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and the Theory of Evolution

Erick Chastain∗ Adi Livnat† Christos Papadimitriou‡ Umesh Vazirani§

Abstract

We study the population genetics of Evolution in the important special case of weak selection,
in which all fitness values are assumed to be close to one another. We show that in this regime
natural selection is tantamount to the multiplicative updates game dynamics in a coordination
game between genes. Importantly, the utility maximized in this game, as well as the amount
by which each allele is boosted, is precisely the allele’s mixability, or average fitness, a quantity
recently proposed in [12] as a novel concept that is crucial in understanding natural selection
under sex, thus providing a rigorous demonstration of that insight. We also prove that the
equilibria in two-person coordination games can have large supports, and thus genetic diversity
does not suffer much at equilibrium. Establishing large supports involves answering through a
novel technique the following question: what is the probability that for a random square matrix
A both systems Ax = 1 and AT y = 1 have positive solutions? Both the question and the
technique may be of broader interest.
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1 Introduction

There was a crisis in Evolution in the early 20th century. Mendel’s insights and laws became
known and largely accepted, except that their discrete nature was broadly perceived to contradict
Darwin’s theory, which was apparently about continuous traits and gradual change. In the 1920s,
this crisis was resolved, largely thanks to a mathematical formalism developed by Fisher, Wright,
Haldane, and others. Fitness was codified as the organism’s expected offspring, and the equations
of population genetics applied to genotypes demonstrated the possibility of continuous variation
and change based on discrete genetic materials. Ninety years later, this “modern synthesis” is the
predominant rigorous way of understanding Evolution.

One of the important remaining open problems in Evolution today is the role of sex (often called
“the queen of problems in Evolution”). Sex (creating offspring by recombining the genome of two
organisms) is ubiquitous across life despite the fact that it is very costly: it entails evolutionarily
complex biological processes and behaviors that are risky and energy-inefficient, it breaks down
lucky gene combinations, and it dilutes the parent’s genetic contribution to the offspring, to mention
a few. As summarized in an important survey [1], all extant theories about the “advantage of sex”
that counterbalances these costs fail to explain the mystery.

In a recent paper [12], a novel theory of the role of sex was proposed: Natural selection under sex
does not select allele combinations which optimize fitness (the default tacit assumption throughout
research in Evolution), but instead promotes alleles that have high mixability, the ability to function
adequately with a broad spectrum of genetic partners. Under asex, of course, natural selection does
select the fittest combinations.1 In other words, the breakdown of lucky genetic combinations, which
had been considered the major bug of sex (and which all theories of the advantage of sex had been
attempting to explain away) is, in fact, sex’s central feature.

In the paper introducing mixability[12], the central role played by mixability in natural selection
under sex was demonstrated through extensive simulations on random fitness functions. Any hope
at a mathematical proof was hindered by the nonlinear nature of the equations. The concept was
proved for certain cases of fitness functions [13], but these were highly specialized and symmetric
cases for which the population genetic equations are linearized. In this paper we provide such a
demonstration; in doing so, we make some totally unexpected connections between Evolution and
familiar concepts from Computation and Game Theory.

To achieve this, we explore the equations of population genetics in an important regime known
as weak selection [3]. Weak selection is a mathematical approximation of Kimura’s neutral theory, a
standpoint on Evolution that is presently broadly accepted (with modifications, of course) stating
that most mutations do not affect fitness (much). Mathematically, in weak selection the elements
of the fitness landscape are in [1 − s, 1 + s] for some very small s > 0. In this regime, it is known
[14] that the state of the system (genotype frequencies) converge quickly to the so-called Wright
manifold, where the distribution of genotypes is a product distribution of the allele frequencies in
the population (see Section 2). In other words, in this important regime of fitness functions, we
can assume that the distribution of genotypes is a product distribution (the alleles of the various
genes are chosen to form an offspring’s genotype independently and with probability equal to their
frequencies in the population), and thus we only need to track the allele frequencies of the genes.
The distance of the genotype distribution from the product distribution (the distance from the
Wright manifold) is called linkage disequilibrium and is of great interest in Evolution. Under weak
selection, it vanishes.

