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Abstract

In 2008, Kasiviswanathan et al. defined private learning as a combination of PAC learning
and differential privacy [17]. Informally, a private learner is applied to a collection of labeled
individual information and outputs a hypothesis while preserving the privacy of each individual.
Kasiviswanathan et al. gave a generic construction of private learners for (finite) concept classes,
with sample complexity logarithmic in the size of the concept class. This sample complexity
is higher than what is needed for non-private learners, hence leaving open the possibility that
the sample complexity of private learning may be sometimes significantly higher than that of
non-private learning.

We give a combinatorial characterization of the sample size sufficient and necessary to pri-
vately learn a class of concepts. This characterization is analogous to the well known charac-
terization of the sample complexity of non-private learning in terms of the VC dimension of
the concept class. We introduce the notion of probabilistic representation of a concept class,
and our new complexity measure RepDim corresponds to the size of the smallest probabilistic
representation of the concept class.

We show that any private learning algorithm for a concept class C with sample complexity
m implies RepDim(C) = O(m), and that there exists a private learning algorithm with sample
complexity m = O(RepDim(C)). We further demonstrate that a similar characterization holds
for the database size needed for privately computing a large class of optimization problems and
also for the well studied problem of private data release.

∗A preliminary version of this paper appeared in [4]. Research partially supported by the Israel Science Foundation
(grants No. 938/09 and 2761/12) and by the Frankel Center for Computer Science.
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1 Introduction

Motivated by the observation that learning generalizes many of the analyses applied to large col-
lections of data, Kasiviswanathan el al. [17] defined in 2008 private learning as a combination of
probably approximately correct (PAC) learning [20] and differential privacy [12]. A PAC learner is
given a collection of labeled examples (sampled according to an unknown probability distribution
and labeled according to an unknown concept) and generalizes the labeled examples into a hypoth-
esis h that should predict with high accuracy the labeling of fresh examples taken from the same
unknown distribution and labeled with the same unknown concept.

The privacy requirement is that the choice of h preserves differential privacy of sample points.
Intuitively this means that this choice should not be significantly affected by any particular sample.
Differential privacy is increasingly accepted as a standard for rigorous privacy and recent research
has shown that differentially private variants exists to many analyses. We refer the reader to surveys
of Dwork [10, 11].

The sample complexity required for learning a concept class C determines the amount of labeled
data needed for learning a concept c ∈ C. It is well known that the sample complexity of learning
a concept class C (non-privately) is proportional to a complexity measure of the class C knowns as
the VC-dimension [21, 7, 14]. Kasiviswanathan et al. [17] proved that a private learner exists for
every finite concept class. The proof is via a generic construction that exhibits sample complexity
logarithmic in the size of the concept class. The VC-dimension of a concept class is bounded by
this quantity (and significantly lower for some interesting concept classes), and hence the results
of [17] left open the possibility that the sample complexity of private learning may be significantly
higher than that of non-private learning.

In analogy to the characterization of the sample complexity of (non-private) PAC learners
via the VC-dimension, we give a combinatorial characterization of the sample size sufficient and
necessary for private PAC learners. Towards obtaining this characterization, we introduce the
notion of probabilistic representation of a concept class. We note that our characterization, as
the VC-dimension characterization, ignores the computation required by the learner. Some of our
algorithms are, however, computationally efficient.

1.1 Related Work

We start with a short description of prior work on the sample complexity of private learning. To
simplify the exposition, we ignore dependencies on the error, confidence and privacy parameters by
considering them constants for this and the following section. The dependency on these parameters
would be made explicit in the later sections of the paper.

Recall that the sample complexity of non-private learners for a class of functions C is proportional
to the VC-dimension of the class [7, 14] – a combinatorial measure of the class that is equal to the
size of the largest set of inputs that is shattered by the class. This characterization, as ours, ignores
the computation required by the learner.

Kasiviswanathan et al. [17] showed, informally, that every finite concept class C can be learned
privately (ignoring computational complexity). Their construction is based on the exponential
mechanism of McSherry and Talwar [18], and the O(ln |C|) bound on sample complexity results from
the union bound argument used in the analysis of the exponential mechanism. Computationally
efficient learners were shown to exist by Blum et al. [5] for all concept classes that can be efficiently
learned in the statistical queries model. Kasiviswanathan et al. [17] showed an example of a concept
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class – the class of parity functions – that is not learnable in the statistical queries model but can be
learned privately and efficiently. These positive results suggest that many “natural” computational
learning tasks that are efficiently learned non-privately can be learned privately and efficiently.

Beimel et al. [3] studied the sample complexity of private learning. They examined the concept
class of point functions POINTd where each concept evaluates to one on exactly one point of the
domain and to zero otherwise. Note that the VC-dimension of POINTd is one. Beimel et al.
proved lower bounds on the sample complexity of properly and privately learning the class POINTd
(and related classes), implying that the VC dimension of a class does not characterize the sample
complexity of private proper learning. On the other hand, they observed that the sample complexity
can be improved for improper private learners whenever there exists a smaller hypothesis class H
that represents C in the sense that for every concept c ∈ C and for every distribution on the
examples, there is a hypothesis h ∈ H that is close to c. Using the exponential mechanism to
choose among the hypotheses in H instead of C, the sample complexity is reduced to ln |H| (this is
why the size of the representation H is defined to be ln |H|). For some classes this can dramatically
improve the sample complexity, e.g., for the class POINTd (defined in Example 3.2), the sample
complexity is improved from O(ln | POINTd |) = O(d) to O(ln d). Using other techniques, Beimel
et al. showed that the sample complexity of learning POINTd can be reduced even further to O(1),
hence showing the largest possible gap between proper and non proper private learning. Such a
gap does not exists for non-private learning.

Chaudhuri and Hsu [8] studied the sample complexity needed for private learning infinite concept
classes when the data is drawn from a continuous distribution. They showed that under these
settings there exists a simple concept class for which any proper learner that uses a finite number
of examples and guarantees differential privacy fails to satisfy accuracy guarantee for at least one
data distribution. This implies that the results of Kasiviswanathan et al. [17] do not extend to
infinite hypothesis classes. Interestingly, our results imply an improper private algorithm for an
infinite extension of the class POINT (that is, a class over the natural numbers of all boolean functions
that return 1 on exactly one number).

Chaudhuri and Hsu [8] also study learning algorithms that are only required to protect the
privacy of the labels (and do not necessarily protect the privacy of the examples themselves).
They prove upper bounds and lower bounds on the sample complexity of such algorithms. In
particular, they prove a lower bound on the sample complexity using the doubling dimension of the
disagreement metric of the hypothesis class with respect to the unlabeled data distribution. This
result does not imply our characterization as the privacy requirement in protecting the labels is
much weaker than protecting the sample point and the label.

A line of research (started in [19]) that is very relevant to our paper is boosting learning
algorithms, that is, taking learning algorithms that have a big classification error and producing a
learning algorithm with small error. Dwork et al. [13] show how to privately boost accuracy, that
is, given a private learning algorithms that have a big classification error, they produce a private
learning algorithm with small error. In Lemma 3.18, we show how to boost the accuracy α for
probabilistic representations. This gives an alternative private boosting, whose proof is simpler.
However, as it uses the exponential mechanism, it is (generally) not computationally efficient.

1.2 Our Results

Beimel et al. [3] showed how to use a representation of a class to privately learn it. We make an
additional step in improving the sample complexity by considering a probabilistic representation
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of a concept class C. Instead of one collection H representing C, we consider a list of collections
H1, . . . ,Hr such that for every c ∈ C and every distribution on the examples, if we sample a
collection Hi from the list, then with high probability there is a hypothesis h ∈ Hi that is close
to c. To privately learn C, the learning algorithm first samples i ∈ {1, . . . , r} and then uses the
exponential mechanism to select a hypothesis from Hi. This reduces the sample complexity to
O(maxi ln |Hi|); the size of the probabilistic representation is hence defined to be maxi ln |Hi|.

