
Strategic Directions in Constraint Programming
PASCAL VAN HENTENRYCK

Brown University, Providence, RI ^pvh@cs.brown.edu&

VIJAY SARASWAT ET AL.1

AT&T Research, 600 Mountain Avenue 2A-430, Murray Hill, NJ 07974

1. INTRODUCTION

A constraint can be thought of intu-
itively as a restriction on a space of
possibilities. Mathematical constraints
are precisely specifiable relations
among several unknowns (or variables),
each taking a value in a given domain.
Constraints restrict the possible values
that variables can take, representing
some (partial) information about the
variables of interest. For instance, “The
second side of a sheet of a paper must
be imaged 9000 milliseconds after the
time at which the first side is imaged,”
relates two variables without precisely
specifying the values they must take.
One can think of such a constraint as
standing for (a possibly infinite) set of
values, in this case the set {^0, 9000&,
^1500, 10500&, . . .}.

Constraints arise naturally in most
areas of human endeavor. They are the
natural medium of expression for for-
malizing regularities that underlie the
computational and (natural or designed)
physical worlds and their mathematical
abstractions, with a rich tradition going
back to the days of Euclidean geometry,
if not earlier. For instance, the three
angles of a triangle sum to 180 degrees;
the four bases that make up DNA
strands can only combine in particular

orders; the sum of the currents flowing
into a node must equal zero; the trusses
supporting a bridge can only carry a
certain static and dynamic load; the
pressure, volume, and temperature of
an enclosed gas must obey the “gas
law”; Mary, John, and Susan must have
different offices; the relative position of
the scroller in the window scroll-bar
must reflect the position of the current
text in the underlying document; the
derivative of a function is positive at
zero; the function is monotone in its
first argument, and so on. Indeed, whole
subfields of mathematics (e.g., theory of
Diophantine equations, group theory)
and many celebrated conjectures of
mathematics (e.g., Fermat’s Last Theo-
rem) deal with whether certain con-
straints are satisfiable.

Constraints naturally enjoy several
interesting properties. First, as previ-
ously remarked, constraints may specify
partial information—a constraint need
not uniquely specify the value of its
variables. Second, they are additive:
given a constraint c1, say, X 1 Y $ Z,
another constraint c2 can be added, say,
X 1 Y # Z. The order of imposition of
constraints does not matter; all that
matters at the end is that the conjunc-
tion of constraints is in effect. Third,

1 Contributors to this article include Alan Borning, Alex Brodsky, Philippe Codognet, Rina Dechter,
Mehmet Dincbas, Eugene Freuder, Manuel Hermenegildo, Joxan Jaffar, Simon Kasif, Jean-Louis
Lassez, David McAllester, Ken McAloon, Alan Mackworth, Ugo Montanari, William Older, Jean-
Francois Puget, Raghu Ramakrishnan, Francesca Rossi, Gert Smolka, and Ralph Wachter.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and / or a fee.
© 1996 ACM 0360-0300/96/1200–0701 $03.50

ACM Computing Surveys, Vol. 28, No. 4, December 1996

http://crossmark.crossref.org/dialog/?doi=10.1145%2F242223.242279&domain=pdf&date_stamp=1996-12-01

constraints are rarely independent; for
instance, once c1 and c2 are imposed it
is the case that the constraint X 1 Y 5
Z is entailed. Fourth, they are nondirec-
tional: typically a constraint on (say)
three variables X, Y, Z can be used to
infer a constraint on X given constraints
on Y and Z, or a constraint on Y given
constraints on X and Z, and so on. Fifth,
they are declarative: typically they
specify what relationship must hold
without specifying a computational pro-
cedure to enforce that relationship. Any
computational system dealing with con-
straints must fundamentally take these
properties into account.

Constraint programming (CP) is the
study of computational systems based
on constraints. It represents a harness-
ing of the centuries-old notions of anal-
ysis and inference in mathematical
structures with several modern con-
cerns: general languages for computa-
tional representation, efficiency of anal-
ysis and implementation, and tolerance
for useful (albeit incomplete) algorithms
(tied perhaps to “weak” methods such as
search), all in the service of design and
implementation of systems for program-
ming, modeling, and problem-solving in
different domains. As discussed in the
next section, work in this area can be
traced back to research in artificial in-
telligence and computer graphics in the
1960s and 1970s that focused on explic-
itly representing and manipulating con-
straints in computational systems. Only
in the last decade, however, has there
emerged a growing realization that
these ideas provide the basis for a pow-
erful approach to programming, model-
ing, and problem solving, and that dif-
ferent efforts to exploit these ideas can
be unified under a common conceptual
and practical framework.

The basic essence of this framework is
the separation of concerns into levels.
The first level is that of very generally
defined constraint systems—systems of
inference with pieces of partial informa-
tion based on such fundamental opera-
tions as constraint propagation, entail-
ment, satisfaction, normalization, and

optimization. In addition to the tradi-
tional constraint systems that have al-
ready been investigated over centuries
(such as over the real numbers, integers
modulo p), CP focuses on a wide variety
of systems (arising often from applica-
tion concerns) ranging from “unstruc-
tured” finite domains to equations over
trees (term-unification) to temporal in-
tervals. Increasing attention is being
paid to discovering efficient techniques
for performing these constraint opera-
tions across wide classes of such con-
straint systems and to discovering com-
mon exploitable structures across
constraint systems.

Operating around this level is the sec-
ond programming-language level, which
allows the user to specify more informa-
tion about which constraints should be
generated, how they should be com-
bined and processed, and so on. Perhaps
unique to CP are modeling languages
that exploit logic-based control con-
structs [e.g., constraint logic program-
ming (CLP) or concurrent constraint
programming (CCP)]. These languages
interact with the first level purely via
the basic constraint operations. This
provides the user with a very expressive
framework (parametric in the underly-
ing constraint system) for generating,
manipulating, and testing constraints,
while (in the case of the logic-based
languages) preserving their declarative
character. This realization of unified
frameworks has simultaneously been
accompanied by the implementation of
several general systems that are finding
widespread use in applications as di-
verse as modeling physical systems and
controlling robots to scheduling con-
tainer ships in harbors.

This central organizational idea has
many ramifications. What emerges is a
general declarative framework poten-
tially more promising than either full
first-order logic (which is expressive,
but undecidable in theory and usually
inefficient in practice) or restricted ver-
sions such as the Horn clause subset
that underlie logic programming (which
are usually efficient in practice, but not

702 • P. Van Hentenryck et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

expressive enough for many applica-
tions). For what is fundamentally ac-
knowledged is that different computa-
tional techniques (constraint-solving
algorithms) will be useful in different
computational contexts—and a uniform
scheme is provided for integrating these
techniques into a powerful computa-
tional framework. For the theoretician,
metatheorems can be proved (and anal-
ysis techniques invented) once and for
all that apply to an infinite family of
systems; for the implementer, different
constructs (backward chaining, back-
tracking, suspension) can be imple-
mented once and for all; for the user,
only one set of ideas needs to be under-
stood, although with rich (albeit disci-
plined) variation (via constraint sys-
tems).2

Today CP is contributing exciting new
research directions in a number of dis-
tinct areas, such as artificial intelli-
gence (natural language understanding,
scheduling, planning, configuration,
etc.), concurrent computing, database
systems, graphical interfaces, hardware
verification, operations research and
combinatorial optimization, program-
ming language design and implementa-
tion, reactive systems, and symbolic
computing algorithms and systems. The
field is being driven both by a need for
internal organization and structure and
by the demands of the increasingly so-
phisticated real-world applications to
which it is being applied.

The state of the art in CP is reported
in international conferences on Princi-
ples and Practice of Constraint Pro-
gramming (PPCP) [Montanari and

Rossi 1995b; Freuder 1986] and Practi-
cal Applications of Constraint Technol-
ogy (PACT), and in the recently estab-
lished journal, Constraints. Work
continues to be reported in the confer-
ences and journals of related areas such
as artificial intelligence, logic program-
ming, databases, and operations re-
search. Interested readers may find re-
lated surveys in Van Hentenryck
[1991], Frühwirth et al. [1992], and Jaf-
far and Maher [1994].

The rest of this paper is organized as
follows. First we develop some back-
ground on the origin of constraint pro-
gramming. The state of the art in the
application of constraint ideas in vari-
ous fields is then discussed. Finally we
identify some key strategic directions
for further development.

2. THE ORIGINS OF CONSTRAINT
PROGRAMMING

Some of the earliest ideas leading to CP
may be found in the artificial intelli-
gence (AI) area of constraint satisfac-
tion, dating back to the 1960s and
1970s. The pioneering works on net-
works of constraints were motivated
mainly by problems arising in the field
of picture processing [Montanari 1970;
Waltz 1975]. In these works, constraints
were explicitly represented as binary
compatibility matrices and the goal was
to develop efficient polynomial algo-
rithms that could discover incompatibil-
ities by looking at just a few con-
straints. This can greatly speed up the
subsequent phase in which one or all
solutions are to be found via backtrack-
ing. In picture processing, these algo-
rithms sometimes eliminated most in-
feasible picture interpretations, for
example, those allowed by each con-
straint alone but not by a conjunction of
a small subset. In some cases this phase
results in just one (the only one) alter-
native being left, thus eliminating
backtracking completely [Waltz 1975].
The main algorithms developed in those
years were related to achieving (var-
iations of) arc- or path-consistency

2 From a methodological point of view, it is impor-
tant to realize that not all researchers in CP work
across both of these levels. Some prefer to exploit
the unifying framework of constraints while work-
ing purely within the first level of constraint
systems, considering issues around programming
to be orthogonal to their concerns. Others exploit
the unifying framework of constraints to develop
programming language notions, while not paying
attention to the properties of particular constraint
systems. Some focus on fruitfully exploiting the
synergy across the boundary between the two
levels.

Constraint Programming • 703

ACM Computing Surveys, Vol. 28, No. 4, December 1996

[Montanari 1970; Mackworth 1977;
Mackworth and Freuder 1985] (see Sec-
tion 3.1). The former finds (and elimi-
nates) values from variables’ domains
that are incompatible with some con-
straint concerning that variable,
whereas the latter eliminates pairs of
values that are allowed according to a
given constraint c but not if one looks at
a chain (a path) of constraints starting
and ending at the same points as c. In
other words, one can say that these
algorithms propagate the information
given by one constraint to other con-
straints.

In these systems, there was still no
notion of constraint programming;
rather, the problem was modeled di-
rectly via sets of constraints that were
solved using an algorithm. (Mention
must also be made of the remarkably
prescient systems REF-ARF [Fikes
1968] and ALICE [Lauriere 1978]. Both
provided simple but very useful con-
straint languages for specifying search
problems, and solved them using cus-
tomized constraint solvers with embed-
ded propagation and search techniques.)
However, we see later that many con-
straint-based computational frame-
works counted on these algorithms and
results to achieve simple and efficient
implementations.

Early application areas for con-
straints were interactive graphics and
circuit modeling and diagnosis. The first
of these systems was Ivan Sutherland’s
[1963] Sketchpad, developed in the
early 1960s. Sketchpad was an interac-
tive graphics application that allowed
the user to draw and manipulate con-
strained geometric figures on the com-
puter’s display. It included the concepts
of a constraint as a declarative relation
enforced by the computer, of local prop-
agation constraint solvers, and of multi-
ple cooperating solvers. A subsequent
(similar) system, ThingLab [Borning
1981], included a facility for compiling
constraint satisfaction plans, allowing
constraints to be re-satisfied rapidly for
changing inputs. EL [Stallman and
Sussman 1977] was an early constraint-

based circuit analysis program. The
concepts developed here led to a variety
of other systems and languages, includ-
ing Steele’s [1980] constraint language,
perhaps the first explicit effort at de-
signing a programming language based
on constraints.