1To picture the difference, imagine a two-gene organism, where each gene comes in n alleles (variants). The fitness
of the organism is captured now by an n × n matrix (for more genes, by a tensor) of positive numbers, sometimes
called the fitness landscape of the species. Without sex, natural selection will select the largest number in this matrix.
In contrast, sex will select the rows and columns with the highest average — average, of course, with respect to the
population’s statistics.
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In this framework, we notice a remarkable convergence between Evolution and familiar concepts:

• The frequency of an allele changes from one generation to the next by a proportional incre-
ment/decrement that is essentially the incremental mixability of the allele.

• The dynamics through which frequencies are updated are game dynamics of a coordination
game [8] (in a coordination game all players have the same utility for all strategy combina-
tions). The players are the genes, the strategies are the alleles, and the probability of playing
a strategy is the frequency of the allele in the population.

• The expected utility of an allele/strategy is precisely the mixability of this allele.

• The population genetics dynamics is thus precisely the multiplicative update dynamics of the
game. Notice that we are not saying that the equilibrium can be found through multiplicative
updates; we are saying something much stronger: that Evolution is multiplicative updates.

• The process does converge to an equilibrium. This was known (e.g., [14]), but now there is
an easy proof through multiplicative updates, with mixability playing the role of regret. In
fact, this new proof establishes that convergence is robust under slight variants of the fitness
values (Corollary 5)

• The equilibrium frequencies constitute a mixed Nash equilibrium of the subgame formed by
their supports.

The fact that, at each step, the frequency of an allele is boosted by an amount equal to the
mixability of the allele, provides the clearest possible verification of the hypothesis in [12] that an
allele’s mixability is what is being selected for in natural selection under sex.

Of course, there had been connections between game theory and evolution before, most notably
Evolutionary Game Theory [7] whereby one models how the strategic behavior of a species is affected
by the evolutionary advantages that it presents. However, it is fair to say that many more game
theorists have been interested in this connection than evolution researchers. Our result connects
game theory to the core of evolution theory, by providing an unusual point of view: Evolution is a
coordination game between genes, where the mixed strategy of each gene is the distribution of the
alleles in the population, and the dynamics are fixed to multiplicative updates. The genes are the
players while the population stores the state.

Mixability and Diversity

Why is mixability advantageous? (Since sex is ubiquitous, there must be an advantage.) One
intuitive explanation may be that, by promoting “good mixer genes” (a phrase by Kimura [5]
who had anticipated some of this thinking), it enhances genetic diversity. But what happens at
equilibrium (when the allele frequencies finally stabilize, as predicted by our results)?2 It would be
disappointing — and, by the above intuition, detrimental to the argument in favor of mixability —
if it so happens that, in the end, natural selection by sex ends up putting all its chips on a single
allele per gene (as it often happened in the simulations in [12]). The question arises: How large is
the typical support of an equilibrium for our population genetics process?

In the second half of the paper (Section 4) we answer this question in a positive way: there are
exponentially many equilibria whose support contains a significant fraction of the alleles of each
gene, see Corollary 9. We do this through a digression to a completely different problem: Let A be

2In actual Evolution, of course, nothing ever stabilizes, as new mutations introduce new strategies in the game,
and life goes on. Note that our model does not include mutations.
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an n×n matrix. What are the chances that the solution to the system Ax = 1 is positive? Assume
that the entries of the matrix are iid from a distribution that is continuous and symmetric around
zero, say uniform in [−1, 1]; in this case, with probability one the solution exists and has no zero
term. Intuitively, the answer is 2−n (each row of the inverse must have a positive sum). It is not
hard to show that this insight is correct.

But suppose that we want both systems Ax = 1 and AT y = 1 to have positive solutions. What
are the chances of that happening? One expects this to be about 2−2n, but there is dependence
now and the calculation is not straightforward. Intuitively the dependence is favorable, but how
does one establish this?

We prove that this probability is at least 2−2n+1 (and thus the dependence is indeed favorable,
see Theorem 7). The proof uses a potential function argument reminiscent of the Berlekamp
switching game [6].