We show that for POINTd there exists a probabilistic representation of size O(1). This results in
a private learning algorithm with sample complexity O(1), matching a different private algorithm
for POINTd presented in [3]. Our new algorithm offers some improvement in the sample complexity
compared to the algorithm of [3] when considering the learning and privacy parameters. Further-
more, our algorithm can be made computationally efficient without making any computational
hardness assumptions, while the efficient version in [3] assumes the existence of one-way functions.
Finally, it is conceptually simpler and in particular it avoids the sub-sampling technique used in [3].

One can ask if there are private learning algorithms with smaller sample complexity than the
size of the smallest probabilistic representation. We show that the answer is no — the size of the
smallest probabilistic representation is a lower bound on the sample complexity. Thus, the size of
the smallest probabilistic representation of a class C, which we call the representation dimension
and denote by RepDim(C), characterizes (up to constants) the sample size necessary and sufficient
for privately learning the class C. We also show that for concepts defined over a finite domain, the
difference between the sizes of the best deterministic and probabilistic representation is bounded.
Namely, that if C is a concept class over the domain {0, 1}d, then there exists a deterministic
representation of C of size O(RepDim(C) + ln d). Thus, for classes whose smallest deterministic
representation is of size ω(ln d), the size of the smallest deterministic representation characterizes
the sample complexity of private learning of the class.

The notion of probabilistic representation applies not only to private learning, but also to
optimization problems. We consider a scenario where there is a domain X, a database S of m
records, each taken from the domain X, a set of solutions F , and a quality function q : X∗ ×F →
[0, 1] that we wish to maximize. If the exponential mechanism is used for (approximately) solving
the problem, then the size of the database should be Ω(ln |F|) in order to achieve a reasonable
approximation. Using our notions of a representation of F and of a probabilistic representation
of F , one can reduce the size of the minimal database without paying too much in the quality of
the solution. Interestingly, a similar notion to representation, called “solution list algorithms”, was
considered in [2] for constructing secure protocols for search problems while leaking only a few bits
on the input. Curiously, their notion of leakage is very different from that of differential privacy.

We give two examples of such optimization problems. First, an example inspired by [2]: each
record in the database is a clause with exactly 3 literals and we want to find an assignment satisfying
at least 7/8 fraction of the clauses while protecting the privacy of the clauses. A construction of [2]
yields a deterministic representation for this problem where the size of the database can be much
smaller. Using a probabilistic representation, we can give a good assignment even for databases
of constant size. This example is a simple instance of a scenario, where each individual has a
preference on the solution and we want to choose a solution maximizing the number of individuals
whose preference are met, while protecting the privacy of the preference. Another example of
optimization is sanitization, where given a database we want to publish a synthetic database, which
gives a similar utility as the original database while protecting the privacy of the individual records
of the database. Using our techniques, we study the minimal database size for which sanitization
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gives reasonable performance with respect to a given family of queries.

Open Problem. We still do not know the relation between this dimension and the VC dimension.
By Sauer’s Lemma, if C is a concept class over {0, 1}d, then the number of functions in C is at most
exp(d·VC(C)). By [17], there is a private learning algorithm for C whose sample size is O(d·VC(C)),
thus, the probabilistic representation dimension of C is O(d ·VC(C)). We do not know if there is a
class C such that RepDim(C) ≫ VC(C). A candidate for such separation appears in [1].

2 Preliminaries

Notation. We use Oγ(g(n)) as a shorthand for O(h(γ) · g(n)) for some non-negative function h.
Given a set B of cardinality r, and a distribution P on {1, 2, . . . , r}, we use the notation b ∈P B to
denote a random element of B chosen according to P.

2.1 Preliminaries from Privacy

A database is a vector S = (z1, . . . , zm) over a domain X, where each entry zi ∈ S represents
information contributed by one individual. Databases S1 and S2 are called neighboring if they
differ in exactly one entry. An algorithm preserves differential privacy if neighboring databases
induce nearby outcome distributions. Formally,

Definition 2.1 (Differential Privacy [12]). A randomized algorithm A is ǫ-differentially private if
for all neighboring databases S1, S2, and for all sets F of outputs,

Pr[A(S1) ∈ F ] ≤ exp(ǫ) · Pr[A(S2) ∈ F ]. (1)

The probability is taken over the random coins of A.

An immediate consequence of the definition is that for any two databases S1, S2 ∈ Xm, and for
all sets F of outputs,

Pr[A(S1) ∈ F ] ≥ exp(−ǫm) · Pr[A(S2) ∈ F ].

2.2 Preliminaries from Learning Theory

Let Xd = {0, 1}d. A concept c : Xd → {0, 1} is a function that labels examples taken from the
domain Xd by either 0 or 1. A concept class C over Xd is a class of concepts mapping Xd to {0, 1}.

PAC learning algorithms are given examples sampled according to an unknown probability dis-
tribution D over Xd, and labeled according to an unknown target concept c ∈ C. The generalization
error of a hypothesis h : Xd → {0, 1} is defined as

errorD(c, h) = Pr
x∈DXd

[h(x) 6= c(x)].

For a labeled sample S = (xi, yi)
m
i=1, the empirical error of h is

errorS(h) =
1

m
|{i : h(xi) 6= yi}|.

Definition 2.2. An α-good hypothesis for c and D is a hypothesis h such that errorD(c, h) ≤ α.
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Definition 2.3 (PAC Learning [20]). Algorithm A is an (α, β)-PAC learner for a concept class C
over Xd using hypothesis class H and sample size m if for all concepts c ∈ C, all distributions D
on Xd, given an input of m samples S = (z1, . . . , zm), where zi = (xi, c(xi)) and xi are drawn i.i.d.
from D, algorithm A outputs a hypothesis h ∈ H satisfying

Pr[errorD(c, h) ≤ α] ≥ 1− β.

The probability is taken over the random choice of the examples in S according to D and the coin
tosses of the learner A.

Definition 2.4. An algorithm satisfying Definition 2.3 with H ⊆ C is called a proper PAC learner;
otherwise it is called an improper PAC learner.

2.3 Private Learning

As a private learner is a PAC learner, its outcome hypothesis should also be a good predictor of
labels. Hence, the privacy requirement from a private learner is not that an application of the
hypothesis h on a new sample (pertaining to an individual) should leak no information about the
sample.

Definition 2.5 (Private PAC Learning [17]). Let A be an algorithm that gets an input S =
(z1, . . . , zm). Algorithm A is an (α, β, ǫ)-PPAC learner for a concept class C over Xd using hy-
pothesis class H and sample size m if

Privacy. Algorithm A is ǫ-differentially private (as formulated in Definition 2.1);

Utility. Algorithm A is an (α, β)-PAC learner for C using H and sample size m (as formulated
in Definition 2.3).

2.4 The Exponential Mechanism

We next describe the exponential mechanism of McSherry and Talwar [18]. We present its private
learning variant; however, it can be used in more general scenarios. The goal here is to chooses a
hypothesis h ∈ H approximately minimizing the empirical error. The choice is probabilistic, where
the probability mass that is assigned to each hypothesis decreases exponentially with its empirical
error.

Inputs: a privacy parameter ǫ, a hypothesis class H, and m labeled samples S = (xi, yi)
m
i=1.

1. ∀h ∈ H define q(S, h) = |{i : h(xi) = yi}|.

2. Randomly choose h ∈ H with probability

exp (ǫ · q(S, h)/2)∑
f∈H exp (ǫ · q(S, f)/2)

.

