification of parallel
programs. Commun. ACM 19, 7 (July), 371–
384.

KOZEN, D. 1983. Results on the propositional
mu-calculus. Theor. Comput. Sci. 27, 333–
354.

LAMPORT, L. 1977. Proving the correctness of
multiprocess programs. IEEE Trans. Softw.
Eng. SE-3, 2, 125–143.

LAMPORT, L. 1980. The “Hoare logic” of concur-
rent programs. Acta Inf. 14, 21–37.

LARSEN, K. G. AND SKOU, A. 1992. Bisimulation
through probabilistic testing. Inf. Comput. 94,
1, (Sept.), 1–28.

LIN, H. 1991. PAM: A process algebra manipu-
lator. In Computer Aided Verification (CAV
’91), (Aalborg, Denmark, July), Lecture Notes
in Computer Science, K. G. Larsen and A.
Skou, Eds., Vol. 575, Springer-Verlag, Berlin,
New York, 136–146.

LYNCH, N. A. AND TUTTLE, M. R. 1989. An intro-
duction to input/output automata. CWI Quar-
terly 2, 3 (Sept.), 219–246.

MANNA, Z. AND PNUELI, A. 1991. The Temporal
Logic of Reactive and Concurrent Systems:
Specification. Berlin, New York, Springer-
Verlag.

MANNA, Z. AND PNUELI, A. 1995. Temporal Veri-
fication of Reactive Systems: Safety. Springer-
Verlag, Berlin, New York.

MARGARIA, T. AND STEFFEN, B. 1996. Tools and
Algorithms for the Construction and Analysis
of Systems (TACAS ’96) (Passau, Germany,
March), Lecture Notes in Computer Science,
Vol. 1055, Springer-Verlag, Berlin, New York.

MAZURKIEWICZ, A. 1987. Trace theory. In Petri
Nets: Applications and Relationships to Other
Models of Concurrency, Advances in Petri Nets
1986, Part II; Proceedings of an Advanced
Course (Bad Honnef, Sept.), W. Brauer, W.
Reisig, and G. Rozenberg, Eds., Lecture Notes
in Computer Science, Vol. 255, Springer-Ver-
lag, Berlin, New York, 279–324.

MIFSUD, A., MILNER, R., AND POWER, J.
1995. Control structures. In Proceedings of
Tenth Annual IEEE Symposium on Logic in
Computer Science, (San Diego, CA, June)
IEEE Computer Society Press, Los Alamitos,
CA, 188–198.

MILNER, R. 1980. A calculus of communicating
systems. Lecture Notes in Computer Science,
Vol. 92, Springer-Verlag, Berlin, New York.

MILNER, R. 1989. Communication and Concur-
rency. International Series in Computer Sci-
ence. Prentice-Hall, Englewood Cliffs, NJ.

MILNER, R. 1993. Action calculi, or syntactic ac-
tion structures. In Proceedings of the Nine-
teenth MFCS, Lecture Notes in Computer Sci-
ence, Vol. 711, Springer-Verlag, Berlin, New
York, 105–121.

MILNER, R., TOFTE, M., AND HARPER,
R. 1990. The Definition of Standard ML.
MIT Press, Cambridge, MA.

MONTANARI, U. AND ROSSI, F. 1996. Graph re-
writing and constraint solving for modelling
distributed systems with synchronization. In
Proceedings of COORDINATION ’96, (Cesana,
Italy, April) Lecture Notes in Computer Sci-
ence, Vol 1061. P. Ciancarini and C. Hankin,
Eds. Springer-Verlag, Berlin, New York.

NIELSON, F. AND NIELSON, H. R. 1993. From
CML to process algebras. In Proceedings of
CONCUR ’93—Fourth International Confer-
ence on Concurrency Theory. Lecture Notes in
Computer Science, Vol. 715, Springer-Verlag,
Berlin, New York.

NIELSON, H. R. AND NIELSON, F. 1994. Higher-
order concurrent programs with finite com-
munication topology. In Proceedings of the
Twenty-First Annual ACM SIGPLAN-SI-
GACT Symposium on Principles of Program-
ming Languages, (Portland, OR, Jan.) ACM
Press, New York, 84–97.

NIERSTRASZ, O. 1990. Viewing objects as pat-
terns of communicating agents. In Proceed-
ings of ECOOP/OOPSLA ’90; European Con-
ference on Object-Oriented Programming/
Object-Oriented Programming Systems,
Languages and Applications, SIGPLAN Not.
25, 10, 38–43.

OLDEROG, E.-R. 1991. Nets, Terms and Formu-
las: Three Views of Concurrent Processes and
their Relationship. Cambridge Tracts in Theo-
retical Computer Science 23. Cambridge Uni-
versity Press, New York.

OWICKI, S. AND GRIES, D. 1976. An axiomatic
proof technique for parallel programs. Acta
Inf. 6, 319–340.

OWRE, S., RUSHBY, J., AND SHANKAR, N.
1992. PVS: A prototype verification system.
In Eleventh International Conference on Auto-
mated Deduction (CADE) (Saratoga Springs,
NY, June), D. Kapur, Ed., Lecture Notes in
Artificial Intelligence, Vol. 607, Springer-Ver-
lag, Berlin, New York, 748–752.

PAIGE, R. AND TARJAN, R. E. 1987. Three parti-
tion refinement algorithms. SIAM J. Comput.
16 6 (Dec.), 973–989.

PELEG, D. 1987. Concurrent dynamic logic. J.
ACM 34, 2 (April), 450–479.