The connection to Evolution is the following: First, one can show that only square submatrices
of the fitness matrix are likely to support an equilibrium of the population dynamics. A square
submatrix of the fitness matrix is the support an equilibrium if and only if the corresponding
submatrix of selections (fitness minus one) has the property that the solutions to both row and
column linear systems with unit right-hand sides are positive. By showing that this happens
with sufficiently high probability we establish that, in expectation at least, there are equilibria
with substantial supports (in fact, quite a few of them), and thus diversity is not always lost at
equilibrium.

2 Background

A gene is a molecular unit of heredity. Genes in organisms come in variants called alleles. A
combination of alleles, one for each gene, is called a genotype. In this paper we study how the
statistical make-up of a population of genotypes changes from generation to generation in a sexual
species. Members of the new generation are produced through recombination, which is the formation
of a new genotype by choosing alleles from two parent genotypes in the previous generation.

We make several (more or less standard) simplifying assumptions, which are generally trusted
not to change substantially the essence of the evolutionary dynamics. The population of genotypes
is infinite. We assume that the genotypes are haploid (even though humans are not) in that they
contain only one copy of each gene, and that the organisms mate at random and panmictically
(the latter meaning that the population is not bipartite to distinguish between males and females)
to produce a new generation; further, we assume there is no overlap between generations (as if
all mating happens simultaneously and soon before death). Each offspring’s genome is formed
by picking, for each gene, an allele from one of the two parent genomes, independently and with
probability half each (that is, we assume that there is no linkage, i.e. genes that are close together
on the same chromosome and thus are likely to be inherited together from the same parent).

Our exposition will be for the case of two genes with m and n alleles respectively, even though
our results can be easily seen to extend to any number of genes (with the exception of the results in
Section 4 which are particular to matrices); we shall occasionally point out how the straightforward
generalization proceeds. Thus genotypes are pairs ij. Each genotype ij has a fitness value wij which
is the expected number of offspring the genotype produces (by mating randomly). The matrix W,
often called the fitness landscape of the species, entails the basic genetic parameters of the species
(it is a k-dimensional tensor for k genes).

We shall be interested in the statistics of the genotypes in the population. The frequency of
the genotype ij will be denoted pij. The matrix of the pij’s is the state of the dynamical system
we shall follow. We denote the value of pij in generation t by ptij.

How do the ptij’s change from one generation to the next? Each member of the genotype ij
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mates wij times, each time with an organism with a random genotype, and an offspring genotype
is created, whose alleles are chosen from the two parents at random and independently. Then, it is
easy to see that the expected frequency of genotype ij at the next generation, pt+1

ij , can be written:

pt+1
ij =

1

w̄2
t

∑

l

ptilwil

∑

k

ptklwkj

where w̄t =
∑

ij p
t
ijwij is the average fitness of the population needed for normalization, so that

frequencies add to one.

Wright Manifold, Weak Selection, and Nagylaki’s Theorem

Besides the pij frequencies, one has the marginal frequencies, one for each allele: xi =
∑

j pij and
yj =

∑

i pij. Within the simplex of the pij’s, of particular interest to us is the Wright manifold on
which pij is a product distribution (the matrix pij has rank one): pij = xi · yj. It turns out that,
on the Wright manifold, the population genetic equations take a much simpler form, expressed in
terms of the marginal probabilities xi and yj (see Lemma 2).

Life, in general, does not reside on the Wright manifold — that is to say, genotype frequencies do
not in general have rank one. This is called linkage disequilibrium, and is measured by the distance
from the Wright manifold Dij = pij − xi · yj. Intuitively, it comes about because differences in
the fitness of genotypes distort the allele statistics; just imagine two alleles of two genes whose
combination is deleterious. By definition, Dij is zero on the Wright manifold.

Weak selection is an important point of view on Evolution, which postulates that the entries
of the tensor W are all very close to one another. Differences in fitness are minuscule, and the
wij ’s all lie within the interval [1 − s, 1 + s] for some very small s > 0 which we call the selection
strength. It is a mathematical embodiment of the neutral theory of Kimura [11], stating roughly
that Evolution proceeds mostly through statistical drift due to sampling error that has no impact
on fitness.