Proposition 2.6. Denote ê , minf∈H{errorS(f)}. The probability that the exponential mechanism
outputs a hypothesis h such that errorS(h) > ê+∆ is at most |H| · exp(−ǫ∆m/2). Moreover, The
exponential mechanism is ǫ differentially private.
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2.5 Concentration Bounds

Let X1, . . . ,Xn be independent random variables where Pr[Xi = 1] = p and Pr[Xi = 0] = 1 − p
for some 0 < p < 1. Clearly, E[

∑
iXi] = pn. Chernoff and Hoeffding bounds show that the sum is

concentrated around this expected value:

Pr
[∑

i
Xi > (1 + δ)pn

]
≤ exp

(
−pnδ2/3

)
for δ > 0,

Pr
[∑

i
Xi < (1− δ)pn

]
≤ exp

(
−pnδ2/2

)
for 0 < δ < 1,

Pr
[∣∣∣
∑

i
Xi − pn

∣∣∣ > δ
]
≤ 2 exp

(
−2δ2/n

)
for δ ≥ 0.

The first two inequalities are known as the multiplicative Chernoff bounds [9], and the last inequality
is known as the Hoeffding bound [16].

3 The Sample Complexity of Private Learners

In this section we present a combinatorial measure of a concept class C that characterizes the
sample complexity necessary and sufficient for privately learning C. The measure is a probabilistic
representation of the class C. We start with the notation of deterministic representation from [3].

Definition 3.1 ([3]). A hypothesis class H is an α-representation for a class C if for every c ∈ C
and every distribution D on Xd there exists a hypothesis h ∈ H such that errorD(c, h) ≤ α.

Example 3.2 (POINTd). For j ∈ Xd, define cj : Xd → {0, 1} as cj(x) = 1 if x = j, and cj(x) = 0
otherwise. Define POINTd = {cj}j∈Xd

. In [3] it was shown that for α < 1/2, every α-representation
for POINTd must be of cardinality at least d, and that an α-representation Hd for POINTd exists
where |Hd| = O(d/α2).

The above representation can be used for non-private learning, by taking a big enough sample
and finding a hypothesis h ∈ Hd minimizing the empirical error. For private learning it was shown
in [3] that a sample of size Oα,β,ǫ(log |Hd|) suffices, with a learner that employs the exponential
mechanism to choose a hypothesis from Hd.

Definition 3.3. For a hypothesis class H we denote size(H) = ln |H|. We define the Deterministic
Representation Dimension of a concept class C as

DRepDim(C) = min
{
size(H) : H is a

1

4
-representation for C

}
.

Remark 3.4. Choosing 1
4 is arbitrary; we could have chosen any (smaller than 1

2) constant.

Example 3.5. By the results of [3], stated in the previous example, DRepDim(POINTd) = θ(ln(d)).

We are now ready to present the notion of a probabilistic representation. The idea behind this
notion is that we have a list of hypothesis classes, such that for every concept c and distribution
D, if we sample a hypothesis class from the list, then with high probability it contains a hypothesis
that is close to c.
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Definition 3.6. Let P be a distribution over {1, 2, . . . , r}, and let H = {H1,H2, . . . ,Hr} be a
family of hypothesis classes (every Hi ∈ H is a set of boolean functions). We say that (H ,P) is
an (α, β)-probabilistic representation for a class C if for every c ∈ C and every distribution D on
Xd:

Pr
P

[∃h ∈ Hi s.t. errorD(c, h) ≤ α] ≥ 1− β.

The probability is over randomly choosing a set Hi ∈P H .

Remark 3.7. As we will see in Section3.1, the existence of such a probabilistic representation
(H ,P) for a concept class C implies the existence of a private learning algorithm for C with sample
complexity that depends on the cardinality of the hypothesis classes Hi ∈ H . The sample complexity
will not depend on r = |H |. Nevertheless, in Section 4 we will see that there always exists a
probabilistic representation in which r is bounded.

Example 3.8 (POINTd). In Section 7 we construct for every α and every β a pair (H ,P) that
(α, β)-probabilistically represents the class POINTd, where H contains all the sets of at most 4

α ln(1/β)
boolean functions.

Definition 3.9. Let H = {H1,H2, . . . ,Hr} be a family of hypothesis classes. We denote |H | = r,
and size(H ) = max{ ln |Hi| : Hi ∈ H }. We define the Representation Dimension of a concept
class C as

RepDim(C) = min



 size(H ) :

∃P s.t. (H ,P) is a
(14 ,

1
4)-probabilistic

representation for C



 .

Remark 3.10. Choosing α = β = 1
4 is arbitrary; we could have chosen any two (smaller than 1

2)
constants.

Example 3.11 (POINTd). The size of the probabilistic representation mentioned in Example 3.8 is
ln( 4α ln(1/β)). Placing α = β = 1

4 , we see that the Representation Dimension of POINTd is constant.

3.1 Equivalence of (α, β)-Probabilistic Representation and Private Learning

We now show that RepDim(C) characterizes the sample complexity of private learners. We start by
showing in Lemma 3.12 that an (α, β)-probabilistic representation of C implies a private learning
algorithm whose sample complexity is the size of the representation. We then show in Lemma 3.16
that if there is a private learning algorithm with sample complexity m, then there is probabilistic
representation of C of size O(m); this lemma implies that RepDim(C) is a lower bound on the
sample complexity. Recall that RepDim(C) is the size of the smallest probabilistic representation
for α = β = 1/4. Thus, to complete the proof we show in Lemma 3.18 that a probabilistic
representation with α = β = 1/4 implies a probabilistic representation for arbitrary α and β.

Lemma 3.12. If there a exists pair (H ,P) that (α, β)-probabilistically represents a class C, then
for every ǫ there exists an algorithm A that (6α, 4β, ǫ)-PPAC learns C with a sample size m =

O
(

1
αǫ(size(H ) + ln( 1β ))

)
.

7



Proof. Let (H ,P) be an (α, β)-probabilistic representation for the class C, and consider the fol-
lowing algorithm A:

Inputs: S = (xi, yi)
m
i=1, and a privacy parameter ǫ.

1. Randomly choose Hi ∈P H .
2. Choose h ∈ Hi using the exp. mechanism with ǫ.

By the properties of the exponential mechanism, A is ǫ-differentially private. We will show that

with sample size m = O
(

1
αǫ(size(H ) + ln( 1β ))

)
, algorithm A is a (6α, 4β)-PAC learner for C. Fix

some c ∈ C and D, and define the following 3 good events:

E1 Hi chosen in step 1 contains at least one hypothesis h s.t. errorS(h) ≤ 2α.

E2 For every h ∈ Hi s.t. errorS(h) ≤ 3α, it holds that errorD(c, h) ≤ 6α

E3 The exponential mechanism chooses an h such that errorS(h) ≤ α+minf∈Hi
{errorS(f)}.

We first show that if those 3 good events happen, algorithm A returns a 6α-good hypothe-
sis. Event E1 ensures the existence of a hypothesis f ∈ Hi s.t. errorS(f) ≤ 2α. Thus, event
E1 ∩ E3 ensures algorithm A chooses (using the exponential mechanism) a hypothesis h ∈ Hi s.t.
errorS(h) ≤ 3α. Event E2 ensures therefore that this h obeys errorD(c, h) ≤ 6α.

We will now show that those 3 events happen with high probability. As (H ,P) is an (α, β)-
probabilistic representation for the class C, the chosen Hi contains a hypothesis h s.t. errorD(c, h) ≤
α with probability at least 1− β; by the Chernoff bound with probability at least 1− exp(−mα/3)
this hypothesis has empirical error at most 2α. Event E1 happens with probability at least (1 −
β)(1 − exp(−mα/3)) > 1− (β + exp(−mα/3)), which is at least (1− 2β) for m ≥ 3

α ln(1/β).
Using the Chernoff bound, the probability that a hypothesis h s.t. errorD(c, h) > 6α has

empirical error ≤ 3α is less than exp(−mα3/4). Using the union bound, the probability that there
is such a hypothesis inHi is at most |Hi|·exp(−mα3/4). Therefore, Pr[E2] ≥ 1−|Hi|·exp(−mα3/4).

For m ≥ 4
3α (ln(

|Hi|
β )), this probability is at least (1− β).