The main step towards modern con-
straint programming was achieved
when it was noted that logic program-
ming was just a particular kind of con-
straint programming. Logic program-
ming is based on a declarative
computational paradigm in which a pro-
gram is a logic theory and each compu-
tation step solves a system of term
equations via the unification algorithm.
Its declarative nature made it already
close to the idea of constraints, which
indeed state what has to be satisfied but
not how. Moreover, the use of a back-
tracking search to find the answer to a
given query is also very similar to the
standard backtracking procedures usu-
ally used for solving constraint prob-
lems. However, what really counted was
the observation that term equations are
just constraints of a special type and
that thus the unification algorithm is
just a special kind of constraint-solving
algorithm [Lassez et al. 1988]. This has
led to the definition of a general frame-
work called constraint logic program-
ming (CLP) [Jaffar and Lassez 1987]
that has all the features of logic pro-
gramming but is parametric with re-
spect to the kind of constraints used
within the language. Moreover, it has
also brought fundamental changes in
areas that were extensively based on
equational term rewriting, like compu-
tational logic, since researchers in that
area realized that they could switch to a
more powerful and expressive paradigm
by moving from term equalities to con-
straints [Jouannaud 1994].

Although the CLP scheme immedi-
ately gave rise to languages such as
CLP(R) [Jaffar et al. 1992] and Prolog
III [Colmerauer 1990], it took the prac-
tical experience of application-oriented
research to link CLP to the propagation
algorithms developed earlier in AI. The

704 • P. Van Hentenryck et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

language CHIP [Van Hentenryck 1989;
Dincbas et al. 1988] realized that exten-
sive use of early ideas on propagation
was necessary at both the language and
the implementation levels to make CLP
languages useful for solving large com-
binatorial problems (which is usually
the task in constraint solving). Thus the
language was equipped with the possi-
bility of defining a domain for each vari-
able, and propagation algorithms (mainly
achieving arc-consistency) were used to
reduce the search for a solution. Facili-
ties for controlling the generation of
constraints (forward rules, conditionals,
annotations) were provided, although
without a clear declarative foundation.
This is even more so in recently devel-
oped languages such as cc(fd) [Van Hen-
tenryck et al. 1995], where constraint
propagation methods can be specified in
the language. In this way, the underly-
ing constraint solver can be tailored to
the users’ needs, achieving the so-called
glass-box approach (Section 3.7.1).

But constraints in CLP-like lan-
guages showed their power not only to
model and solve combinatorial prob-
lems, but also to prune the search dur-
ing the computation and thus speed up
the execution of a program. This also
was a fundamental point, since until
then constraints were seen mostly as a
knowledge-representation tool rather
than as a way to guide computations
and prune uninteresting branches.

Another step towards a more general
notion of constraint programming came
from the area of concurrent logic pro-
gramming. Concurrent logic program-
ming had already shown that it pro-
vided a beautiful, elegant, and powerful
notation for concurrent programming,
based on the so-called “process” reading
of definite clause programs [Shapiro et
al. 1989].3 However, the field was ham-
pered in part by the lack of a clear
logical analysis of the synchronization
mechanisms introduced into such lan-

guages primarily via operational no-
tions. Maher [1987] provided a break-
through with his analysis that
entailment lay at the heart of the syn-
chronization mechanisms. On this ba-
sis, Saraswat [1993] developed the sim-
ple but general concurrent constraint
(CC) programming framework, which
views computation as arising from the
activities of agents that communicate
via a shared set of variables on which
they can either impose (“tell”) or test
(“ask”) for the presence of some con-
straint. The decoupling of this notion of
constraint-based computation from defi-
nite clause programming made possible
the introduction of techniques of process
algebra for the further conceptual devel-
opment of the framework (including the
introduction of indeterminacy, etc.). On
the one hand, CC programs without
asks (and with “angelic” nondetermin-
ism) can be viewed as CLP programs,
and CC programs with constraints re-
stricted to term equations are just con-
current logic programs. However, CC
provides a general declarative frame-
work for concurrency encompassing and
extending data-flow languages, languages
based on “residuation,” [Aït-Kaci and
Podelski 1993] and concurrent func-
tional languages. For the CC paradigm
was based on another fundamentally
novel observation: that constraints can
be used not only to state and solve com-
binatorial problems, but also to specify
process communication and synchroni-
zation in a general way. The definition
of the CC framework also gave an im-
portant impetus to the development of
new semantics for such languages that
exploit the coexistence of constraints
and concurrency in order to be more
informative and prove more interesting
properties. Examples are the semantics
based on traces and closure operators
[De Boer and Palamidessi 1991; Saras-
wat et al. 1991] and those based on
truly concurrent models such as Petri
nets [Montanari and Rossi 1995a;
Gupta et al. 1996].

Languages based directly upon the
CC idea are Oz [Smolka 1995], AKL

3 Another important thread woven into the work
on concurrency was the study of “delay primitives”
in languages such as Prolog-II and Mu/Nu-Prolog.

Constraint Programming • 705

ACM Computing Surveys, Vol. 28, No. 4, December 1996

[Haridi and Janson 1990], and partly,
CIAO [Hermenegildo et al. 1994]. How-
ever, the CC framework has to be seen
more as a theoretical environment in
which new ideas and computational
models are defined formally and their
theoretical power understood, rather
than as a real language. For example,
the languages cc(fd) previously dis-
cussed are based on the idea of (partial)
arc-consistency as closure operators,
which arose from the study of the CC
semantics.

The two-level architecture of con-
straint programming is also suited for
embedding constraints in more conven-
tional languages, as demonstrated by
the 2LP system (which embeds a sim-
plex-based solver into a C-like lan-
guage) and ILOG Solver, a successful
commercial system that embeds many
of the ideas and flavor of CLP but as a
C11 class library for finite domain con-
straints.

Among all the constraint languages
that have been implemented, it is safe
to say that those most widely used to-
day are those based on the CLP frame-
work (but not necessarily using a CLP-
like syntax). In fact, these have proven
to be successful in many application ar-
eas such as resource management and
resource allocation. In particular, on
benchmark operations research (OR)
problems such as job-shop scheduling,
these techniques have led to great per-
formance improvements.

3. CONSTRAINT PROGRAMMING TODAY

This section contains an overview of the
developments in constraint program-
ming in various subfields. For each sub-
field, we discuss the main contributions,
the applications, and the open issues
and directions. The overlap of interests
in various subfields will thereby be ap-
parent; we also attempt to emphasize
the particular foci of interest that each
subfield brings to the table.

3.1 Constraint Programming in Artificial
Intelligence

AI research has contributed to consider-
able progress in constraint-based rea-
soning. Powerful algorithms perform or-
ders of magnitude better than more
naive approaches on difficult combina-
torial problems. Considerable attention
has been paid to tractability issues:
identifying easy classes of problems and
generating distributions of problem in-
stances that are hard. Insights into
problem structure have supported and
connected these research avenues.

Growing interest in applications has
motivated increasing interest in repre-
sentation issues. For example, attention
is being paid to overconstrained systems
[Jampel et al. 1996], where preferences
must be expressed. Modeling is emerg-
ing as a major challenge: automating
the formulation of real problems in a
suitable form for efficient algorithmic
processing.

The classic AI constraint paradigm is
the constraint satisfaction problem
(CSP). It consists of a set of problem
variables, each associated with a do-
main of values, and a set of constraints.
Each of the constraints is expressed as
a relation, defined on some subset of
variables, denoting the consistent value
assignments that satisfy the constraint.
Often a problem is posed as a constraint
network, with variables corresponding
to nodes and constraints corresponding
to arcs connecting variables occurring in
the same constraint.

A solution is an assignment of a value
to each variable such that all the con-
straints are satisfied. Typical tasks are
to determine whether a solution exists,
to find one or all solutions, to find
whether a partial instantiation can be
extended to a full solution, and to find
an optimal solution relative to a given
cost function. Constraints can be de-
scribed by explicitly presenting the con-
sistent or inconsistent value combina-
tions, or by mathematical expressions
or computable procedures that specify
these combinations. Often, restrictions

706 • P. Van Hentenryck et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

are placed on the paradigm, for exam-
ple, finite discrete domains or binary
constraints (involving two variables),
but increasingly, real-world problems
are pushing towards extensions.

Algorithms. In general, the tasks
posed in the constraint satisfaction
problem paradigm are computationally
intractable (NP-hard). Over the last two
decades, a great deal of theoretical and
experimental research has been focused
on developing algorithms for solving
constraint satisfaction problems and on
identifying restricted subclasses that
are tractable [Dechter 1992; Mackworth
1992; Tsang 1993].

Techniques for processing constraints
can be classified roughly as inference or
search, and these approaches interact.
Inference methods (such as the path
and arc-consistency techniques de-
scribed in the following) enforce various
forms of local consistency that add in-
ferred problem constraints, which can
prune away inconsistent values and
build up partial solutions. These meth-
ods are perhaps the distinguishing con-
tribution of AI to constraint reasoning.
Search methods divide into two broad
classes, those that traverse the space of
partial solutions (or partial value as-
signments) and those that explore the
space of complete value assignments (to
all the variables) stochastically.

Consistency inference. Consistency-
enforcing or constraint propagation al-
gorithms4 transform a given constraint
network into an equivalent, yet more
explicit network by deducing new con-
straints to be added onto the network.
Intuitively, a consistency-enforcing al-
gorithm makes any partial solution of a
small subnetwork extensible to some
surrounding network. For example, an
arc-consistency algorithm (Section 2)
ensures that any legal value in the do-
main of a single variable has a legal
match in the domain of any other single

variable. Path consistency ensures that
any consistent solution to a two-vari-
able subnetwork is extensible to any
third variable, and, in general, i-consis-
tency algorithms guarantee that any lo-
cally consistent instantiation of i 2 1
variables is extensible to any ith vari-
able. When a network of n variables is
n-consistent it is said to be globally
consistent, meaning that a solution can
be assembled in a backtrack-free man-
ner in any variable ordering. Consis-
tency-enforcing algorithms can be used
to preprocess a problem to prune subse-
quent search, or they can be applied
during search. By themselves, these al-
gorithms are, in essence, approximation
algorithms that frequently can decide
inconsistency.

Systematic search. The most com-
mon algorithm for performing system-
atic search is backtracking. Backtrack-
ing incrementally attempts to extend a
partial solution that specifies consistent
values for some of the variables, to-
wards a complete solution, by repeat-
edly choosing a value for another vari-
able consistent with the values in the
current partial solution. When exten-
sion is impossible the algorithm “backs
up” to make alternative choices. Im-
provements of backtracking algorithms
have focused on the two phases of the
algorithm: moving forward (lookahead
schemes) and backtracking (lookback
schemes) [Dechter 1990; Kondrak and
van Beek 1995].

When moving forward to extend a
partial solution, some consistency infer-
ence can be carried out to prune the
remaining problem space and help de-
cide which variable and value to choose
next [Haralick and Elliot 1980]. These
methods, which vary in the strength of
constraint inference (propagation), try
to find a cost-effective balance between
pruning and overhead.

Lookback schemes are invoked when
the algorithm encounters a dead end.
These schemes perform two functions:
decide how far to backtrack by analyz-
ing the reasons for the dead end, a

4 Montanari [1970], Mackworth [1977], Freuder
[1978], Mackworth and Freuder [1985], Dechter
and Pearl [1987].

Constraint Programming • 707

ACM Computing Surveys, Vol. 28, No. 4, December 1996

process often referred to as backjump-
ing, [Gaschnig 1979]; and record the
reasons for the dead end in the form of
new constraints so that the same con-
flicts will not arise again. Terms used to
describe this idea are constraint record-
ing and no-good learning [Dechter 1990;
Stallman and Sussman 1977].

The order in which variables are in-
stantiated (search order) can have an
enormous effect on the cost of finding a
solution. An algorithm must choose in
which order to process variables, values,
and constraints. Often some form of the
“fail-first principle” (which chooses the
most constrained variable first) is em-
ployed in an attempt to prune large
portions of the search space by failing
high up in the backtrack search tree
(e.g., Haralick and Elliot [1980]).