There is an important connection between the Wright manifold and weak selection, best artic-
ulated through Nagylaki’s Theorem. Consider the evolution of genome frequencies ptij (or for more
that two genes) in a situation in which the fitness values are within [1 − s, 1 + s] for some tiny
s > 0 — that is, weak selection prevails. Consider also the corresponding time series of linkage
disequilibria Dt

ij = ptij − xi · yj.

Theorem 1 (Nagylaki [14, 15]) (1) for any t ≥ t0 = 3 log 1
s
and any i, j, Dt

ij = O(s); and
furthermore

(2) for t ≥ t0 there is a corresponding process {p̂ij} on the Wright manifold such that (a) |p̂tij−ptij| =
O(s); and (b) both processes converge and there is one-to-one correspondence between the equilibria
of ptij and the equilibria of p̂tij.

Nagylaki’s Theorem states essentially that, in order to understand a genotype frequency process
in the weak selection regime, one can instead follow a closely related process on the Wright manifold.
As we shall see next, it turns out that this simplifies things tremendously and brings about some
unexpected connections.

3 Coordination Games between Genes

In a game each of finitely many players has a set of strategies, and a payoff function mapping
the cartesian product of the strategy sets to the reals. A game in which all payoff functions are
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identical is called a coordination game. In a coordination game the interests of all players are
perfectly aligned, and, intuitively, they all strive to hit the same high value of the common payoff
function. In terms of equilibrium calculations, they are trivial.

Fix a game, and a mixed strategy profile, that is, for each player p a distribution xp over her
strategies. For each player p and each strategy a ∈ Sp one can calculate the expected payoff of
this strategy, call it q(a). The multiplicative update dynamics of the game (see, for example, [10])
transform the mixed strategy profile {xp} as follows: For each player p and each strategy a ∈ Sp,
the probability xp(a) of player p playing a becomes

xp(a) · (1 + ǫ · q(a))

1 + ǫ ·
∑

b∈Sp
xp(b)q(b)

=
xp(a) · (1 + ǫ · q(a))

1 + ǫ · q̄
,

where by q̄ we denote the expected payoff to p (in a coordination game, to all players). That is,
the probability of playing a is boosted by an amount proportional to its expected payoff, and then
renormalized. It is known that two players following the multiplicative update dynamics attain
the Nash equilibrium in zero-sum games (this has been rediscovered many times over the past fifty
years, see for example [10]), but not in general games [2]. Beyond games, and more importantly,
the multiplicative updates dynamics lies at the foundations of a very simple, intuitive, robust and
powerful algorithmic idea of very broad applicability [4, 10].

Going now back to population genetics dynamics, let Wij be a fitness landscape (matrix for two
genes, tensor for more) in the weak selection regime, that is, each entry is in the interval [1−s, 1+s].

Define the differential fitness landscape to be the tensor with entries ∆ij =
Wij−1

s
.

We next point out a useful way to express the important analytical simplification afforded by
the Wright manifold:

Lemma 2 On the Wright manifold, the population genetics dynamics becomes

pt+1
ij =

1

w̄t

xti · y
t
j · wij ,

and similarly for more genes.

Proof: We have been using a special case of the general recombination dynamics, with r = 1.
For the general dynamics, as is shown in [12], we can re-write the population genetics dynamics as:

pt+1
ij =

1

w̄t

wij(p
t
ij − rDt

ij)

where Dt
ij = ptij − xtiy

t
i is the linkage disequilibrium. On the Wright Manifold, the linkage disequi-

librium is equal to 0, and so we have p
(t+1)
ij = 1

w̄t
p
(t)
ij wij. Finally, since Dt

ij = 0, ptij = xtiy
t
j. The

result follows.

We are now ready for the main result of this section:

Theorem 3 Under weak selection with selection strength s, the population genetic dynamics is
precisely the multiplicative update dynamics of a coordination game whose payoff matrix is the
differential fitness landscape and ǫ = s.