The exponential mechanism ensures that the probability of event E3 is at least 1 − |Hi| ·

exp(−ǫαm/2) (see Section 2.4), which is at least (1− β) for m ≥ 2
αǫ ln(

|Hi|
β ).

All in all, by setting m = 3
αǫ(size(H ) + ln( 1β )) we ensure that the probability of A failing to

output a 6α-good hypothesis is at most 4β.

We will demonstrate the above lemma with two examples:

Example 3.13 (Efficient learner for POINTd). As described in Example 3.8, there exists an (H ,P)
that (α/6, β/4)-probabilistically represents the class POINTd, where size(H ) = Oα,β,ǫ(1). By Lemma
3.12, there exists an algorithm that (α, β, ǫ)-PPAC learns C with sample size m = Oα,β,ǫ(1).

The existence of an algorithm with sample complexity O(1) was already proven in [3]. Moreover,
assuming the existence of oneway functions, their learner is efficient. Our constructions yields an
efficient learner, without assumptions. To see this, consider again algorithm A presented in the
above proof, and note that as size(H ) is constant, step 2 could be done in constant time. Step
1 can be done efficiently as we can efficiently sample a set Hi ∈P H . In Claim 7.1 we initially
construct a probabilistic representation in which the description of every hypothesis is exponential in
d. The representation is than revised using pairwise independence to yield a representation in which
every hypothesis h has a short description, and given x the value h(x) can be computed efficiently.
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Example 3.14 (POINTN). Consider the class POINTN, which is exactly like POINTd, only over the
natural numbers. By results of [8, 3], it is impossible to properly PPAC learn the class POINTN. Our
construction can yield an (inefficient) improper private learner for POINTN with Oα,β,ǫ(1) samples.
The details are deferred to Section 7.

The next lemma shows that a private learning algorithm implies a probabilistic representation.
This lemma can be used to lower bound the sample complexity of private learners.

Lemma 3.15. If there exists an algorithm A that (α, 12 , ǫ)-PPAC learns a concept class C with a
sample size m, then there exists a pair (H ,P) that (α, 1/4)-probabilistically represents the class C
such that size(H ) = O (mǫ).

Proof. Let A be an (α, 12 , ǫ)-PPAC learner for a class C using hypothesis class F whose sample
size is m. For a target concept c ∈ C and a distribution D on Xd, we define G as the set of all
hypotheses h ∈ F such that errorD(c, h) ≤ α. Fix some c ∈ C and a distribution D on Xd. As
A is an (α, 12)-PAC learner, PrD,A [A(S) ∈ G] ≥ 1

2 , where the probability is over A’s randomness
and over sampling the examples in S (according to D). Therefore, there exists a database S of
m samples such that PrA [A(S) ∈ G] ≥ 1

2 , where the probability is only over the randomness of

A. As A is ǫ-differentially private, PrA

[
A(~0) ∈ G

]
≥ e−mǫ · PrA [A(S) ∈ G] ≥ 1

2e
−mǫ, where ~0 is a

database with m zeros.1 That is, PrA

[
A(~0) /∈ G

]
≤ 1− 1

2e
−mǫ. Now, consider a set H containing

the outcomes of 2 ln(4)emǫ executions of A(~0). The probability that H does not contain an α-good
hypothesis is at most (1 − 1

2e
−mǫ)2 ln(4)e

mǫ
≤ 1

4 . Thus, H = {H ⊆ F : |H| ≤ 2 ln(4)emǫ}, and P,

the distribution induced by A(~0), are an (α, 1/4)-probabilistic representation for class C. It follows
that size(H ) = max{ ln |H| : H ∈ H } = ln(2 ln(4)) +mǫ.

The above lemma yields a lower bound of Ω
(
1
ǫ RepDim(C)

)
on the sample complexity of private

learners for a concept class C. To see this, fix α ≤ 1
4 and let A be an (α, 12 , ǫ)-PPAC learner for C

with sample size m. By the above lemma, there exists a pair (H ,P) that (α, 1/4)-probabilistically
represents C s.t. size(H ) = ln(2 ln(4))+mǫ. Therefore, by definition, RepDim(C) ≤ ln(2 ln(4))+mǫ.
Thus, m ≥ 1

ǫ (RepDim(C) − ln(2 ln(4))) = Ω
(
1
ǫ RepDim(C)

)
.

In order to refine this lower bound (and incorporate α in it), we will need a somewhat stronger
version of this lemma:

Lemma 3.16. Let α ≤ 1/4. If there exists an algorithm A that (α, 12 , ǫ)-PPAC learns a concept class
C with a sample size m, then there exists a pair (H ,P) that (1/4, 1/4)-probabilistically represents
the class C such that size(H ) = O (mǫα).

Proof. Let A be an (α, 12 , ǫ)-PPAC learner for the class C using hypothesis class F whose sample

size is m. Without loss of generality, we can assume that m ≥ 3 ln(4)
4α (since A can ignore part of

the sample). For a target concept c ∈ C and a distribution D on Xd, we define

Gα
D = {h ∈ F : errorD(c, h) ≤ α}.

Fix some c ∈ C and a distribution D on Xd, and define the following distribution D̃ on Xd:

Pr
D̃
[x] =

{
1− 4α+ 4α · PrD[x], x = 0d.

4α · PrD[x], x 6= 0d.

1Choosing ~0 is arbitrary; we could have chosen any database.
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Note that for every x ∈ Xd,

Pr
D̃
[x] ≥ 4α · Pr

D
[x]. (2)

As A is an (α, 12)-PAC learner, it holds that

Pr
D̃,A

[
A(S) ∈ Gα

D̃

]
≥

1

2
,

where the probability is over A’s randomness and over sampling the examples in S (according to
D̃). In addition, by inequality (2), every hypothesis h with errorD(c, h) > 1/4 has error strictly
greater than α under D̃:

errorD̃(c, h) ≥ 4α · errorD(c, h) > α.

So, every α-good hypothesis for c and D̃ is a 1
4 -good hypothesis for c and D. That is, Gα

D̃
⊆ G

1/4
D .

Therefore, Pr
D̃,A

[
A(S) ∈ G

1/4
D

]
≥ 1

2 .

We say that a database S of m labeled examples is good if the unlabeled example 0d appears in
S at least (1 − 8α)m times. Let S be a database constructed by taking m i.i.d. samples from D̃,
labeled by c. By the Chernoff bound, S is good with probability at least 1− exp(−4αm/3). Hence,

Pr
D̃,A

[
(A(S) ∈ G

1/4
D ) ∧ (S is good)

]
≥

1

2
− exp(−4αm/3) ≥

1

4
.

Therefore, there exists a database Sgood of m samples that contains the unlabeled sample 0d

at least (1 − 8α)m times, and PrA

[
A(Sgood) ∈ G

1/4
D

]
≥ 1

4 , where the probability is only over the

randomness of A. All of the examples in Sgood (including the example 0d) are labeled by c.
For σ ∈ {0, 1}, denote by ~0σ a database containing m copies of the example 0d labeled as σ. As

A is ǫ-differentially private, and as the target concept c labels the example 0d by either 0 or 1, for
at least one σ ∈ {0, 1} it holds that

Pr
A
[A(~0σ) ∈ G

1/4
D ] ≥ exp(−8αǫm) · Pr

A

[
A(Sgood) ∈ G

1/4
D

]

≥ exp(−8αǫm) · 1/4. (3)

That is, PrA[A(~0σ) /∈ G
1/4
D ] ≤ 1 − 1

4e
−8αǫm. Now, consider a set H containing the outcomes of

4 ln(4)e8αǫm executions of A(~00), and the outcomes of 4 ln(4)e8αǫm executions of A(~01). The proba-
bility that H does not contain a 1

4 -good hypothesis for c and D is at most (1− 1
4e

−8αǫm)4 ln(4)e
8αǫm

≤
1
4 . Thus, H =

{
H ⊆ F : |H| ≤ 2 · 4 ln(4)e8αǫm

}
, and P, the distribution induced by A(~00) and

A(~01), are a (1/4, 1/4)-probabilistic representation for the class C. Note that the value c(0d) is
unknown, and can be either 0 or 1. Therefore the construction uses the two possible values (one of
them correct).