Stochastic search. In the last few
years, greedy local search strategies
have been reintroduced into the satisfi-
ability and constraint satisfaction liter-
ature. These algorithms incrementally
alter inconsistent value assignments to
all the variables. They use a “repair” or
“hill-climbing” metaphor to move to-
wards more and more complete solu-
tions [Minton et al. 1992]. To avoid get-
ting stuck at “local maxima” they are
equipped with various heuristics for
randomizing the search or for dynami-
cally changing the guiding criterion
function by constraint weighting. Al-
though these methods can often be spec-
tacularly successful, their stochastic na-
ture generally voids the guarantee of
completeness provided by the system-
atic methods and thus, in particular,
prevents a proof of unsatisfiability or
optimality. Analyzing the power of
these methods and understanding how
to integrate them into a general CP
framework are challenging research
topics.

Structure-driven algorithms. Prob-
lem structure can be characterized and
exploited at the micro level (the struc-
ture of the constraints) and the macro
level (the structure of the constraint
network) [Dechter 1992; Freuder 1994].

Many structure-driven techniques
emerged from the topological character-
ization of tractable problems described
in the next section. Various graph-based
techniques whose complexities are tied
to graph parameters were identified.
Even when the macro structure of the
original problem does not have a char-
acterized tractable structure (e.g. a tree
structure), we may still take advantage
of tractability results. For example,
tree-clustering transforms a problem
into a tree-structured metaproblem
whose variables are subproblems of the
original problem, and the cycle-cutset
method extracts a tree-structured sub-
problem from the original problem
[Dechter 1992]. The micro structure can
be exploited by, for example, developing
specific consistency-enforcing algorithms
for specific classes of constraints, or re-
moving values that are redundant be-
cause they participate in the same solu-
tions (e.g., see Section 3.7.1).

Structure-driven algorithms such as
variable elimination, clustering, and
conditioning can be applied across many
areas of reasoning such as satisfiability,
solution of linear inequalities, belief as-
sessment and belief maximization in
Bayes networks, combinatorial optimi-
zation, and planning under uncertainty
[Dechter and van Beek 1995].

Tractability. The identification of
polynomially recognizable restrictions
that are sufficient to ensure tractability
is important from both the theoretical
and the practical points of view and has
been extensively studied over the last
two decades. Most tractable classes
were recognized by realizing that en-
forcing low-level consistency (in polyno-
mial time) guarantees global consis-
tency or backtrack-free search (e.g.,
Freuder [1982] and Dechter and Pearl
[1987]).

The basic network structure that sup-
ports tractability is a generalized tree
structure. This has been observed re-
peatedly from different perspectives in
constraint theory [Mackworth and
Freuder 1993; Dechter 1992], complex-

708 • P. Van Hentenryck et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

ity theory, and database theory. In par-
ticular, enforcing arc consistency in a
network having a tree structure ensures
global consistency along some ordering.

Tractable classes characterized at the
micro level have exploited ideas such as
tight domains and tight constraints,
row-convex networks, implicational con-
straints, and max-ordered constraints.
These classes justify the intuition that
problems having large domains and
higher arity constraints are generally
harder. The investigation of classes of
constraints that ensure tractability in
whichever way they are combined has
related tractability to algebraic closure
properties of the constraints [Jeavons et
al. 1996].

Finally, special classes of constraints
associated with temporal reasoning
have received much attention in the last
decade. Tractable classes include sub-
sets of Allen’s [1983] (qualitative) inter-
val algebra, as well as quantitative bi-
nary linear inequalities over the reals,
of the form X 2 Y # a [Dechter et al.
1991]. The focus in the AI community
(in contrast to OR) is on handling new
types of queries and on combining such
constraints with qualitative constraints.

Generating hard instances. Another
theme that has received great interest
recently is locating the “really hard”
problems [Cheeseman et al. 1991]. It
turns out that when problems are gen-
erated randomly, most of them are very
easy. Consequently, special care is
needed in selecting the random genera-
tor if nontrivial problems are to be pro-
duced. It has recently been demon-
strated that most random generators
have a phase transition from easy to
hard, where hard distributions are lo-
cated wherever only few solutions exist.

Applications. The previously de-
scribed algorithms serve as general-pur-
pose inference engines for accomplish-
ing tasks modeled as constraint
satisfaction problems. Many tasks are
naturally so modeled:

—reasoning tasks including default rea-
soning, abduction, causal reasoning,
diagnostic reasoning, temporal rea-
soning, and spatial reasoning;

—cognitive tasks including machine vi-
sion, natural language processing,
and planning; and

—task domains including scheduling,
resource allocation, configuration,
and design.

3.2 Constraint Programming in Databases

The importance of constraints in the
context of databases has been recog-
nized for a long time. For instance, in
SQL/92, the current standard for SQL,
simple arithmetic constraints can be
used in defining queries and assertions
(which are a form of “integrity con-
straint,” i.e., conditions that must be
satisfied by a database instance). The
use of arithmetic constraints for seman-
tic query optimization and optimization
of SQL queries involving constraints
has been extensively investigated.

The area of constraint databases
(CDBs), in which constraints are inte-
grated as a basic data type, has
emerged recently, prompted by the sem-
inal work of Kanellakis et al. [1995].
Constraint databases naturally extend
relational, deductive, or object-oriented
databases by making feasible the use of
constraints to represent possibly infi-
nite but finitely representable complex
data. This has turned out to be natural
for many application domains, since
constraints possess great modeling
power. Constraints serve as a highly
uniform data type for conceptual repre-
sentation of heterogeneous data, includ-
ing spatial and temporal behavior, com-
plex design requirements, and partial
and incomplete information.

For example, arithmetic constraints
over real variables within a subset of
first order logic can describe a wide
variety of data, including 2D or 3D geo-
graphic maps; geometric modeling ob-
jects for CAD/CAM; fields of vision of
sensors; 4D (3 1 1 for time) trajectories
of objects moving in 3D space, based on

Constraint Programming • 709

ACM Computing Surveys, Vol. 28, No. 4, December 1996

the movements equations; translation of
different systems of coordinates; opera-
tions research type models such as
manufacturing patterns describing in-
terconnections among quantities of
manufactured products and resource
materials.

The notion of constraint data relies on
a simple and fundamental duality: a
constraint (formula) f in free variables
x1, . . . , xn is interpreted as a set of
tuples (a1, . . . , an) over the scheme
x1, . . . , xn that satisfy f. Conversely, a
finitely representable relation over the
scheme (x1, . . . , xn) can be viewed as a
constraint. For example, a constraint
(24 # w # 4) ∧ (21 # z # 2) with
variables ranging over reals is inter-
preted as the set {(w, z)u(24 # w # 4) ∧
(21 # z # 2)} and describes, say, the
rectangle shape of a desk given in its
local system of coordinates (w, z). Users
can intuitively think of a constraint as
an object in space (i.e., space of points)
or as a symbolic expression, inter-
changeably, depending on the applica-
tion and context of its use. We use a
generic name constraint object in the
context of databases.

A constraint object is usually repre-
sented by a collection of atomic con-
straints, such as real polynomial, lin-
ear, or dense order, and their logical
combinations. Constraint objects are
manipulated by means of a constraint
calculus/algebra involving logical opera-
tions such as quantification, conjunc-
tion, disjunction, negation, and implica-
tion. If we only use linear constraint
over reals within first-order logic, we
can express any linear transformation
such as rotation, translation, and
stretch; check convexity, discreteness,
and boundedness; compute convex hull,
augment objects, change coordinate sys-
tems, and so on.

Thus constraint objects can be manip-
ulated by a very expressive and general-
purpose language, as opposed to using
separate custom operators for each spe-
cific type of transformations (as done
typically in extensible or spatial data-
base systems). For many useful con-

straint domains, query languages ma-
nipulating constraint objects are highly
optimizable, in terms of indexing and
filtering (e.g., Brodsky et al. [1995],
Kanellakis et al. [1993], and Srivastava
[1992]), and constraint algebra algo-
rithms and global optimization (e.g.,
Brodsky et al. [1993] and Goldin and
Kanellakis [1996]). Examples of imple-
mented constraint databases are Gross-
Brunschwiler [1996] and Byon and
Revesz [1995].

Although the use of constraints as
data is a central feature in constraint
databases, an important contribution of
the field is the technology that has been
developed with regard to the use of con-
straints for optimizing evaluation of da-
tabase queries. The idea of storing con-
straints as tuples in the database (so-
called magic template tuples) and using
this information to prune the search
during database query evaluation was
first proposed in Ramakrishnan [1988].
The idea was refined in Balbin et al.
[1989] and Mumick et al. [1990] to allow
constraint propagation without actually
storing constraints in the database, for
the case of nonrecursive SQL queries,
by careful repositioning of the con-
straints in a query. This prompted a
series of work on the repositioning of
constraints in (recursive and nonrecur-
sive) database queries for the purpose of
optimization, such as pushing con-
straint selections in Srivastava and Ra-
makrishnan [1992] and Levy et al.
[1994] or finding redundant parts of
evaluation trees using query constraints
in Levy and Sagiv [1992].

The promise of the emerging con-
straint database work is that it will
provide a uniform framework for the
declarative and efficient querying of
symbolically represented data. Develop-
ing custom tools for specific applications
usually requires considerable program-
ming effort, and yields products that are
not easy to change and may not perform
overall optimizations that interleave da-
tabase, mathematical programming,
and computational geometry manipula-
tion techniques. Existing DBMS do not

710 • P. Van Hentenryck et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

handle constraints as stored data, and
CLP implementation techniques need to
be developed to deal with large amounts
of persistent data.

The work of Hansen et al. [1989] con-
sidered polynomial equality constraints
as rules, taking advantage of their adi-
rectionality. Kanellakis et al. [1995]
proposed a framework for integrating
abstract constraints into database
query languages by providing a number
of design principles, and studied, mostly
in terms of expressiveness and complex-
ity, a number of specific instances. A
restricted form of linear constraints,
called linear repeating points, was used
to model infinite sequences of time
points (e.g., Kabanza et al. [1990]).
More recent works on deductive data-
bases (e.g., Mumick et al. [1990]) con-
sidered manipulation and repositioning
of constraints for optimizing recursion.
Algorithms for constraint algebra opera-
tors such as constraint joins, and ge-
neric global optimization were studied
in Brodsky et al. [1993]. The work of
Kanellakis et al. [1993] proposed an ef-
ficient data structure for secondary
storage suitable for indexing con-
straints that achieves not only the opti-
mal space and time complexity as prior-
ity search trees, but also full clustering.
The work of Brodsky et al. [1995] pro-
posed an approach to achieve the opti-
mal quality of constraint and spatial
filtering. A number of works consider
special constraint domains: integer-or-
der constraints [Revesz 1993]; set con-
straints [Revesz 1995]; dense-order con-
straints [Grumbach and Su 1995].
Linear constraints over reals have
drawn special attention.5 The use of
constraints in spatial database queries
was addressed in Paredaens et al.
[1994]. The work of Srivastava et al.
[1994] used constraints to describe in-
complete information. Constraint aggre-
gation was studied in Kuper [1993].

3.3 Constraint Programming in User
Interfaces

Constraint programming has a long his-
tory of use in graphics and user inter-
faces, beginning with the Sketchpad
system [Sutherland 1963]. Common ap-
plications of constraints in user inter-
face construction include layout and
other kinds of geometric constraints,
maintaining consistency between appli-
cation data and a view on those data,
keeping multiple views consistent, ani-
mation, and providing semantic feed-
back.

Supporting interactive user interfaces
places a number of demands on con-
straint satisfaction algorithms that may
not arise in other application areas. The
algorithms must be fast—in a typical
interactive application, the constraints
must be re-satisfied each time the
screen is refreshed while moving some
part. State and state change are also
fundamental in these applications, as
geometric objects are moved on the
screen, windows are reshaped, and so
forth. We typically also require the algo-
rithm to provide specific values for vari-
ables rather than symbolic solutions,
since the graphical elements must be
shown in some location.