Proof: We only show the derivation for two genes, the general case being a straightforward
generalization.

xt+1
i =

∑

j

pt+1
ij =

1

w̄t

∑

j

xtiy
t
jwij =

xti
w̄t

(1 + s
∑

j

ytj∆ij) =
xti · (1 + s

∑

j y
t
j∆ij)

1 + s · ∆̄
.
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Here the first equation is the definition of marginal frequencies, the second is the Lemma, the
third is the definition of ∆ij , and the last one recalls that the expectation of wij is the one plus s
times the expectation of ∆ij. The last expression is precisely the multiplicative update dynamics,
completing the proof.

It is known that the population genetics dynamics in the weak selection regime converge [14,
15]; however, our result yields an easy proof. Moreover, we are able to show that the dynamics
asymptotically achieve population frequencies that are comparable to the i, j pair for which the
cumulative mixability is maximized:

Corollary 4 Let mt
x(i) =

∑

j y
t
j∆ij and mt

y(j) =
∑

i x
t
i∆ij. The population genetics dynamics

converge asymptotically in the weak selection regime to the genotype with maximal cumulative mix-
ability. More formally, consider i, j that maximizes

1

T
(

T
∑

t=1

mx(i)
t +my(j)

t + s
T
∑

t=1

|mx(i)
t|+ |my(j)

t|)

it also holds that:

1

T
(

T
∑

t=1

mt
x · x

t +mt
y · y

t −

T
∑

t=1

mx(i)
t +my(j)

t + s

T
∑

t=1

|mx(i)
t|+ |my(j)

t|) ≥ 0

in the limit as T → ∞ and thus that we do no worse than the best possible i, j pair, and this i, j
pair also maximizes the cumulative mixability 1

T

∑T
t=1 2 + s(mx(i)

t +my(j)
t).

Proof: We have established in the Theorem that the population genetics dynamics is the mul-
tiplicative update dynamics with ǫ = s > 0 for each player. We define some notation and then
present the main tools needed for the convergence guarantee.

It holds for the weak selection regime that mt
x and mt

y are in the range [−1, 1]. Therefore by
Theorem 3 in [10] (and his remark that the same bound holds for our form of the multiplicative
update dynamics) we can thus guarantee that, for any pair i and j:

T
∑

t=1

mt
x · x

t −mt
y · y

t −

T
∑

t=1

mx(i)
t +my(j)

t + s

T
∑

t=1

|mx(i)
t|+ |my(j)

t| ≥ −
log n+ logm

s

clearly dividing both sides by T and taking the limit as T goes to infinity gives us 0 on the RHS.
In particular, it will hold for the i and j that maximize mx and my. This shows that as T → ∞,

the dynamics converge to the i and j that maximize 1
T

∑T
t=1 2 + s(mx(i)

t + my(j)
t). The result

follows.

In fact, we can further show that convergence is robust under perturbations of the fitness
landscape:

Corollary 5 Let w̃ij be subject to the weak selection regime, and thus be of the form 1 + s∆ij.
Let the differential fitness wt

ij be w̃ij + νtij with νtij drawn i.i.d from a zero-mean distribution and
bounded almost surely in the interval [−s(1− |∆ij|), s(1− |∆ij |)]. If we run the population genetics
dynamics with this fitness, then we will converge to the same equilibrium as when the differential
fitness is w̃.
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Proof: First we will show that the differential fitness at any point in time is subject to the weak
selection regime. For any t, by the almost sureness of the bound on νtij it can be written in the

form 1 + s(∆ij + νtij/s), where |ν|/s ≤ 1 − |∆ij|. Therefore the differential fitness still satisfies

weak selection since |∆ij + ν/s| ≤ |∆ij| + |νtij|/s ≤ 1. The convergence result from the Corollary
therefore still holds for the dynamics in this case. The i, j that is converged to maximizes:

1

T

T
∑

t=1

(2 + s(
∑

j

ytj∆ij +
∑

i

xti∆ij) + νij) =
1

T

T
∑

t=1

2 + s(
∑

j

ytj∆ij +
∑

i

xti∆ij) +
1

T

T
∑

t=1

νtij

Because we are analyzing asymptotic behavior at equilibrium, we take the limit T → ∞. In this
case, for all i, j, 1

T

∑T
t=1 ν

t
ij = 0 by the strong law of large numbers since E[νtij ] = 0. But then one is

simply converging to 1
T

∑T
t=1(2+ s(

∑

j y
t
j∆ij +

∑

i x
t
i∆ij)+νij), which is the same as what is being

converged to for w̄. Thus it holds for the i, j that maximizes 1
T

∑T
t=1(2 + s(

∑

j y
t
j∆ij +

∑

i x
t
i∆ij).