It holds that size(H ) = max{ ln |H| : H ∈ H } = ln(8 ln(4)) + 8αǫm = O (mǫα).

Lemma 3.18 shows how to construct a probabilistic representation for an arbitrary α and β
from a probabilistic representation with α = β = 1/4; in other words we boost α and β. The proof
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of this lemma is combinatorial. It allows us to start with a private learning algorithm with constant
α and β, move to a representation, use the combinatorial boosting, and move back to a private
algorithm with small α and β. This should be contrasted with the private boosting of [13] which is
algorithmic and more complicated (however, the algorithm of Dwork et al. [13] is computationally
efficient).

We first show how to construct a probabilistic representation for arbitrary β from a probabilistic
representation with β = 1/4.

Claim 3.17. For every concept class C and for every β, there exists a pair (H ,P) that (1/4, β)-
probabilistically represents C where size(H ) ≤ RepDim(C) + ln ln(1/β).

Proof. Let β < 1/4, and let (H 0,P0) be a (14 ,
1
4 )- probabilistic representation for C with size(H 0) =

RepDim(C) , k0 (that is, for every H0
i ∈ H 0 it holds that |H0

i | ≤ ek0). Denote H 0 =
{H0

1,H
0
2, . . . ,H

0
r}, and consider the following family of hypothesis classes:

H
1 =

{
H0

i1 ∪ · · · ∪ H0
iln(1/β)

: 1 ≤ i1 ≤ · · · ≤ iln(1/β) ≤ r
}
.

Note that for every H1
i ∈ H 1 it holds that |H1

i | ≤ ln(1/β)ek0 and so size(H 1) , k1 ≤ k0 +
ln ln(1/β). We will now show an appropriate distribution P1 on H 1 s.t. (H 1,P1) is a (14 , β)-
probabilistic representation for C. To this end, consider the following process for randomly choosing
an H1 ∈ H 1:

1. Denote M = ln(1/β)
2. For i = 1, . . . ,M :

Randomly choose H0
i ∈P0 H 0.

3. Return H1 =
⋃M

i=1 H
0
i .

The above process induces a distribution on H 1, denoted as P1. As H 0 is a (14 ,
1
4 )-probabilistic

representation for C, we have that

Pr
P1

[
∄h ∈ H1 s.t. errorD(c, h) ≤ 1/4

]
=

=
M∏

i=1

Pr
P0

[
∄h ∈ H0

i s.t. errorD(c, h) ≤ 1/4
]
≤

≤

(
1

4

)M

≤ β.

Lemma 3.18. For every concept class C, every α, and every β, there exists (H ,P) that (α, β)-
probabilistically represents C where

size(H ) = O
(
ln(

1

α
) ·
(
RepDim(C) + ln ln ln(

1

α
) + ln ln(

1

β
)
))

.

Proof. Let C be a concept class, and let (H 1,P1) be a (14 , β/T )-probabilistic representation for C

(where T will be set later). By Claim 3.17, such a representation exists with size(H 1) , k1 ≤
RepDim(C) + ln ln(T/β). We use H 1 and P1 to create an (α, β)- probabilistic representation for
C. We begin with two notations:
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1. For T hypotheses h1, . . . , hT we denote by majh1,...,hT
the majority hypothesis. That is, majh1,...,hT

(x) =
1 if and only if |{hi : hi(x) = 1}| ≥ T/2.

2. For T hypothesis classes H1, . . . ,HT we denote

MAJ(H1, . . . ,HT ) =
{
majh1,...,hT

: ∀1≤i≤T hi ∈ Hi

}
.

Consider the following family of hypothesis classes:

H =

{
MAJ(Hi1 , . . . ,HiT ) : Hi1 , . . . ,HiT ∈ H

1

}
.

Moreover, denote the distribution on H induced by the following random process as P:

For j = 1, . . . , T :
Randomly choose Hij ∈P1 H 1

Return MAJ(Hi1 , . . . ,HiT ).

Next we show that (H ,P) is an (α, β)-probabilistic representation for C: For a fixed pair of a
target concept c and a distribution D, randomly choose Hi1 , . . . ,HiT ∈P1 H 1. We now show that
with probability at least (1−β) the set MAJ(Hi1 , . . . ,HiT ) contains at least one α-good hypothesis
for c,D.

To this end, denote D1 = D and consider the following thought experiment, inspired by the
Adaboost Algorithm of [15]:

For t = 1. . . . , T :

1. Fail if Hit does not contain a 1
4 -good hypothesis for c,Dt.

2. Denote by ht ∈ Hit a
1
4 -good hypothesis for c,Dt.

3. Dt+1(x) =

{
2Dt(x), if ht(x) 6= c(x).(
1−

errorDt(c,ht)

1−errorDt (c,ht)

)
Dt(x), otherwise.

Note that as D1 is a probability distribution on Xd; the same is true for D2,D3, . . . ,DT . As
(H 1,P1) is a (14 , β/T )-probabilistic representation for C, the failure probability of every iteration
is at most β/T . Thus (using the union bound), with probability at least (1−β) the whole thought
experiment will succeed, and in this case we show that the error of hfin = majh1,...,hT

is at most α.
Consider the set R = {x : hfin(x) 6= c(x)} ⊆ Xd. This is the set of points on which at least

T/2 of h1, . . . , hT err. Next consider the partition of R to the following sets:

Rt =
{
x ∈ R :

(
ht(x) 6= c(x)

)
∧
(
∀i>t hi(x) = c(x)

)}
.

That is, Rt contains the points x ∈ R on which ht is last to err. Clearly Dt(Rt) ≤ 1/4, as Rt is a
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subset of the set of points on which ht errs. Moreover,

Dt(Rt) ≥ D1(Rt) · 2
T/2 ·

(
1−

errorDt(c, ht)

1− errorDt(c, ht)

)t−T/2

≥ D1(Rt) · 2
T/2 ·

(
1−

1/4

1− 1/4

)t−T/2

≥ D1(Rt) · 2
T/2 ·

(
1−

1/4

1− 1/4

)T/2

= D(Rt) ·

(
4

3

)T/2

,

so,

D(Rt) ≤ Dt(Rt) ·

(
4

3

)−T/2

≤
1

4
·

(
4

3

)−T/2

.

Finally,

errorD(c, hfin) = D(R) =
T∑

t=T/2

D(Rt) ≤

≤
T

2
·
1

4
·

(
4

3

)−T/2

=
T

8
·

(
4

3

)−T/2

.

Choosing T = 14 ln( 2α ), we get that errorD(c, hfin) ≤ α. Hence, (H ,P) is an (α, β)-probabilistic

representation for C. Moreover, for every Hi ∈ H we have that |Hi| ≤
(
ek1
)T

, and so

size(H ) ≤ k1 · T ≤
(
RepDim(C) + ln ln(T/β)

)
T

= O
(
ln(

1

α
) ·
(
RepDim(C) + ln ln ln(

1

α
) + ln ln(

1

β
)
))

.

The next theorem states the main result of this section – RepDim characterizes the sample
complexity of private learning.

Theorem 3.19. Let C be a concept class. Θ̃β

(
RepDim(C)

αǫ

)
samples are necessary and sufficient for

the private learning of the class C.

Proof. Fix some α ≤ 1/4, β ≤ 1/2, and ǫ. By Lemma 3.18, there exists a pair (H ,P) that

(α6 ,
β
4 )-represent class C, where size(H ) = O

(
ln(1/α) ·

(
RepDim(C) + ln ln ln(1/α) + ln ln(1/β)

))
.

Therefore, by Lemma 3.12, there exists an algorithm A that (α, β, ǫ)-PPAC learns the class C with
a sample size

m = Oβ

(
1

αǫ
ln(

1

α
) ·

(
RepDim(C) + ln ln ln(

1

α
)

))
.