Two classes of algorithms in common
use for user interface (UI) applications
are one-way constraint algorithms and
multi-way local propagation algorithms.
In a one-way algorithm, each constraint
has a distinguished output variable that
the solver can set to satisfy that con-
straint; the other variables are only ref-
erenced by the constraint. For example,
if c is the output variable in the con-
straint a 1 b 5 c, the solver can update
c to satisfy the constraint if a or b
changes. A multi-way local propagation
constraint includes a collection of meth-
ods for satisfying that constraint. For
example, the a 1 b 5 c constraint
would have three methods: a 4 c 2 b,
b 4 c 2 a, and c 4 a 1 b, which can be
used to find a value for a, b, or c that
satisfies the constraint. Examples of
user interface toolkits using one-way

5 See Afrati et al. [1994], Brodsky et al. [1993],
Grumbach et al. [1995], and Vandeurzen et al.
[1995].

Constraint Programming • 711

ACM Computing Surveys, Vol. 28, No. 4, December 1996

constraints include Amulet [Myers
1996] and its predecessor Garnet; exam-
ples of multi-way local propagation al-
gorithms include DeltaBlue [Sannella et
al. 1993], SkyBlue [Sannella 1995], and
QuickPlan [Vander Zanden 1996].
(These multi-way algorithms all also
support constraint hierarchies [Borning
et al. 1992; Jampel et al. 1996], which
allow both required and preferential
constraints. Constraint hierarchies are
useful in such common UI tasks as spec-
ifying which parts of a figure we prefer
to leave fixed while moving some other
part.)

Some algorithms allow for cycles of
constraints (e.g., simultaneous equa-
tions) and inequalities, neither of which
is supported by traditional local propa-
gation algorithms. Examples include
QOCA [Helm et al. 1992], which solves
simultaneous linear equations and in-
equality constraints while optimizing a
quadratic expression, Bramble [Gleicher
1995] and Juno-2 [Heydon and Nelson
1994] which use numerical solvers, In-
digo [Borning et al. 1996], an interval
propagation algorithm for inequality
constraints, and DETAIL [Hosobe et al.
1996] and Ultraviolet [Borning and
Freeman-Benson 1995], both of which
are hybrid algorithms supporting both
local propagation and cycle solvers.

3.4 Constraint Programming in Operations
Research

Operations research is a vast field rep-
resented by departments in major uni-
versities and industrial settings around
the world. The field of OR has signifi-
cant overlap with AI, branch-and-bound
search being a classic example, tabu
search and simulated annealing being
somewhat more recent examples. CP is
a much smaller but emergent discipline
that is situated at the confluence of
computer science (CS), AI, and OR.

A principal area of intersection of CP
with OR is the field of NP-hard combi-
natorial problems. What most distin-
guishes OR approaches to these prob-
lems is the consistent use of continuous

methods based on linear programming.
With this (very successful) method,
known as mixed integer programming,
an application is modeled as a system of
linear constraints on real and integer
variables. To assist in the solution pro-
cess, the model is enhanced with con-
straints known as cuts that tighten the
linear relaxation of the model [Nem-
hauser and Wolsey 1988]. This is often
critical in limiting the amount of search
that is required to find a solution. Gen-
erating the right cuts for a given appli-
cation is a demanding craft that exploits
the mathematical structure of the prob-
lem. The problem-solving process also
requires a linear programming and/or
mixed integer programming library.

On the other hand, in CP the empha-
sis has been less on the mathematical
structure of the particular application
and more on higher-level modeling and
solution methods and tools, and on the
integration of ideas from many different
constraint systems. This has led to lan-
guages based on finite domain solvers
and linear programming solvers, phase
transition analysis of problem difficulty,
algorithmic advances, and the like. It
has also led to the expansion of the OR
arsenal with constraint solving libraries
other than linear and mixed integer
programming libraries.

A classic shared interest of CP and
OR is declarative programming. In fact,
in terms of languages, the interaction
between CP and OR goes back at least
to Lauriere [1978]. The formulation of a
mixed integer program is quintessen-
tially declarative. Moreover, the alge-
braic modeling languages of OR (such
as GAMS, AMPL, AIMMS) provide an
example of a very pure form of declara-
tive programming system. This pro-
gramming paradigm is in evolution and
may well be converging with develop-
ments in the CP world, as declarative
programming systems become more
open to integrating other paradigms. A
case in point is the 2LP language (linear
programming and logic programming),
which is designed to encapsulate a part
of the practice of OR, namely, mixed

712 • P. Van Hentenryck et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

integer programming and extensions
[McAloon and Tretkoff 1997].

Work in OR on discrete optimization
has also contributed to developments in
CP. Indeed, some of the recent success
in CP on scheduling problems can be
traced back to Carlier and Pinson
[1989] on the job shop problem. Con-
versely, the CP work has led to new
algorithms for these and related appli-
cations and to the creation of software
tools to facilitate exploitation of these
techniques.

As computational sciences such as OR
develop more complex methods to deal
with more challenging applications, a
role to be played by CP is to furnish
software tools and concepts to organize
the construction of these systems. To
this effort CP brings some new ideas
and facility with program and language
design that will help bring OR technol-
ogy to a much larger audience. CP sys-
tems are being used commercially in
many application areas, where they
bring competitive advantage to users
over traditional approaches in terms
that often include application develop-
ment ease, quality of solution, and
speed at obtaining this solution. Such
applications are typically in the areas of
scheduling (disjunctive constraints,
task intervals), resource control (cumu-
lative, bottlenecks), transportation (cy-
cle constraints, labeling heuristics), per-
sonnel rostering (sequence constraints),
workforce scheduling (constraint coop-
eration), circuit verification (Boolean
constraints), electromechanical systems
(constraints and finite-state machines,
safety and fairness properties). Some of
these applications are described in the
proceedings of the conferences on “Prac-
tical Applications of Constraint Tech-
nology—PACT.”

3.5 Constraint Programming in
Concurrency

As noted in Section 2, the use of con-
straints as a convenient mechanism for
process communication and synchroni-
zation in a concurrent environment led

to the development of the CC paradigm,
where processes interact by posting and
asking constraints over a shared set of
variables. This very general and elegant
computational paradigm has received a
lot of theoretical and implementation
attention since its conception in 1989.
In fact, the literature shows many se-
mantics efforts that try to adapt either
the interleaving models of process de-
scription algebras to CC [Saraswat
1993; De Boer and Palamidessi 1991] or
the truly concurrent ones of Petri nets
and event structures [Montanari and
Rossi 1995a; Rossi and Montanari
1994]. Other theoretical efforts focus on
the possibility of analyzing CC-like pro-
grams at compile time, thus deriving
properties to be used at run time. This
holds, for example, for the works on
abstract interpretation [Zaffanella
1995; Codognet et al. 1990], which exe-
cute CC programs on an abstract con-
straint domain with the hope of deriv-
ing some useful knowledge for program
simplification, for those on suspension
analysis [Codish et al. 1994], whose aim
is to understand the conditions under
which CC programs deadlock, and for
those on relating CC and CLP lan-
guages [Bueno et al. 1994], which try to
parallelize CLP programs using CC-
based techniques or to sequentialize CC
programs via an analysis of their inher-
ent concurrency.

Languages such as AKL [Haridi and
Janson 1990], Oz [Smolka 1995], and
CIAO [Hermenegildo et al. 1994] are
essentially based on the CC ideas, al-
though they add many features mainly
because of application needs and effi-
ciency. For example, AKL employs a
model of computation based on the so-
called Andorra principles, which basi-
cally leads to executing all deterministic
steps first. Oz is a lexically scoped lan-
guage with first-class procedures, state,
and encapsulated search. CIAO is an
extensible constraint language support-
ing CC-style concurrency and synchro-
nization primitives in combination with
standard CLP programming, as well as
several control rules.

Constraint Programming • 713

ACM Computing Surveys, Vol. 28, No. 4, December 1996

3.6 Constraint Programming in Robotics
and Control Theory

A major challenge facing the constraint
research community is to develop useful
theoretical and practical tools for the
constraint-based design of embedded in-
telligent systems. An archetypal exam-
ple of an application in this class is the
design of controllers for sensory-based
robots.

Many of the tools developed to date in
the CSP and CP paradigms are not ade-
quate for the task, despite the superfi-
cial attraction of the constraint-based
approach. The fundamental difficulty is
that, for the most part, the CSP and CP
paradigms presume an offline model of
computation. But intelligent systems
embedded as controllers in real physical
systems must be designed in an online
model. Moreover, the online model must
be based on various time structures:
continuous, discrete, and event-based.
The requisite online computations, or
transductions, are to be performed over
various type structures including con-
tinuous and discrete domains. These hy-
brid systems require new models of
computation, constraint satisfaction,
and constraint programming. For exam-
ple, Zhang and Mackworth [1994] de-
fined constraint satisfaction as a dy-
namic system process that approaches
asymptotically the solution set of the
given, possibly time-varying, con-
straints. Under this view, constraint
programming is the creation of a dy-
namic system with the required prop-
erty. Many robots can be designed as
online constraint-satisfying devices [Pai
1991; Zhang and Mackworth 1995a]. A
robot in this restricted scheme can be
verified more easily. Moreover, given a
constraint-based specification and a
model of the plant and the environment,
automatic synthesis of a correct con-
straint-satisfying controller becomes
feasible, as shown for a simple ball-
chasing robot in Zhang and Mackworth
[1995b].

Another approach has been developed
recently in Saraswat et al. [1995] and

Gupta et al. [1997] for modeling timed
reactive systems. Reactive systems are
those that react continuously with their
environment at a rate controlled by the
environment. Execution in a reactive
system proceeds in bursts of activity. In
each phase, the environment stimulates
the system with an input, obtains a
response in bounded time, and may
then be inactive (with respect to the
system) for an arbitrary period of time
before initiating the next burst. Exam-
ples of reactive systems are controllers
and signal-processing systems. The
timed concurrent constraint program-
ming (TCC) framework extends CCP by
adopting the synchrony hypothesis of
languages such as ESTEREL: program
control constructs are determinate
primitives that respond instantaneously
to input signals. At any instant the
presence and the absence of signals can
be detected. This is accomplished by
augmenting CCP with two constructs:
first, hence A requires that the pro-
gram A be executed at every time in-
stant from the next time onwards. Next,
a construct if c else A is added requir-
ing A to be triggered if the constraint c
is not enforced now or through quies-
cence. This “nonmonotonic” control con-
struct is motivated by Reiter’s Default
Logic and provides a very powerful and
simple way to formalize the elaborate
synchrony constructs of languages such
as ESTEREL and LUSTRE. The same
ideas have been used to extend CCP to
continuous time, by introducing the no-
tion of autonomous activity [constraints
of the form (d/dt)(X) 5 k which allow a
variable to vary continuously with real
time, independent of stimulus from the
environment] and changing the under-
lying model of time from the integers to
the reals. The resulting framework is
quite simple mathematically and a very
powerful basis for compositional model-
ing [Gupta et al. 1995].

The modeling and design of robotics
systems and embedded control systems
presents a serious challenge and oppor-
tunity for constraint-based theories of
computation.

714 • P. Van Hentenryck et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

3.7 Constraint Systems and Programming
Tools

Despite the youth of the field, a good
number of tools for developing con-
straint programs have become available
and a substantial set of techniques has
been developed to support the efficient
implementation of such programs.

3.7.1 Constraint Domains and Solving
Techniques. A relatively small number
of constraint systems (with their associ-
ated solution techniques) have been
used as a basis for several concrete im-
plementations. The four most important
domains, other than rational trees, are
Boolean constraints, finite domains,
real intervals, and linear constraints;
other examples include lists and finite
sets.

Boolean constraints are either treated
by a specialized constraint solver, as in
CHIP or Prolog III, or seen as a special-
ized case of finite domain constraints.
In the latter, a Boolean is considered as
an integer between 0 (false) and 1
(true), as in CLP(BNR), Prolog IV,
clp(FD), or ILOG Solver. There has also
been work on constraint solving over
more general Boolean algebras.