PETRI, C. A. 1962. Kommunikation mit Auto-
maten. Schriften des IIm 2, Institut für In-
strumentelle Mathematik, Bonn, 1962. En-
glish translation available as Communication

624 • R. Cleaveland

ACM Computing Surveys, Vol. 28, No. 4, December 1996

with Automata, Tech. Rep. RADC-TR-65-377,
Vol. 1, Suppl. 1, Applied Data Research,
Princeton, NJ, 1966.

PIERCE, B. C. AND TURNER, D. N. 1995.
Concurrent objects in a process calculus. In
Theory and Practice of Parallel Programming,
(Sendai, Japan, April), Lecture Notes in Com-
puter Science, Vol. 907, Springer-Verlag, Ber-
lin, New York.

PLOTKIN, G. D. 1981. A structural approach to
operational semantics. Tech. Rep. DAIMI FN-
19, Computer Science Department, Aarhus
University.

PNUELI, A. 1977. The temporal logic of pro-
grams. In Eighteenth IEEE Symposium on
Foundations of Computer Science, Computer
Society Press, Los Alamitos, CA, 46–57.

PNUELI, A. AND SIFAKIS, J. 1995. Special Issue
on Hybrid Systems of Theoretical Computer
Science 138, 1 (Feb), Elsevier Science Publish-
ers.

PRATT, V. R. 1986. Modeling concurrency with
partial orders. Int. J. Parallel Program. 15, 1,
33–71.

PRATT, V. R. 1995. The Stone gamut: A coordi-
natization of mathematics. In Logic in Com-
puter Science, IEEE Computer Society, Los
Alamitos, CA, 444–454.

QUEILLE, J. P. AND SIFAKIS, J. 1982.
Specification and verification of concurrent
systems in Cesar. In Proceedings of the Inter-
national Symposium in Programming (Ber-
lin), Lecture Notes in Computer Science, Vol.
137, Springer-Verlag, Berlin, New York.

REISIG, W. 1985. Petri Nets—An Introduction.
EATCS Monographs on Theoretical Computer
Science, Vol. 4. Springer-Verlag, Berlin, New
York.

REPPY, J. H. 1992. High-order concurrency.
Ph.D. Thesis, Cornell University, 1992. Also
Cornell University Computer Science Dept.
Tech. Report 92–1285.

ROSCOE, A. W. 1994. Model checking CSP. In A
Classical Mind: Essays in Honor of C. A. R.
Hoare. Prentice-Hall International, Engle-
wood Cliffs, NJ.

ROSCOE, A. W. 1995. CSP and determinism in
security modelling. In Proceedings of the 1995
IEEE Symposium on Security and Privacy,
IEEE Computer Society Press, Los Alamitos,
CA, 114–127.

ROSENBERG, A. L. 1995. Thoughts on parallel-
ism and concurrency in computing curricula.
ACM Comput. Surv. 27, 2 (June), 280–283.

ROY, V. AND DE SIMONE, R. 1990. Auto/Auto-
graph. In Computer Aided Verification (CAV
’90) (Piscataway, NJ, June), E. M. Clarke and
R. P. Kurshan, Eds. DIMACS Series in Dis-
crete Mathematics and Theoretical Computer
Science, Vol. 3, American Mathematical Soci-
ety, Providence, RI, 235–250.

SANGIORGI, D. 1992. Expressing mobility in pro-
cess algebras: First-order and higher-order
paradigms. Ph.D. Thesis, University of Edin-
burgh, Edinburgh, Scotland.

SASTRY, S., MEYER, G., TOMLIN, C., LYGEROS, J.,
GODBOLE, D., AND PAPPAS, G. 1995. Hybrid
control in air traffic management systems. In
Proceedings of the Thirty-Fourth IEEE Con-
ference on Decision and Control, 1478–1483.

THIAGARAJAN, P. S. 1994. A trace based exten-
sion of linear time temporal logic. In Ninth
Annual Symposium on Logic in Computer Sci-
ence (LICS ’94) (Versailles, France, July),
Computer Society Press, Washington, D. C.,
438–447.

THOMSEN, B. 1995. A theory of higher order
communicating systems. Inf. Comput. 116, 1
(Jan.), 38–57.

THOMSEN, B., LETH, L., AND KUO, T.-M. 1996. A
Facile tutorial. In Proceedings of CONCUR
’96—Seventh International Conference on
Concurrency Theory, (Pisa, Italy), Lecture
Notes in Computer Science, Vol. 1119, Spring-
er-Verlag, Berlin, New York, 278–298.

VARDI, M. AND WOLPER, P. 1986. An automata-
theoretic approach to automatic program ver-
ification. In Symposium on Logic in Computer
Science (LICS ’86) (Cambridge, MA, June),
Computer Society Press, 332–344.

WINSKEL, G. 1987. Petri nets, algebras, mor-
phisms, and compositionality. Inf. Comput.
72, 197–238.

WINSKEL, G. 1989. An introduction to event
structures. In REX School and Workshop on
Linear Time, Branching Time and Partial Or-
der in Logics and Models for Concurrency
(Noordwijkerhout, The Netherlands, May/
June), Lecture Notes in Computer Science,
Vol. 354, J. W. de Bakker, W. P. de Roever,
and G. Rozenberg, Eds., Springer-Verlag, Ber-
lin, New York, 364–397.

WINSKEL, G. AND NIELSEN, M. 1995. Models for
concurrency. In Handbook of Logic in Com-
puter Science, Vol. 4, S. Abramsky, D. Gab-
bay, and T. S. E. Maibaum, Eds. Oxford Uni-
versity Press, New York, 1–148.

Concurrency Research • 625

ACM Computing Surveys, Vol. 28, No. 4, December 1996