4 Diversity

We know that the population genetic dynamics converges, but what is the nature of the equilibria?
In particular, are they likely to have extensive support? This would imply that diversity is not
totally lost in the process, and considerably strengthen our model as a candidate for the role of sex
in Evolution.

To tackle this problem, we need a probabilistic model on the fitness landscape. As we are
assuming weak selection, we postulate that the entries of W are drawn iid from a continuous
distribution on [1 − s, 1 + s] with no singularities that is symmetric around 1. Equivalently, the
entries of ∆ are iid on [−1, 1]. (In fact, our results do not require that the distributions of the
entries be identical.)

At equilibrium, all alleles of a gene must have the same mixability (expected fitness with respect
to the frequencies of the other alleles). Focusing on the two gene case (here by necessity, because
the more general case seems intractable), it must be that Wx = a1 and W Ty = b1 for some real
vectors with nonnegative coefficients x, y and some reals a, b (in fact, it is easy to see that a will
be equal to b). An equilibrium is characterized by the supports of x and y, or, equivalently, by
the submatrix defined by these. Let us call a submatrix A of W an equilibrium if Ax = a1 and
AT y = a1 have nonnegative solutions x, y adding to one, for some a > 1. We require that a > 1
for this reason: If a < 1, then A is indeed an equilibrium, but one that leads to extinction.

Consider an m× n submatrix A of the fitness matrix. When is A an equilibrium? First of all,
if A is not square, say m < n, then the probability of A being an equilibrium is zero, because then
the system AT y = a1 is overdetermined. So, we shall focus on a square submatrix A. Under weak
selection, we can write A = U + sB.

Lemma 6 A is an equilibrium if and only if B−1 exists and has positive row and column sums.

Proof: If A is an equilibrium with x, y > 0 the solutions to the linear systems with right-hand sides
a1, then it is easy to see that Bx = 1(a−

∑

j yj) = 1(a−1) and similarly BT y = 1(a−1). Therefore

B−1 must exist and have positive row and column sums. And from any nonnegative solutions of
Bz = 1, BTw = 1 we can get back the solutions of Ax = a1, Aty = a1,

∑

i xi = 1,
∑

j yj = 1,
adding up to one: x = z∑

i zi
and similarly y = w∑

j wj
) with a = 1 + s∑

i zi
> 1.

Thus, to show that there are enough equilibria with large support, we must calculate (more
precisely, lower bound) the probability that a random matrix B has an inverse with positive row
and column sums. Our main result is the following:
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Theorem 7 The probability that A is an equilibrium is at least 2−(2n−1).

Proof: By the Lemma, we must bound from below the probability that B−1 has positive sums
(since B−1 exists with probability one).

Let S ⊆ [n]. By IS we denote the n× n unit matrix with the ith one replaced by −1 whenever
i ∈ S. Notice that ISEIT is E with all columns in S flipped (multiplied by −1) and all rows in T
also flipped (with entries at the intersection of a row in T and a column in S restored to its original
value). Notice that (ISEIT )

−1 = ITE
−1IS . That is, to invert E with some rows and columns

flipped, you invert E and then flip the same columns and rows, with the roles of columns and rows
interchanged.

Now take B and consider all possible flippings ISBIT . There are 22n−1 distinct such matrices,
because it is easy to see that ISBIT = I[n]−SBI[n]−T and that all other pairs of flippings are distinct.
We shall argue that one of these flippings must have positive row and column sums.

Lemma 8 For every B ∈ [−1, 1]n×n there are S, T ⊆ [n] such that ISBIT has nonnegative row
and column sums.

Proof: To prove the lemma, start with B and perform the following:

while there is a row or column with negative sum, flip it.