Finite domain constraints are con-
straints on integer-valued variables.
These constraints are useful in many
application areas. They are usually
solved by combining propagation tech-
niques (such as arc-consistency) with
backtracking search. Each variable is
associated with a finite set of possible
values (possible starting time for an ac-
tivity, possible component for an assem-
bly, possible coworkers for a team mem-
ber, and so on). This set is called the
domain of a variable. Inconsistent val-
ues are removed from the domain of
variables during propagation, and then
search tries to assign a value to each
variable.

The propagation phase is built on a
very simple idea: remove inconsistent
values from the domain of the variables.
For instance, assume that x, y, and z

are three variables with integer values
in the closed interval [1, 10], with the
constraint y , z. We can see that the
value of y is at least 1. Since the con-
straint states that z must be greater
than y, z 5 1 is no longer possible. For
that reason, 1 is removed from the do-
main of z, which becomes [2, 10]. Simi-
larly, the domain of y becomes [1, 9].
The domain of x remains unchanged
since no constraints involve x at this
point. Let us assume now that we add
another constraint, say, x 5 y 1 z. Now
the minimal possible value for y is 1 and
the minimal possible value for z is 2, so
x has to be at least 3. The domain of x is
then reduced to [3, 10]. Furthermore, as
the maximal possible value for x is 10
and the minimal value of y is 1, z, which
is equal to x 2 y, must be at most 8.
Similarly, y, which is equal to x 2 z,
must be smaller than 8.

Real interval constraints are the ana-
logue of finite domains when reals are
considered instead of integers. As it is
impossible to represent explicitly the
set of reals that a variable can take, the
domain of a real variable is an interval
whose bounds are floating-point num-
bers. The techniques for removing in-
consistent values are either similar to
finite-domain techniques (e.g., in
CLP(BNR), Prolog IV, and ILOG Solver)
or are based on mathematical tech-
niques such as automatic differentiation
and Taylor series (as in Newton and
Helios). Real interval constraints usu-
ally include trigonometric and other
nonlinear constraints.

Linear constraints are constraints
posted on real variables that have a
special form: they only involve weighted
sums of variables (no product or more
complex expressions). For such con-
straints, very efficient constraint solv-
ers have been implemented using the
simplex algorithm as a starting point.
Some linear constraint solvers use infi-
nite precision (rational numbers); oth-
ers use floating point computations. The
former are more accurate, whereas the

Constraint Programming • 715

ACM Computing Surveys, Vol. 28, No. 4, December 1996

latter are more efficient. Interior point
methods have been introduced in linear
programming libraries but have not had
an impact on constraint programming
more generally.

“Global” constraints refers to an im-
portant line of work that aims to define
good propagation algorithms for more
complex constraints. The removal of in-
consistent values can be tricky for more
complex constraints. In this context,
scheduling constraints, all-different (a
set of variables takes on values that are
all different), cardinality constraints
(the number of constraints within a set
that must be satisfied is required to be
within given lower and upper bounds),
and spatial constraints have been stud-
ied in detail in the literature. The use of
global constraints is often the key for a
successful application. For instance, in
scheduling, some constraints can be
used to state that a given resource has a
finite capacity, which limits the number
of tasks that can require the resource at
any time. The propagation of such a
constraint requires a sophisticated algo-
rithm adapted from operations research.

User-defined constraints are the re-
sult of one of the lessons learned so far
from the application of CP tools in prac-
tice: that domain-specific constraints
are often needed. In other words, the
user of these systems often needs to
extend the constraint system with some
constraints that are specific to the ap-
plication at hand. Several proposals
have been made for enabling the user to
add domain-specific constraints to the
system and tailor the underlying con-
straint solver (or program a new, spe-
cific solver) to these specific constraints.
This is called the glass-box approach, in
contrast with the original CLP idea of
the constraint solver as a black box.

Building on progress in the area of
concurrent constraint programming,
some languages provide constructs for
defining the propagation of a constraint
within the language (examples are
cc(fd) [Van Hentenryck et al. 1995] and

clp(fd) [Codognet and Diaz 1996]). Oth-
ers propose viewing a constraint as a
Boolean expression. The Boolean vari-
able is true if the constraint is necessar-
ily true (entailed by the other con-
straints), and false if the negation of the
constraint is entailed by the other con-
straints. This makes possible the combi-
nation of constraints with logical opera-
tors (or, not, and), as well as some more
complex constructs such as cardinality
[used, for example, in CLP(BNR), Pro-
log IV, and ILOG Solver]. A related
approach is to define constraints using
a rewrite system, as in the constraint
handling rules solution [Frühwirth
1995]. The promise of such a special-
purpose language for defining con-
straint systems is that properties of a
constraint solver such as termination
and confluence can be tackled indepen-
dently of a particular constraint system.

Yet another approach is to provide
hooks in the parameter-passing mecha-
nism of the language (e.g., within unifi-
cation, for CLP systems) through attrib-
uted variables or meta-terms [Neumerkel
1990; Holzbaur 1992]. This approach is
used extensively in the implementation
of constraint solvers in systems such as
ECLiPSe [European Computer Research
Center 1993], SICStus, and CIAO [Her-
menegildo et al. 1994]. A final approach
is motivated by the need to add support
for global constraints. In that case the
definition of the constraint is done in an
imperative language and linked with
the CP system using an object-oriented
protocol (used in CHARME, ILOG
Solver, Oz, CHIP). This approach, called
the “no-box” approach of Puget and Le-
conte, potentially yields the most effi-
cient implementations, although imply-
ing a higher programming load.

3.7.2 Constraint Programming Tools.
The constraint systems previously dis-
cussed have been integrated into differ-
ent programming languages, ranging
from subsets of first-order logic to im-
perative languages such as C11, or
even specialized languages. One of the

716 • P. Van Hentenryck et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

most popular approaches is to use Horn
clauses as a basis (as in Prolog), and
then extend this with one or more con-
straint systems, in addition to unifica-
tion over Herbrand terms. This con-
straint logic programming approach has
led to many important tools, including
CLP(R) (linear constraints), Prolog III
(Booleans, linear constraints, and lists),
CHIP (Booleans, linear constraints, fi-
nite domains), clp(fd) (finite domains,
Booleans), ECLiPSe (finite domains, lin-
ear constraints), CAL, GDCC, and so
on.

Another popular approach is to embed
CLP techniques in a different host lan-
guage, leading to another set of tools
including the following (for each we in-
dicate both the underlying program-
ming language and the constraint do-
mains supported).

—CHARME: specialized language with
C-like syntax and finite domains

—2LP: C-based language with linear
constraints

—ILOG Solver: C11 library with Bool-
eans, finite domains, real intervals,
and linear constraints

—HELIOS: specialized modeling lan-
guage with real intervals

Finally, a number of systems offer a
concurrent language as the underlying
programming component (concurrent
constraint languages):

—AKL: nondeterministic concurrent
constraint language with finite do-
mains. Supports both CC and CLP
programming styles. Supports paral-
lel execution

—Oz: specialized concurrent multipara-
digm language (object-oriented, higher-
order functional, search) with finite
domains. Support for distributed execu-
tion

—CIAO: extensible concurrent con-
straint logic language with linear con-
straints. Supports CC-style program-
ming within CLP, parallel and
distributed execution, several control
rules, functions

In addition to these and other rela-
tively general-purpose tools, tools spe-
cifically tailored to certain problem
classes have been proposed. For exam-
ple, ILOG Schedule is a tool built using
ILOG Solver functionality and is specif-
ically tailored to solving scheduling
problems while offering a simple, graph-
ical user interface.

3.7.3 Debugging and Visualization
Tools. The development of industrial
applications using early CP systems has
pointed out the need for studying CP-
specific debugging techniques beyond
those traditionally used for imperative
or logic programming systems on which
they are based. Applying traditional
methods, which include standard pro-
gram tracing as well as declarative de-
bugging approaches [Shapiro 1982], of-
ten suffices for developing correct
programs, but understanding the per-
formance of CP programs often requires
additional tools. Proposed solutions in-
clude both compile-time and run-time
techniques. A compile-time technique
that has received some attention is the
static generation and/or checking of as-
sertions. Such assertions can be seen as
a generalization of type systems in
which relatively general preconditions
and postconditions expressed as con-
straints can be declared for procedures.
Assertions can be provided by the user
and/or checked by the compiler (when
possible) via global analysis. Alterna-
tively, they can be generated by the
compiler and the user can inspect them
for errors. In both cases global analysis
techniques and systems similar to those
used by the compiler for optimization
purposes, discussed later in this section,
can be used for these purposes (e.g.,
Garcı́a de la Banda et al. [1997]), as
well as, perhaps, other proof techniques
previously used in logic programming
(e.g., based on induction assertion). A
run-time technique currently receiving
much attention is the use of visualiza-
tion, both of the search space and of the

Constraint Programming • 717

ACM Computing Surveys, Vol. 28, No. 4, December 1996

constraint store at different points of
execution [Meier 1996].

3.8 Constraint Programming Language
Implementation Techniques

Compilers and abstract machines. The
programming component that CP offers
as an essential addition to the con-
straint-solving capabilities is imple-
mented in an efficient way in most cur-
rent CP programming systems via
compilation. In the case of library sys-
tems built on top of conventional pro-
gramming languages (such as, for exam-
ple, ILOG built on top of C11), the
compilation of the control component is
provided by the host language compiler.
In the case of systems that offer a pro-
gramming language, the programming
component is, as mentioned before, very
often offered by a logic-programming-
based language. Compilation is then
generally based, at least conceptually,
on a translation to an abstract machine
instruction set.6 The target abstract
machines used are most often generali-
zations of the Warren Abstract Ma-
chine, which has proven extremely
successful in the context of logic pro-
gramming. The WAM approach essen-
tially provides a view of the compilation
of these languages as a generalization of
the standard techniques used in conven-
tional languages, allowing most of the
conventional optimizations.

Global analysis. As a result of the
compilation-based approach, the perfor-
mance of current systems is quite ac-
ceptable when running code in which
general-purpose constraint solving is
performed. On the other hand, this ap-
proach alone cannot always provide per-
formance in the control component that
is competitive with other languages. In
particular, their performance often does
not reach that of traditional logic pro-
gramming systems in symbolic applica-
tions and is generally far from that of

traditional imperative programming
languages in (nonconstraint-related)
numerical applications. The most gener-
ally accepted solution to this has been
to develop advanced compilation tech-
nology capable of detecting the cases
where limited or no constraint solving is
involved and compiling those cases in
the most efficient way. Some significant
progress has already been made in prac-
tical global analysis and optimization of
constraint logic programming systems.
Results on the possible speedups obtain-
able with global analysis information
have been studied (e.g., Marriott and
Stuckey [1992] and Garcı́a de la Banda
et al. [1996]), practical frameworks for
global analysis have been developed
(e.g., Garcı́a de la Banda et al. [1997]),
and some CP systems have been re-
ported that perform global analysis-
based optimization [Kelly et al. 1996;
Garcı́a de la Banda et al. 1996]. Such
global analysis has also been applied to
concurrent CP systems, where one of
the most important objectives is to re-
duce suspension and resumption of
goals and synchronization overhead.7

Finally, recent progress in incremental
global analysis (e.g., Hermenegildo et
al. [1995]) has the potential to solve
most remaining problems related to
supporting large programs and the use
of global analysis in the interactive pro-
gram development environment that is
common in constraint programming sys-
tems. However, the application of exten-
sive optimization in commercial or
widely used public domain systems still
remains a goal to be achieved. Also,
much research remains to be done in
finding accurate abstraction techniques
for standard constraint systems.

Parallelization. A program optimi-
zation that has shown significant speed-
ups in the context of logic programs is
automatic parallelization [Chassin and
Codognet 1994]. Exploitation of paral-

6 See, for example, Jaffar et al. [1992], Van Hen-
tenryck et al. [1995], Dincbas et al. [1988], and
Codognet and Diaz [1996].

7 See Codish et al. [1993], Falaschi et al. [1993],
Marriott et al. [1994], Bueno et al. [1994], and
Garcı́a de la Banda et al. [1995].