For the lower bound, let A be an (α, β, ǫ)-PPAC learner for the class C with a sample size m,
where α ≤ 1/4 and β ≤ 1/2. By Lemma 3.16, there exists an (H ,P) that (14 ,

1
4)- probabilistically
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represents the class C and size(H ) = ln(8)+ln ln(4)+8αǫm. Therefore, by definition, RepDim(C) ≤
ln(8 ln(4)) + 8αǫm. Thus,

m ≥
1

8αǫ
·
(
RepDim(C)− ln(8 ln(4))

)
= Ω

(
RepDim(C)

αǫ

)
.

4 From a Probabilistic Representation to a Deterministic Repre-

sentation

In this section we will establish a connection between the (probabilistic) representation dimension
of a class and its deterministic representation dimension.

Observation 4.1. Let (H ,P) be an (α, β)-probabilistic representation for a concept class C. Then,
B =

⋃
Hi∈H

Hi is an α-representation of C.

Proof. As (H ,P) is an (α, β)-probabilistic representation for C, for every c and every D

Pr
P
[∃h ∈ Hi s.t errorD(c, h) ≤ α] ≥ 1− β > 0.

The probability is over choosing a set Hi ∈P H . In particular, for every c and every D there exists
an Hi ∈ H that contains an α-good hypothesis.

The simple construction in Observation 4.1 may result in a very large deterministic represen-
tation. For example, in Claim 7.1 we show an (H ,P) that (α, β)- probabilistically represents
the class POINTd, where H contains all the sets of at most 4

α ln( 1β ) boolean functions. While⋃
Hi∈H

Hi = 2Xd is indeed an α-representation for POINTd, it is extremely over-sized.
We will show that it is not necessary to take the union of all the Hi’s in H in order to get an

α-representation for C. As (H ,P) is an (α, β)-probabilistic representation, for every c and every
D, with probability at least 1 − β a randomly chosen Hi ∈P H contains an α-good hypothesis.
The straight forward strategy here is to first boost β as in Claim 3.17, and then use the union
bound over all possible c ∈ C and over all possible distributions D on Xd. Unfortunately, there are
infinitely many such distributions, and the proof will be somewhat more complicated.

Definition 4.2. Let H = {H1,H2, . . . ,Hr} be a family of hypothesis classes, and P be a distribu-
tion over {1, . . . , r}. We will denote the following non private algorithm as Learner(H ,P,m, γ):

Input: a sample S = (xi, yi)
m
i=1.

1. Randomly choose Hi ∈P H .
2. If for every h ∈ Hi errorS(h) > γ, then fail.
3. Return h ∈ Hi minimizing errorS(h).

We will say that Learner(H ,P,m, γ) is β-successful for a class C over Xd, if for every c ∈ C and
every distribution D on Xd, given an input sample drawn i.i.d. according to D and labeled by c,
algorithm Learner fails with probability at most β.
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Claim 4.3. If (H ,P) is an (α, β)-probabilistic representation for a class C, then, for m ≥
3
α ln(1/β), algorithm Learner(H ,P,m, 2α) is 2β-successful for C.

Proof. We will show that with probability at least 1 − 2β, the set Hi (chosen in Step 1) contains
at least one hypothesis h s.t. errorS(h) ≤ 2α. As (H ,P) is an (α, β)-probabilistic representation
for class C, the chosen Hi will contain a hypothesis h s.t. errorD(c, h) ≤ α with probability at least
1−β; by the Chernoff bound with probability at least 1−exp(−mα/3) this hypothesis has empirical
error at most 2α. The set Hi contains a hypothesis h s.t. errorS(h) ≤ 2α with probability at least
(1−β)(1−exp(−mα/3)) > 1−(β+exp(−mα/3)), which is at least (1−2β) for m ≥ 3

α ln(1/β).

Claim 4.4. Let H be a family of hypothesis classes, and P a distribution on it. Let γ, β and m be
such that m ≥ 4

γ (size(H ) + ln( 1β )). If Learner(H ,P,m, γ) is β-successful for a class C over Xd,

then there exists Ĥ ⊆ H and a distribution P̂ on it, s.t. Learner(Ĥ , P̂ ,m, γ) is a (2γ, 3β)-PAC

learner for C and
∣∣∣Ĥ

∣∣∣ = d·m
β2 .

Proof. For every input S = (xi, yi)
m
i=1, denote by pS the probability of Learner(H ,P,m, γ)

failing on step 2 (the probability is only over the choice of Hi ∈P H in the first step). As
Learner(H ,P,m, γ) is β-successful,

Pr
P,D

[
Learner(H ,P,m, γ) fails

]
=
∑

S

Pr
D
[S] · pS ≤ β.

Consider the following process, denoted by Proc, for randomly choosing a multiset H̃ of size t (t
will be set later):

For i = 1, . . . , t :
Randomly choose Hi ∈P H

Return H̃ = (H1,H2, ...,Ht).

Denote by Ut the uniform distribution on {1, 2, . . . , t}. As before, for every input S = (xi, yi)
m
i=1, de-

note by p̃S the probability of Learner(H̃ ,Ut,m, γ) failing on its second step (again, the probability

is only over the choice of Hi ∈Ut H̃ in the first step). Using those notations:

Pr
Ut,D

[
Learner(H̃ ,Ut,m, γ) fails

]
=
∑

S

Pr
D
[S] · p̃S.

Fix a sample S. As the choice of Hi ∈Ut H̃ is uniform,

p̃S =

∣∣∣
{
Hi ∈ H̃ : ∀h ∈ Hi errorS(h) > γ

}∣∣∣
∣∣∣H̃

∣∣∣
.

Using the Hoeffding bound,

Pr
Proc

[
|p̃S − pS| ≥ β

]
≤ 2e−2tβ2

.

The probability is over choosing the multiset H̃ . There are at most 2m(d+1) samples of size m (as
every entry in the sample is an element of Xd, concatenated with a label bit). Using the union
bound over all possible samples S,

Pr
Proc

[
∃S s.t. |p̃S − pS | ≥ β

]
≤ 2m(d+1) · 2 · e−2tβ2

.
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For t ≥ m·d
β2 the above probability is strictly less than 1. This means that for t = m·d

β2 there

exists a multiset Ĥ such that |p̂S − pS | ≤ β for every sample S. We will show that for this Ĥ ,

Learner(Ĥ ,Ut,m, γ) is a (2γ, 3β)-PAC learner. Fix a target concept c ∈ C and a distribution D
on Xd. Define the following two good events:

E1 Learner(Ĥ ,Ut,m, γ) outputs a hypothesis h such that errorS(h) ≤ γ.

E2 For every h ∈ Hi s.t. errorS(h) ≤ γ, it holds that errorD(c, h) ≤ 2γ.

Note that if those two events happen, Learner(Ĥ ,Ut,m, γ) returns a 2γ-good hypothesis for c and
D. We will show that those two events happen with high probability. We start by bounding the
failure probability of Learner(Ĥ ,Ut,m, γ).

Pr
Ut,D

[
Learner(Ĥ ,Ut,m, γ) fails

]

=
∑

S

Pr
D
[S] · p̂S

≤
∑

S

Pr
D
[S] · (pS + β)

= Pr
P,D

[
Learner(H ,P,m, γ) fails

]
+ β ≤ 2β.

When Learner(Ĥ ,Ut,m, γ) does not fail, it returns a hypothesis h with empirical error at most
γ. Thus, Pr[E1] ≥ 1− 2β.

Using the Chernoff bound, the probability that a hypothesis h with errorD(c, h) > 2γ has
empirical error ≤ γ is less than exp(−mγ/4). Using the union bound, the probability that there is
such a hypothesis in Hi is at most |Hi| · exp(−mγ/4). Therefore, Pr[E2] ≥ 1− |Hi| · exp(−mγ/4).