Naturally, after each such flipping other columns or rows, which had positive sums, may become
negative. However, if the sum of the row or column that was flipped was −σ, notice two things:
First, σ ≥ σ0, where σ0 is a constant depending on B; and second, the total sum of the entries of
E increases by 2σ after the flip. Therefore, the process must end, and this can only happen if the
matrix has positive row and column sums.

The theorem now follows: Consider the domain M = [−1,+1]n×n, and the subset M+ whose
inverse exists and has positive sums. This subset can be defined using polynomial inequalities, and
is this measurable. By applying the 22n−1 transformations B 7→ ISBIT to M+, by the Lemma we
exhaust all of M . Therefore, the probability that a matrix in M is in M+ is at least 2−(2n−1).

Corollary 9 The expected number of k × k equilibria in an m× n weak selection fitness matrix is

at least 2
(

mn
4k2

)k
.

Notice that, for k less than half times the geometric mean of m and n, this is exponential in k.

Proof: Use the approximation
(

n
k

)

≥ (n
k
)k.

5 Discussion and Open Problems

Les Valiant [17] was the first to point out a connection between Evolution and Learning: The class
of traits which are achievable by a species through random mutations constitute a specialized kind
of learnability (a subcase of statistical learning, actually). Here we point out a different connection
between these two fundamental computational categories: On the Wright manifold (that is, when
linkage disequilibrium can be disregarded), Evolution is in fact learning through multiplicative
updates — a well-known learning algorithm of very broad appeal. The same reasoning establishes
Evolution as a coordination game between genes. Genes are the players, alleles are the strategies,
and the mixed strategies are the allele statistics in the population. Notice how the organism is
sidelined in this viewpoint: Evolution is an interaction between the genes (acting in a seemingly
strategic manner) and the population (which stores the system’s state). This is consistent with the
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gene-centric view of evolution, by which much can be explained by just focusing on evolution of
and interaction between genes rather than organisms or species [16].

There is an important difference between Valiant’s work and our point of view: Valiant’s evolv-
ability is concerned with understanding random mutations. We are concerned in the ways in which
sex and recombination nudge allele frequencies in the direction of high mixability (expected fit-
ness); mutations are only implicit in our model, they are the (much slower) background process
that creates the diversity exploited by recombination. Evolution and coordination games are not
to be thought of as identical, however. A key difference between Evolution and coordination games
is this: In a coordination game, a player may switch to a strategy which is currently not in the
player’s support (is being played with probability zero), once it becomes favorable. In Evolution,
once an allele becomes extinct it never comes back (except through a new mutation, at a time scale
far bigger than our current concerns). That is why the equilibrium of the process may not be a
Nash equilibrium of the original game (but it is a mixed Nash equilibrium of the subgame defined
by the support).

Starting with Darwin, researchers have often expressed an instinctive sense of disbelief that all
Life we see around us could have come about through the rather rudimentary processes envisioned
by Evolution. Connecting Evolution with multiplicative updates may help a little in this cogni-
tive/cultural difficulty; after all, the multiplicative updates algorithm has surprised us time and
again with its seemingly miraculous performance and applicability.

This work leaves open a variety of questions. Besides weak selection, for which other classes of
fitness landscapes is the present analysis applicable? It is known that product landscapes (the fitness
of a genotype is the product of fitness values, one for each allele present in the genotype) have the
property of staying on the Wright manifold, once they are started there, but are not in general
attracted to it [3]. It would be very interesting to come up with a combinatorial characterization
of the fitness landscapes that converge to the Wright manifold (like the weak selection landscapes)
and of those which at least stay there (like the multiplicative landscapes).

Secondly, in the context of the diversity proof in the previous section, consider the following
computational problem: “flip the rows and columns of a given nonsingular square matrix such
that the inverse has nonnegative row and column sums.” The existence proof through a potential
function places this problem in the class PLS [9]. Is it PLS-complete?

Finally, we would love to extend our diversity result (Corollary 9) to three or more genes.
Unfortunately, in this more general case the equations become multilinear, and such equations are
very hard both to solve and to argue about. Our simulations, however, show that large equilibria
exist in the multi-gene setting as well.
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