718 • P. Van Hentenryck et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

lelism in the search (or-parallelism) is
comparatively easy and has been shown
to provide speedups in several indus-
trial applications containing extensive
search [Van Hentenryck 1989b; Euro-
pean Computer Research Center 1993;
Li et al. 1993]. On the other hand, com-
paratively little work has been devoted
so far to exploiting parallelism within a
given path of the search (and-parallel-
ism) and in the solver itself. Although
traditional concepts of independence
used in imperative programming (e.g.,
the Bernstein conditions) or even those
of logic programming, do not apply in
the context of CP [Garcı́a de la Banda et
al. 1993], notions of independence ap-
propriate for (concurrent) CP have been
recently proposed [Garcı́a de la Banda
et al. 1993; Bueno et al. 1994]. Based on
this, parallelizing compilers as well as
and-parallel abstract machines for CP
languages have recently become avail-
able, and initial performance results are
encouraging [Garcı́a de la Banda et al.
1996].

4. PROMISING DIRECTIONS

Constraint programming has by now
shown that constraints can be used not
only to represent knowledge but also as
a way to guide search, prune useless
branches, filter queries, and describe
process communication and synchroni-
zation. With this in mind, we identify
several directions for research that are
promising for systems, programming
environments, models, and application
packages.

More realistic constraint systems and
languages. We need to develop more
automatic and systematic ways to ac-
quire and model domain-specific and
problem-specific knowledge, developing
a richer paradigm to cope with the prop-
erties and uncertainties of real-world
information. Of course, representation
and reasoning are always two sides of
the same coin. As we consider new
classes of constraints, we must also con-
sider new methods to compute with

them; automating the modeling process
will itself require capturing some very
sophisticated reasoning skills. More-
over, better theoretical and empirical
understanding is needed of the relation-
ship between real-world problem pa-
rameters and search methods. An im-
portant issue is that of over-constrained
constraint problems [Jampel et al.
1996], since most real-life problems are
indeed over-constrained. Thus either
the constraint domain or the language
itself should be flexible enough to be
able to deal with such situations and
solve them in some satisfactory way.
For example, the constraints and con-
straint-solving algorithms could take
into account the presence of preferences
of some sort [Bistarelli et al. 1995;
Borning et al. 1992; Govindarajan et al.
1996], and/or the language could allow
for user-guided constraint retraction
[Codognet and Rossi 1995; Best et al.
1995] and intelligible explanations for
failure. This of course would bring the
constraint satisfaction and program-
ming tasks closer to the issues present
in optimization problems, since in the
presence of preferences one has to de-
cide the best way to choose and/or re-
tract constraints. Thus special attention
has to be paid to the interrelation be-
tween AI and OR techniques for such
tasks. In particular, we must take ad-
vantage of the coexistence, in the con-
straint satisfaction world, of different
methods (e.g., systematic and stochastic
search) and different disciplines (e.g.,
artificial intelligence and operations re-
search).

Efficient modeling. Constraint satis-
faction knowledge can be represented
very declaratively, without regard to
how it is to be used. However, modeling
a specific problem is not a trivial task,
especially since how it is modeled can
dramatically affect how well our algo-
rithms perform. We need to automate
the process of moving from problem de-
scriptions natural to the problem do-
main to problem descriptions designed
for efficient solution. A variety of prob-

Constraint Programming • 719

ACM Computing Surveys, Vol. 28, No. 4, December 1996

lem-solving techniques are now avail-
able to us, but synthesizing appropriate
algorithms for specific tasks should be
automated [Minton 1996]. In addition,
robust constraint computation must
cope with change in the world and in
models, and with noise (e.g., in data)
and uncertainty (e.g., in parameter val-
ues).

Towards constraint-based distributed
systems. Another challenge for con-
straint programming systems is related
to the role of such systems in network-
wide programming. This type of pro-
gramming is likely to be of growing
importance, given that the recent wider
diffusion of the Internet and the popu-
larity of the World Wide Web (WWW)
protocols are effectively providing a new
platform that is standard and ubiqui-
tous and allows a new class of highly
sophisticated distributed applications.
Features of constraints such as the abil-
ity to describe intra- and inter-process
communication and synchronization are
more and more important in practical
applications that consist of distributed
environments where both local problem
solving and global synchronization and
coordination are needed. This is added
to the fact that many CP systems al-
ready offer many other characteristics
that make them well suited in this con-
text, among them dynamic memory
management, well-behaved structure
and pointer manipulation, robustness,
dynamic compilation to architecture-in-
dependent bytecode, dynamic data-
bases, search facilities, grammars, code
motion, and sophisticated metapro-
gramming. A number of distributed con-
current constraint systems are cur-
rently being worked on, application
development libraries are being offered,
and network and WWW applications are
being reported [Tarau et al. 1996]. It
appears that CP is a promising founda-
tion for most aspects of the next gener-
ation of distributed systems, where all
the advantages of constraints may coex-
ist, and thus lead to simple, elegant,
and practically usable environments.

Another interesting related applica-
tion domain is 3D graphics and virtual
reality. Many interactions among objects
(e.g., attachments, minimal distances,
noncollision, etc.) or general integrity
rules (such as energy conservation laws)
can be considered as constraints and
implemented efficiently as such. This
generalizes 2D geometrical constraints
in an obvious way. Basically, con-
straints can be used to enforce hidden
relations between objects and thus
make sure that the simulated virtual
world does not depart too much from
our real one.

Towards faster, more efficient systems.
The performance and computing re-
source economy of current CP systems
have proved adequate in significant in-
dustrial applications, competing very
favorably with other techniques and ap-
proaches, however, there still remain
many avenues for improvement that
would make the technology even more
competitive. It is expected that improv-
ing execution speed and further reduc-
ing resource consumption will improve
the acceptance of the approach for gen-
eral-purpose programming as well as
encouraging the inclusion of constraint
programming techniques, constructs,
and libraries in conventional languages.
Interesting techniques to be further ex-
plored include advanced compilation
based on global analysis and (automatic)
program and solver parallelization. In
fact, parallelization is becoming more
and more interesting since multipro-
cessing hardware is becoming in many
cases the default installation platform
(e.g., for departmental servers where
multiprocessors using fast, inexpensive,
off-the-shelf processors are often replac-
ing mainframes at a fraction of their
cost). Also, multiprocessor workstations
are not unusual any more. It appears
likely that this trend towards increased
use of parallelism will continue as mul-
tiprocessor architectures are better un-
derstood, interconnection network per-
formance increases with new technologies
(especially if the promise of optical in-

720 • P. Van Hentenryck et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

terconnect is finally delivered), and fea-
ture size diminishes, allowing place-
ment of several processors on the same
chip.

Constraint databases. Many chal-
lenges in constraint databases are yet to
be addressed. Specific directions of work
include: constraint modeling, canonical
forms and algebras; data models and
query languages; indexing and approxi-
mation-based filtering; constraint alge-
bra algorithms and global optimization;
systems and case studies. In addition,
robust, widely available implementa-
tions of these ideas need to be devel-
oped.

User interfaces. In user-interface ap-
plications, there is a constant need for
new constraint-satisfaction algorithms
that can handle a wider range of con-
straints that arise in such applications,
and algorithms and data structures
with improved space and time effi-
ciency.

The development of better (perfor-
mance) debugging techniques and more
useful visualization paradigms for sev-
eral constraint domains and constraint-
solving algorithms also offers an inter-
esting research direction. Currently, at
least one European project is working
on the development of both assertion-
based and visualization-based debug-
ging techniques for CLP systems.

Among the issues that should be ad-
dressed are ways of describing the de-
sired constraints at a higher level of
abstraction (closer to the domain of in-
terest), studying the models users have
of constraint systems, and evolving
those systems as needed to allow clearer
and more easily understood user mod-
els.

ACKNOWLEDGMENTS

We gratefully acknowledge the very valuable and
timely comments from Thomas Frühwirth, John
Hooker, Michael Maher, Catuscia Palamidessi,
Peter Revesz, Mark Wallace, Peter van Beek, and
Roland Yap. Particular thanks to Vineet Gupta
for invaluable last-minute assistance.

REFERENCES

AFRATI, F., COSMADAKIS, S., GRUMBACH, S., AND
KUPER, G. 1994. Linear versus polynomial
constraints in database query languages. In
Proceedings of the International Workshop on
Principles and Practice of Constraint Pro-
gramming, (Orcas Island, WA), vol. 874
LNCS, Springer Verlag, New York, 181–192.

AÏT-KACI, H. AND PODELSKI, A. 1993. Towards a
meaning of LIFE. J. Logic Program. 16, 3&4,
195–234.

ALLEN, J. 1983. Maintaining knowledge about
temporal intervals. Commun. ACM 26, 832–
843.

BALBIN, I., KEMP, D. B., MEENAKSHI, K., AND RA-
MAMOHANARAO, K. 1989. Propagating con-
straints in recursive deductive databases. In
Proceedings of the North American Conference
on Logic Programming.

BEST, E., DE BOER, F. S., AND PALAMIDESSI, C.
1995. Concurrent constraint programming
with information removal. In First Conference
on Concurrent Constraint Programming
(Venice).

BISTARELLI, S., MONTANARI, U., AND ROSSI, F.
1995. Constraint solving over semirings. In
Proceedings of the International Joint Confer-
ence on Artificial Intelligence. Morgan-Kauf-
man, San Mateo, CA.

DE BOER, F. S. AND PALAMIDESSI, C. 1991. A
fully abstract model for concurrent constraint
programming. In Proceedings of the CAAP.
Springer-Verlag.

BORNING, A. 1981. The programming language
aspects of ThingLab, a constraint oriented
simulation laboratory. ACM Trans. Program.
Lang. Syst. 3, 4, 353–387.

BORNING, A., ANDERSON, R., AND FREEMAN-BENSON,
B. 1996. Indigo: A local propagation algo-
rithm for inequality constraints. In Proceed-
ings of the ACM SIGGRAPH Symposium on
User Interface Software and Technology (Seat-
tle, Nov.).

BORNING, A. AND FREEMAN-BENSON, B. 1995.
The OTI constraint solver: A constraint li-
brary for constructing interactive graphical
user interfaces. In Proceedings of the Interna-
tional Conference on Principles and Practice
of Constraint Programming (Cassis, France),
Vol. 976, U. Montanari and F. Rossi, Eds.,
Springer-Verlag, 624–628.

BORNING, A., FREEMAN-BENSON, B., AND WILSON,
M. 1992. Constraint hierarchies. Lisp
Symbol. Comput. 5, 3 (Sept.), 223–270.

BRODSKY, A., JAFFAR, J., AND MAHER, M. J.
1993. Toward practical constraint data-
bases. In Proceedings of the International
Conference on Very Large Data Bases (Dub-
lin).

BRODSKY, A., LASSEZ, C., LASSEZ, J.-L., AND MAHER,
M. J. 1995. Separability of polyhedra for

Constraint Programming • 721

ACM Computing Surveys, Vol. 28, No. 4, December 1996

optimal filtering of spatial and constraint
data. In Proceedings of the ACM Symposium
on Principles of Database Systems. ACM
Press, New York.

BUENO, F., JOSE GARCı́A DE LA BANDA, M., HERME-
NEGILDO, M., MONTANARI, U., AND ROSSI,
F. 1994. From eventual to atomic and lo-
cally atomic CC programs: A concurrent se-
mantics. In Proceedings of the International
Conference on Algebraic and Logic Program-
ming.

BUENO, F., JOSE GARCı́A DE LA BANDA, M., HERME-
NEGILDO, M., ROSSI, F., AND MONTANARI,
U. 1994. Towards true concurrency seman-
tics based transformation between CLP and
CC. In Proceedings of the International Work-
shop on Principles and Practice of Constraint
Programming, (Orcas Island, WA) Vol. 874
LNCS, A. Borning, Ed., Springer-Verlag.

BYON, J.-H. AND REVESZ, P. 1995. Disco: A con-
straint database system with sets. In CONT-
ESSA Workshop on Constraint Databases and
Applications (Sept.).

CARLIER, J. AND PINSON, E. 1989. An algorithm
for solving the job shop problem. Manage. Sci.
35.