For m ≥ 4
γ ln( |Hi|

β ), this probability is at least (1− β).
All in all, the probability of Learner(H ,P,m, γ) failing to output a 2γ-good hypothesis is at

most 3β.

Theorem 4.5. If there exists a pair (H ,P) that (α, β)-probabilistically represents a class C over

Xd (where |H | might be very big), then there exists a pair (Ĥ , P̂) that (4α, 6β)-probabilistically

represents C, where Ĥ ⊆ H , and

∣∣∣Ĥ
∣∣∣ = 3d

4αβ2

(
size(H ) + ln(

1

β
)

)
.

Proof. Let (H ,P) be an (α, β)-probabilistic representation for a class C. Set m = 3
α(size(H ) +

ln( 1β )). By Claim 4.3, Learner(H ,P,m, 2α) is 2β-successful for class C. By Claim 4.4, there exists

an Ĥ ⊆ H and a distribution P̂ on it, such that Learner(Ĥ , P̂ ,m, 2α) is a (4α, 6β)-PAC learner

for C and
∣∣∣Ĥ

∣∣∣ = d·m
4β2 = 3d

4αβ2 (size(H ) + ln( 1β )).

Assume towards contradiction that (Ĥ , P̂) does not (4α, 6β)-represent C. So, there exist a
concept c ∈ C and a distribution D s.t., with probability strictly greater than 6β, a randomly
chosen Hi ∈P̂ Ĥ does not contain a 4α-good hypothesis for c,D. Therefore, for those c and D,

Learner(Ĥ , P̂ ,m, 2α) will fail to return a 4α-good hypothesis with probability strictly greater
than 6β.
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Theorem 4.6. For every class C over Xd there exists a 1
4-representation B such that size(B) =

O(ln(d) + RepDim(C)).

Proof. By Lemma 3.18, there exists a pair (H ,P) that ( 1
16 ,

1
12)-probabilistically represents C such

that size(H ) = O(RepDim(C)). Using Theorem 4.5, there exists a pair (Ĥ , P̂) that (14 ,
1
2)-

probabilistically represents C, such that size(Ĥ ) = size(H ) and

∣∣∣Ĥ
∣∣∣ = O (d · size(H )) .

We can now use Observation 4.1 and construct the set B =
⋃

Hi∈ Ĥ
Hi which is a 1

4 -representation
for the class C. In addition,

|B| = O
(∣∣∣Ĥ

∣∣∣ · esize(H )
)
= O

(
d · size(H ) · esize(H )

)
.

Thus, size(B) = ln |B| = O (ln(d) + RepDim(C)).

Corollary 4.7. For every concept class C over Xd, DRepDim(C) = O(ln(d) + RepDim(C)).

Corollary 4.8. There exists a constant N s.t. for every concept class C over Xd where DRepDim(C) ≥
N log(d), the sample complexity that is necessary and sufficient for privately learning C is Θα,β(DRepDim(C)).

5 Probabilistic Representation for Privately Solving Optimiza-

tion Problems

The notion of probabilistic representation applies not only to private learning, but also to a broader
task of optimization problems. We consider the following scenario:

Definition 5.1. An optimization problem OPT over a universe X and a set of solutions F is
defined by a quality function q : X∗ × F → [0, 1]. Given a database S, the task is to choose a
solution f ∈ F such that q(S, f) is maximized.

Notation. We will refer to the optimization problem defined by a quality function q as OPTq.

Definition 5.2. An α-good solution for a database S is a solution s such that q(S, s) ≥ maxf∈F{q(S, f)}−
α.

Given an optimization problem OPTq, one can use the exponential mechanism to choose a
solution s ∈ F . In general, this method achieves a reasonable solution only for databases of size
Ω(log |F|/ǫ). To see this, consider a case where there exists a database S of m records such that
exactly one solution t ∈ F has a quality of q(S, t) = 1, and every other f ∈ F has a quality of
q(S, f) = 1/2. The probability of the exponential mechanism choosing t is:

Pr[t is chosen] =
exp(ǫm/2)

(|F| − 1) · exp(ǫm/4) + exp(ǫm/2)
.

Unless

m ≥ 4
ǫ ln(|F| − 1) = Ω(1ǫ ln |F|), (4)
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the above probability is strictly less than 1/2. Using our notations of probabilistic representation,
it might be possible to reduce the necessary database size.

Consider using the exponential mechanism for choosing a solution s, not out of F , but rather
from a smaller set of solutions B. Roughly speaking, the factor of ln |F| in requirement (4) will now
be replaced with ln |B|, which corresponds to size of the representation. Therefore, the database
size m should be at least ln |B|/ǫ. So m needs to be bigger than the size of the representation by
at least a factor of 1/ǫ.

In the following analysis we will denote this required gap, i.e., m/ ln |B|, as ∆. We will see
that the existence of a private approximation algorithm implies a probabilistic representation with
1 < ∆ ≈ 1

ǫ , and that a probabilistic representation with ∆ > 1 implies a private approximation
algorithm. Bigger ∆ corresponds to better privacy; however, it might be harder to achieve.

Definition 5.3. Let OPTq be an optimization problem over a universe X and a set of solutions
F . Let B be a set of solutions, and denote size(B) = ln |B|. We say that B is an α-deterministic
representation of OPTq for databases of m elements if for every S ∈ Xm there exists a solution
s ∈ B such that q(S, s) ≥ maxf∈F{q(S, f)} − α.

Definition 5.4. Let B be an α-deterministic representation of OPTq for databases of m elements.
Denote ∆ , m

size(B) . If ∆ > 1, then we say that the ratio of B is ∆.

An α-deterministic representation B with ratio ∆ is required to support all the databases of
m = ∆ · size(B) elements. That is, for every S ∈ Xm, the set B is required to contain at least one
α-good solution.

Fix S ∈ Xm. Intuitively, ∆ controls the ratio between m and number of bits needed to represent
an α-good solution for S. As B contains an α-good solution for S, and assuming B is publicly known,
this solution could be represented with ln |B| = size(B) = m/∆ bits.

Definition 5.5. Let OPTq be an optimization problem over a universe X and a set of solutions
F . Let P be a distribution over {1, 2, . . . , r}, and let B = {B1,B2, . . . ,Br} be a family of solution
sets for OPTq. We denote size(B) = max{ ln |Bi| : Bi ∈ B }. We say that (B,P) is an (α, β)-
probabilistic representation of OPTq for databases of m elements if for every S ∈ Xm:

Pr
P

[
∃s ∈ Bi s.t. q(S, s) ≥ max

f∈F
{q(S, f)} − α

]
≥ 1− β.

Definition 5.6. Let (B,P) be an (α, β)-probabilistic representation of OPTq for databases of m
elements. Denote ∆ , m

size(B) . If ∆ > 1, then we say that the ratio of the representation is ∆.

Definition 5.7. An optimization problem OPTq is bounded if
∣∣∣|S1| · q(S1, f)− |S2| · q(S2, f)

∣∣∣ ≤ 1

for every solution f and every two neighboring databases S1, S2.

We are interested in approximating bounded optimization problems, while guaranteeing differ-
ential privacy:

Definition 5.8. Let OPTq be a bounded optimization problem over a universe X and a set of
solutions F . An algorithm A is an (α, β, ǫ)-private approximation algorithm for OPTq with a
database of m records if:

1. Algorithm A is ǫ-differentially private (as formulated in Definition 2.1);
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2. For every S ∈ Xm, algorithm A outputs with probability at least (1−β) a solution s such that
q(S, s) ≥ maxf∈F{q(S, f)} − α.

Example 5.9 (Sanitization). Consider a class of predicates C over X. A database S contains points
taken from X. A predicate query Qc for c ∈ C is defined as Qc(S) =

1
|S| · |{xi ∈ S : c(xi) = 1}|.