CHASSIN, J. AND CODOGNET, P. 1994. Parallel
logic programming systems. Comput. Surv.
26, (3) (Sept.), 295–336.

CHEESEMAN, P., KANEFSKY, B., AND TAYLOR, W.
1991. Where the really hard problems are.
In Proceedings of the International Joint Con-
ference on Artificial Intelligence, 331–337.

CODISH, M., FALASCHI, M., AND MARRIOTT, K.
1994. Suspension analysis for concurrent
logic programs. ACM Trans. Program. Lang.
Syst. 16, (3).

CODISH, M., FALASCHI, M., MARRIOTT, K., AND

WINSBOROUGH, W. 1993. Efficient analysis
of concurrent constraint logic programs. In
Proceedings of the International Colloquium
on Automata, Languages and Programming
(Lund, Sweden, July).

CODOGNET, P. AND DIAZ, D. 1996. Compiling
constraints in clp(fd). J. Logic Program. 27, 3.

CODOGNET, P. AND ROSSI, F. 1995. NMCC pro-
gramming: Constraint enforcement and re-
traction in CC programming. In Proceedings
of the International Conference on Logic Pro-
gramming.

CODOGNET, C., CODOGNET, P., AND CORSINI, M.
1990. Abstract interpretation for concurrent
logic languages. In Proceedings of the North
American Conference on Logic Programming.
MIT Press, Cambridge, MA.

COLMERAUER, A. 1990. An introduction to Pro-
log-III. Commun. ACM 33, (7).

DECHTER, R. 1990. Enhancement schemes for
constraint processing: Backjumping, learning
and cutset decomposition. Artif. Intell. 41,
273–312.

DECHTER, R. 1992. Constraint networks. Ency-
clopedia of Artificial Intelligence, 276–285.

DECHTER, R. AND PEARL, J. 1987. Network-
based heuristics for constraint satisfaction
problems. Artif. Intell. 34, 1–38.

DECHTER, R. AND VAN BEEK, P. 1995. From local
to global relational consistency. In Proceed-
ings of the International Conference on Con-
straint Programming, (Cassis, France) Vol.
976, U. Montanari and F. Rossi, Eds. Springer-
Verlag. A full version to appear in Theor.
Comput. Sci.

DECHTER, R., MEIRI, I., AND PEARL, J. 1991.
Temporal constraint networks. Artif. Intell.
49, 61–95.

DINCBAS, M., VAN HENTENRYCK, P., SIMONIS, H.,
AGGOUN, A., GRAF, T., AND BERTHIER, F.
1988. The constraint logic programming
language CHIP. In Proceedings of the Interna-
tional Conference on Fifth Generation Com-
puter Systems (Tokyo).

EUROPEAN COMPUTER RESEARCH CENTER. 1993.
Eclipse User’s Guide.

FALASCHI, M., GABBRIELLI, M., MARRIOTT, K., AND
PALAMIDESSI, C. 1993. Compositional anal-
ysis for concurrent constraint programming.
In Proceedings of the Annual IEEE Sympo-
sium on Logic in Computer Science, IEEE
Computer Society Press, Los Alamitos, CA,
210–221.

FIKES, R. 1968. A heuristic program for solving
problems stated as nondeterministic proce-
dures. Ph.D. Thesis, Carnegie Mellon Univer-
sity.

FREUDER, E. C. 1978. Synthesizing constraint
expressions. Commun. ACM 21, 11, 958–966.

FREUDER, E. C. 1982. A sufficient condition for
backtrack-free search. J. ACM 29, 1, 24–32.

FREUDER, E. C. 1994. Exploiting structure in
constraint satisfaction problems. In Con-
straint Programming, NATO ASI series, B.
Mayoh, E. Tyugu, and J. Penjam, Eds.,
Springer-Verlag, 51–74.

FREUDER, E. C. 1996. Principles and Practice of
Constraint Programming—CP96. No. 1118 in
LNCS. Springer-Verlag.

FRÜHWIRTH, T. 1995. Constraint handling
rules. In Constraint Programming: Basics and
Trends, A. Podelski, Ed., No. 910 LNCS,
Springer-Verlag, 90–107.

FRÜHWIRTH, T., HEROLD, A., KÜCHENOFF, V., LE
PROVOST, T., AND LIM, P. 1992. Constraint
logic programming—an informal introduction.
In Logic Programming in Action, No. 636
LNCS, Springer-Verlag, 3–35.

GARCı́A DE LA BANDA, M., BUENO, F., AND HERME-
NEGILDO, M. 1996. Towards independent
and-parallelism in CLP. In Proceedings of the
International Symposium on Programming
Language Implementation and Logic Pro-
gramming (Sept.), LNCS. Springer Verlag.

722 • P. Van Hentenryck et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

GARCı́A DE LA BANDA, M., HERMENEGILDO, M.,
BRUYNOOGHE, M., DUMORTIER, V., JANSSENS,
G., AND SIMOENS, W. 1997. Global analysis
of constraint logic programs. ACM Trans. Pro-
gram. Lang. Syst. (to appear).

GARCı́A DE LA BANDA, M., HERMENEGILDO, M., AND

MARRIOTT, K. 1993. Independence in con-
straint logic programs. In Proceedings of the
International Logic Programming Symposium
(Oct.) MIT Press, Cambridge, MA, 130–146.

GARCı́A DE LA BANDA, M., MARRIOTT, K., AND

STUCKEY, P. 1995. Efficient analysis of con-
straint logic programs with dynamic schedul-
ing. In Proceedings of the International Logic
Programming Symposium (Portland, OR,
Dec.), MIT Press, Cambridge, MA.

GASCHNIG, J. 1979. Performance measurement
and analysis of search algorithms. Tech. Rep.
CMU-CS-79-124, Carnegie Mellon University,
Pittsburgh, PA.

GLEICHER, M. 1995. Practical issues in pro-
gramming constraints. In Principles and
Practice of Constraint Programming: The
Newport Papers, V. A. Saraswat and P. Van
Hentenryck, Eds., MIT Press, Cambridge,
MA, 407–426.

GOLDIN, D. Q. AND KANELLAKIS, P. C. 1996.
Constraint query algebras. Constraints.

GOVINDARAJAN, K., JAYARAMAN, B., AND MANTHA,
S. 1996. Optimization and relaxation in
constraint logic languages. In Proceedings of
the ACM Symposium on Principles of Pro-
gramming Languages.

GROSS-BRUNSCHWILER, R. 1996. Implementa-
tion of constraint database system using a
compile-time rewrite approach. Ph.D. Thesis,
ETH.

GRUMBACH, S. AND SU, J. 1995. Dense-order
constraint databases. In Proceedings of the
ACM Symposium on Principles of Database
Systems.

GRUMBACH, S., SU, J., AND TOLLU, C. 1995.
Linear constraint databases. In Proceedings
of the LCC; LNCS (to appear) Springer-Ver-
lag.

GUPTA, V., JAGADEESAN, R., AND SARASWAT, V. A.
1996. Truly concurrent constraint program-
ming. In CONCUR96—Concurrency Theory,
U. Montanari and V. Sassone, Eds., Vol. 1119,
LNCS, Springer-Verlag.

GUPTA, V., JAGADEESAN, R., AND SARASWAT, V. A.
1997. Computing with continuous change.
Sci. Comput. Program. (to appear).

GUPTA, V., JAGADEESAN, R., SARASWAT, V. A., AND

BOBROW, D. G. 1995. Programming in hy-
brid constraint languages. In Hybrid Systems
II, Antsaklis, Kohn, Nerode, and Sastry, Eds.,
Vol. 999 LNCS, Springer Verlag.

HANSEN, M. R., HANSEN, B. S., LUCAS, P., AND VAN

EMDE BOAS, P. 1989. Integrating relational

databases and constraint languages. Comput.
Lang. 14, 2, 63–82.

HARALICK, M. AND ELLIOT, J. 1980. Increasing
tree-search efficiency for constraint satisfac-
tion problems. Artif. Intell. 14, 263–313.

HARIDI, S. AND JANSON, S. 1990. Kernel An-
dorra Prolog and its computational model. In
Proceedings of the International Conference on
Logic Programming, MIT Press, Cambridge,
MA.

HELM, R., HUYNH, T., LASSEZ, C., AND MARRIOTT,
K. 1992. A linear constraint technology for
interactive graphic systems. In Graphics In-
terface ’92, 301–309.

HERMENEGILDO, M., MARRIOTT, K., PUEBLA, G., AND

STUCKEY, P. 1995. Incremental analysis of
logic programs. In International Conference
on Logic Programming, (June), MIT Press,
Cambridge, MA, 797–811.

HERMENEGILDO, M. AND THE CLIP GROUP.
1994. Some methodological issues in the de-
sign of CIAO—a generic, parallel concurrent
constraint system. In Principles and Practice
of Constraint Programming, LNCS 874, May,
Springer-Verlag, New York, 123–133.

HEYDON, A. AND NELSON, G. 1994. The Juno-2
constraint-based drawing editor. Tech. Rep.
131a, DEC Systems Research Center, Palo
Alto, CA.

HOLZBAUR, C. 1992. Metastructures vs. attrib-
uted variables in the context of extensible
unification. In International Symposium on
Programming Language Implementation and
Logic Programming (Aug.), Vol. 631 LNCS,
Springer Verlag, 260–268.

HOSOBE, H., MATSUOKA, S., AND YONEZAWA, A.
1996. Generalized local propagation: A
framework for solving constraint hierarchies.
In Proceedings of the International Conference
on Principles and Practice of Constraint Pro-
gramming, (Boston), E. C. Freuder, Ed., Vol.
1118, Springer-Verlag.

JAFFAR, J. AND LASSEZ, J.-L. 1987. Constraint
logic programming. In Proceedings of the
ACM Symposium on Principles of Program-
ming Languages, ACM, New York.

JAFFAR, J. AND MAHER, M. J. 1994. Constraint
logic programming: A survey. J. Logic Pro-
gram. 19 & 20, 503–581.

JAFFAR, J., MICHAYLOV, S., STUCKEY, P., AND YAP,
R. 1992. An abstract machine for CLP(R).
In Proceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and
Implementation, (San Francisco, June) 128–
139.

JAFFAR, J., MICHAYLOV, S., STUCKEY, P., AND YAP,
R. 1992. The CLP(R) Language and Sys-
tem. ACM Trans. Program. Lang. Syst.

JAMPEL, M., FREUDER, E., AND MAHER, M.
1996. Over-Constrained Systems. LNCS, No.
1106, Springer-Verlag.

Constraint Programming • 723

ACM Computing Surveys, Vol. 28, No. 4, December 1996

JEAVONS, P., COHEN, D., AND GYSSENS, M.
1996. A test for tractability. In Principles
and Practice of Constraint Programming, E.
C. Freuder, Ed., LNCS, No. 1118, Springer-
Verlag, Boston, MA, 267–281.

JOUANNAUD, J. P., ED. 1994. Proceedings of the
First Conference on Constraints in Computa-
tional Logic (CCL). LNCS, No. 845, Springer-
Verlag.

KABANZA, F., STEVENNE, J.-M., AND WOLPER, P.
1990. Handling infinite temporal data. In
Proceedings of the ACM Symposium on Princi-
ples of Database Systems.

KANELLAKIS, P., KUPER, G., AND REVESZ, P.
1995. Constraint query languages. J. Com-
put. Syst. Sci. 26–52.

KANELLAKIS, P., RAMASWAMY, S., VENGROFF, D. E.,
AND VITTER, J. S. 1993. Indexing for data
models with constraints and classes. In Sym-
posium on Principles of Database Systems.

KELLY, A. D., MACDONALD, A., MARRIOTT, K.,
STUCKEY, P. J., AND YAP, R. H. C. 1996.
Effectiveness of optimizing compilation for
clp(r). In Proceedings of the Joint Interna-
tional Conference and Symposium on Logic
Programming, MIT Press, Cambridge, MA,
37–51.

KONDRAK, G. AND VAN BEEK, P. 1995. A theoret-
ical evaluation of selected backtracking algo-
rithms. In Proceedings of the International
Joint Conference on Artificial Intelligence
(Montreal), 541–547.

KUPER, G. M. 1993. Aggregation in constraint
databases. In Proceedings of the Workshop on
Principles and Practice of Constraint Pro-
gramming.

LASSEZ, J.-L., MAHER, M. J., AND MARRIOTT,
K. 1988. Foundations of Deductive Data-
bases and Logic Programming. Chapter: Uni-
fication Revisited, Morgan-Kaufmann, San
Mateo, CA.

LAURIERE, J.-L. 1978. A language and a pro-
gram for stating and solving combinatorial
problems. Artif. Intell. 10, 1.

LEVY, A., MUMICK, I. S., AND SAGIV, Y. 1994.
Que-ry optimization by predicate move-
around. In Proceedings of the VLDB Confer-
ence.

LEVY, A. AND SAGIV, Y. 1992. Constraints and
redundancy in datalog. In Proceedings of the
ACM Symposium on Principles of Database
Systems.

LI, L.-L., REEVE, M., SCHUERMAN, K., VÉRON, A.,
BELLONE, J., PRADELLESS, C., PALASKAS, Z.,
STAMATOPOULOS, T., CLARK, D., DOURSENOT, S.,
RAWLINGS, C., SHIRAZI, J., AND SARDU, G.
1993. APPLAUSE: Applications using the
ElipSys parallel CLP system. In Proceedings
of the International Conference on Logic Pro-
gramming, 847–848.

MACKWORTH, A. K. 1977. Consistency in net-
works of relations. Artif. Intell. 8, 1.

MACKWORTH, A. K. 1992. Constraint satisfac-
tion. In Encyclopedia of Artificial Intelligence,
285–293.

MACKWORTH, A. K. AND FREUDER, E. C. 1985.
The complexity of some polynomial network
consistency algorithms for constraint satisfac-
tion problems. Artif. Intell. 25.

MACKWORTH, A. K. AND FREUDER, E. C. 1993.
The complexity of constraint satisfaction re-
visited. Artif. Intell. 25, 57–62.

MAHER, M. J. 1987. Logic semantics for a class
of committed-choice programs. In Proceedings
of the International Conference on Logic Pro-
gramming, MIT Press, Cambridge, MA.

MARRIOTT, K. AND STUCKEY, P. 1992. The 3 Rs
of optimizing constraint logic programs: Re-
finement, removal, and reordering. In Pro-
ceedings of the ACM Symposium on Principles
of Programming Languages, ACM, New York.

MARRIOTT, K., GARCı́A DE LA BANDA, M., AND HER-
MENEGILDO, M. 1994. Analyzing logic pro-
grams with dynamic scheduling. In Proceed-
ings of the ACM Symposium on Principles of
Programming Languages, (Jan.), ACM, New
York, 240–254.

MCALOON, K. AND TRETKOFF, C. 1997. Logic,
modeling and programming. Ann. Oper. Res.
(to appear).

MEIER, M. 1996. Grace User Manual. Available
at http://www.ecrc.de/eclipse/html/grace/grace.
html.

MINTON, S. 1996. Automatically configuring
constraint satisfaction programs: A case
study. Constraints 1/2, 4–31.

MINTON, S., JOHNSTON, M., PHILIPS, A., AND LAIRD,
P. 1992. Minimizing conflicts: A heuristic
repair method for constraint satisfaction and
scheduling problems. Artif. Intell. 58, 161–
206.

MONTANARI, U. 1970. Networks of constraints:
Fundamental properties and application to
picture processing. Inf. Sci. 7, 1974. Also
Tech. Rep., Carnegie Mellon University, 1970.

MONTANARI, U. AND ROSSI, F. 1995a. A concur-
rent semantics for concurrent constraint pro-
gramming via contextual nets. In Principles
and Practice of Constraint Programming: The
Newport Papers. V. A. Saraswat and P. Van
Hentenryck, Eds., MIT Press, Cambridge,
MA.

MONTANARI, U. AND ROSSI, F., EDS. 1995b.
Principles and Practice of Constraint Pro-
gramming, LNCS, Vol. 976, Springer-Verlag.

MUMICK, I. S., FINKELSTEIN, S. J., PIRAHESH, H.,
AND RAMAKRISHNAN, R. 1990. Magic condi-
tions. In Proceedings of the ACM Symposium
on Principles of Database Systems, 314–330.

MYERS, B. 1996. The Amulet user interface de-
velopment environment. In CHI’96 Conference

724 • P. Van Hentenryck et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

Companion: Human Factors in Computing
Systems, (Vancouver, BC, April), ACM SIG-
CHI, New York.

NEMHAUSER, G. AND WOLSEY, P. 1988. Integer
and Combinatorial Optimization. J. Wiley
and Sons, New York.

NEUMERKEL, U. 1990. Extensible unification by
metastructures. In Proceedings of the
META’90 Workshop.

PAI, D. K. 1991. Least constraint: A framework
for the control of complex mechanical sys-
tems. In Proceedings of the American Control
Conference (Boston, MA, June), 1615–1621.

PAREDAENS, J., VAN DEN BUSSCHE, J., AND VAN

GUCHT, D. 1994. Towards a theory of spa-
tial database queries. In Proceedings of the
ACM Symposium on Principles of Database
Systems.

RAMAKRISHNAN, R. 1988. Magic templates: A
spellbinding approach to logic programs. In
Proceedings of the International Conference on
Logic Programming.

REVESZ, P. Z. 1993. A closed-form evaluation
for datalog queries with integer (gap)-order
constraints. Theor. Comput. Sci. 116, (Aug.).

REVESZ, P. Z. 1995. Datalog queries of set con-
straint databases. In Proceedings of the Inter-
national Conference on Database Theory.

ROSSI, F. AND MONTANARI, U. 1994. Concurrent
semantics for concurrent constraint program-
ming. In Constraint Programming, B. Mayoh,
E. Tyugu, and J. Penjam, Eds., NATO ASI
Series. Springer-Verlag.

SANNELLA, M. 1995. The SkyBlue constraint
solver and its applications. In Principles and
Practice of Constraint Programming: The
Newport Papers, V. A. Saraswat and P. Van
Hentenryck, Eds., MIT Press, Cambridge,
MA, 385–406.

SANNELLA, M., MALONEY, J., FREEMAN-BENSON, B.,
AND BORNING, A. 1993. Multi-way versus
one-way constraints in user interfaces: Expe-
rience with the DeltaBlue algorithm. Softw.
Pract. Exper. 23, 5 (May), 529–566.

SARASWAT, V. A. 1993. Concurrent Constraint
Programming. ACM Doctoral Dissertation
Award and Logic Programming Series, MIT
Press, Cambridge, MA.

SARASWAT, V. A., JAGADEESAN, R., AND GUPTA, V.
1995. Timed default concurrent constraint
programming. J. Symbol. Comput. (to ap-
pear). Extended abstract appeared in Proceed-
ings of the ACM Symposium on Principles of
Programming Languages (San Francisco, Jan.
1995).

SARASWAT, V. A., RINARD, M., AND PANANGADEN, P.
1991. Semantic foundations of concurrent
constraint programming. In Proceedings of the
ACM Symposium on Principles of Program-
ming Languages (Orlando, FL, Jan.), ACM,
New York.

SHAPIRO, E. 1982. Algorithmic Program Debug-
ging. ACM Distinguished Dissertation. MIT
Press, Cambridge, MA.

SHAPIRO, E. 1989. The family of concurrent
logic programming languages. ACM Comput.
Surv. 21, 3.

SMOLKA, G. 1995. The Oz programming model.
In Computer Science Today, Jan van Leeu-
wen, Ed., LNCS, No. 1000, Springer-Verlag,
Berlin, 324–343.

SRIVASTAVA, D. 1992. Subsumption and index-
ing in constraint query languages with linear
arithmetic constraints. Ann. Math. Artif. In-
tell. (to appear).

SRIVASTAVA, D. AND RAMAKRISHNAN, R. 1992.
Pushing constraint selections. In Proceedings
of the ACM Symposium on Principles of Data-
base Systems, 301–315.

SRIVASTAVA, D., RAMAKRISHNAN, R., AND REVESZ,
P. 1994. Constraint objects. In Proceedings
of the International Workshop on the Princi-
ples and Practice of Constraint Programming
(Orcas Island, WA, May).

STALLMAN, R. M. AND SUSSMAN, G. J. 1977.
Forward reasoning and dependency-directed
backtracking in a system for computer-aided
circuit analysis. Artif. Intell. 9, 135–196.

STEELE, G. L. 1980. The definition and imple-
mentation of a computer programming lan-
guage based on constraints. Ph.D. Thesis,
MIT.

SUTHERLAND, I. 1963. Sketchpad: A man-ma-
chine graphical communication system. In
Proceedings of the IFIP Spring Joint Com-
puter Conference.

TARAU, P., DAVISON, A., DE BOSSCHERE, K., AND

HERMENEGILDO, M., EDS. 1996. Proceedings
of the First Workshop on Logic Programming
Tools for INTERNET Applications, JICSLP
’96 (Bonn).

TSANG, E. 1993. Foundations of Constraint Sat-
isfaction. Academic Press, London.

VANDEURZEN, L., GYSSENS, M., AND VAN GUCHT,
D. 1995. On the desirability and limita-
tions of linear spatial query languages. In
Proceedings of the Symposium on Advances in
Spatial Databases, M. J. Egenhofer and J. R.
Herring, Eds., LNCS, Vol. 951, Springer-Ver-
lag, 14–28.

VAN HENTENRYCK, P. 1989a. Constraint Satis-
faction in Logic Programming. MIT Press,
Cambridge, MA.

VAN HENTENRYCK, P. 1989b. Parallel constraint
satisfaction in logic programming. In Interna-
tional Conference on Logic Programming (Lis-
bon, Portugal, June), MIT Press, Cambridge,
MA, 165–180.

VAN HENTENRYCK, P. 1991. Constraint logic
programming. Knowl. Eng. Rev. 6, 6, 151–194.

Constraint Programming • 725

ACM Computing Surveys, Vol. 28, No. 4, December 1996

VAN HENTENRYCK, P., SARASWAT, V. A., AND DEV-
ILLE, Y. 1995. Constraint processing in
cc(fd). In Constraint Programming: Basics
and Trends, A. Podelski, Ed., LNCS 910,
Springer Verlag.

WALTZ, D. L. 1975. Understanding line draw-
ings of scenes with shadows. In The Psychol-
ogy of Computer Vision, P. Winston, Ed.,
McGraw-Hill.

ZAFFANELLA, E. 1995. Domain-independent ask
approximations in CCP. In Proceedings of the
International Conference on Principles and
Practice of Constraint Programming (Cassis,
France), U. Montanari and F. Rossi, Eds.,
LNCS, No. 976, Springer-Verlag.

VANDER ZANDEN, B. 1996. An incremental algo-
rithm for satisfying hierarchies of multi-way

dataflow constraints. ACM Trans. Program.
Lang. Syst. 18, 1 (Jan.), 30–72.

ZHANG, Y. AND MACKWORTH, A. K. 1994. Specifi-
cation and verification of constraint-based dy-
namic systems. In Principles and Practice of
Constraint Programming, A. Borning, Ed.,
LNCS, No. 874, Springer-Verlag, 229–242.

ZHANG, Y. AND MACKWORTH, A. K. 1995a. Con-
straint programming in constraint nets. In
Principles and Practice of Constraint Pro-
gramming: The Newport Papers, V. A. Saras-
wat and P. Van Hentenryck, Eds., MIT Press,
Cambridge, MA, 49–68.

ZHANG, Y. AND MACKWORTH, A. K. 1995b. Syn-
thesis of hybrid constraint-based controllers.
In Hybrid Systems II, P. Antsaklis, W. Kohn,
A. Nerode, and S. Sastry, Eds., LNCS, Vol.
999, Springer Verlag, 552–567.

726 • P. Van Hentenryck et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