Blum et al. [6] defined a sanitizer (or data release mechanism) as a differentially private algorithm
that, on input a database S, outputs another database Ŝ with entries taken from X. A sanitizer A
is (α, β)-useful for predicates in the class C if for every database S it holds that

Pr
A

[
∀c ∈ C

∣∣Qc(S)−Qc(Ŝ)
∣∣ ≤ α

]
≥ 1− β.

This scenario can be viewed as a bounded optimization problem: The solutions are sanitized
databases. For an input database S and and a sanitized database Ŝ, the quality function is

q(S, Ŝ) = 1−max
c∈C

{
|Qc(S)−Qc(Ŝ)|

}
.

To see that this optimization problem is bounded, note that for every two neighboring databases
S1, S2 of m elements, and every c ∈ C it holds that |Qc(S1) − Qc(S2)| ≤

1
m . Therefore, for every

sanitized database f ,

m · |q(S1, f)− q(S2, f)| = m ·

∣∣∣∣max
c∈C

{|Qc(S1)−Qc(f)|} −max
c∈C

{|Qc(S2)−Qc(f)|}

∣∣∣∣ ≤ 1

The next two lemmas establish an equivalence between a private approximation algorithm and
a probabilistic representation for a bounded optimization problem.

Lemma 5.10. Let OPTq be a bounded optimization problem over a universe X. If there exists a
pair (B,P) that (α, β)-probabilistically represents OPTq for databases of m elements, s.t. the ratio

of (B,P) is ∆ > 1, then for every α̂, β̂, ǫ satisfying

∆ ≥
2

ǫα̂

(
1 +

ln(1/β̂)

size(B)

)
,

there exists an
(
(α+ α̂), (β + β̂), ǫ

)
-approximation algorithm for OPTq with a database of size m.

Proof. Consider the following algorithm A:

Inputs: a database S ∈ Xm, and a privacy parameter ǫ.

1. Randomly choose Bi ∈P B.

2. Choose s ∈ Bi using the exponential mechanism, that is, with probability

exp(ǫ ·m · q(S, s)/2)∑
f∈Bi

exp(ǫ ·m · q(S, f)/2)
.

By the properties of the exponential mechanism, A is ǫ-differentially private. Fix a database
S ∈ Xm, and define the following 2 bad events:
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E1 The set Bi chosen in step 1 does not contain a solution s s.t. q(S, s) ≥ maxf∈F{q(S, f)} −α.

E2 The solution s chosen in step 2 is such that q(S, s) < maxt∈Bi q(S, t)− α̂.

Note that if those two bad events do not occur, algorithm A outputs a solution s such that q(S, s) ≥
maxf∈F{q(S, f)}−α− α̂. As (B,P) is an (α, β)-probabilistic representation of OPTq for databases
of size m, event E1 happens with probability at most β. By the properties of the exponential
mechanism, the probability of event E2 is bounded by |Bi| · exp(−ǫmα̂/2). As m = ∆size(B), this
probability is at most

Pr[E2] ≤ size(B) · exp(−ǫmα̂/2)

= size(B) · exp(−ǫ∆size(B)α̂/2)

≤ size(B) · exp

(
−

(
1 +

ln(1/β̂)

size(B)

)
size(B)

)

= size(B) · exp(− size(B)− ln(1/β̂)) = β̂.

Therefore, algorithm A outputs an (α+α̂)-good solution with probability at least (1−β−β̂).

Lemma 5.11. Let OPTq be an optimization problem. If there exists an (α, β, ǫ)-private approxi-

mation algorithm for OPTq with a database of m records, then for every β̂ satisfying

∆ ,
m

ln( 1
1−β ) + ln ln( 1

β̂
) +m · ǫ

> 1,

there exists a pair (B,P) that (α, β̂)-probabilistically represents OPTq for databases of m elements,
where the ratio of the representation is ∆.

Proof. Let A be an (α, β, ǫ)-private approximation algorithm for OPTq, with a sample size m. Fix
an arbitrary input database S ∈ Xm. Define G as the set of all solutions s, possibly outputted
by A, such that q(S, s) ≥ maxf∈F{q(S, f)} − α. As A is an (α, β, ǫ)-approximation algorithm,

PrA [A(S) ∈ G] ≥ 1−β. As A is ǫ-differentially private, PrA

[
A(~0) ∈ G

]
≥ (1−β)e−mǫ, where ~0 is a

database withm zeros. That is, PrA

[
A(~0) /∈ G

]
≤ 1−(1−β)e−mǫ. Now, consider a set B containing

the outcomes of Γ , 1
1−β ln( 1

β̂
)emǫ executions of A(~0). The probability that B does not contain a

solutions s ∈ G is at most (1−(1−β)e−mǫ)Γ ≤ β̂. Thus, B = {B ⊆ support(A) : |B| ≤ Γ}, and P,
the distribution induced by A(~0), are an (α, β̂)-probabilistic representation of OPTq for databases
with m elements. Moreover, the ratio of the representation is

m

size(B)
=

m

max{ ln |B| : B ∈ B }

=
m

ln( 1
1−β ) + ln ln( 1

β̂
) +mǫ

= ∆.
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5.1 Exact 3SAT

Consider the following bounded optimization problem, denoted as OPTE3SAT: The universe X is
the set of all possible clauses with exactly 3 different literals over n variables, and the set of solutions
F is the set of all possible 2n assignments. Given a database S = (σ1, σ2, . . . , σm) containing m
E3CNF clauses, the quality of an assignment a ∈ F is

q(S, a) =
|{i : a(σi) = 1}|

m
.

Aiming at the (very different) objective of secure protocols for search problems, Beimel et al. [2]
defined the notation of solution-list algorithms, which corresponds to our notation of deterministic
representation. We next rephrase their results using our notations.

R1 For every α > 0 and every ∆ > 1, there exists a set B that (α + 1/8)-deterministically
represents OPTE3SAT for databases of size m = O

(
∆(ln ln(n) + ln(1/α)

)
), and a ratio of ∆.

R2 Let α < 1/2 and ∆ > 1. For every set B that α- deterministically represents OPTE3SAT for
databases of size m with a ratio of ∆, it holds that m = Ω

(
ln ln(n)

)
.

Using (R1) and a deterministic version of Lemma 5.10, for every α, β, ǫ > 0, there exists an(
(1/8 + α), β, ǫ

)
- approximation algorithm for OPTE3SAT with a database of m = Oα,β,ǫ(ln ln(n))

clauses. By (R2), this is the best possible using a deterministic representation.
We can reduce the necessary database size, using a probabilistic representation. Fix a clause

with three different literals. If we pick an assignment at random, then with probability at least
7/8 it satisfies the clause. Now, fix any exact 3CNF formula. If we pick an assignment at random,
then the expected fraction of satisfied clauses is at least 7/8. Moreover, for every 0 < α < 7/8,
the fraction of satisfied clauses is at least (7/8 − α) with probability at least α

α+1/8 . So, if we pick

t = ln(1/β)
ln(α+1/8)+ln(1/α) random assignments, the probability that none of them will satisfy at least

(7/8 − α)m clauses is at most
(

α
α+1/8

)t
= β. So, for every ∆ > 1,

B = {B : B is a set of at most t assignments},

and P, the distribution induced on B by randomly picking t assignments, are an
(
(1/8 + α), β

)
-

probabilistic representation of OPTE3SAT for databases of size ∆ · ln(t) and a ratio of ∆. By Lemma
5.11, for every ǫ there exists an

(
(1/8 + α), β, ǫ

)
-approximation algorithm for OPTE3SAT with a

database of m = oα,β,ǫ(1) clauses.

6 Extensions

6.1 (ǫ, δ)-Differential Privacy

The notation of ǫ-differential privacy was generalized to (ǫ, δ)-differential privacy, where the re-
quirement in inequality (1) is changed to

Pr[A(S1) ∈ F ] ≤ exp(ǫ) · Pr[A(S2) ∈ F ] + δ.
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The proof of Lemma 3.16 remains valid even if algorithm A is only (ǫ, δ)-differential private for

δ ≤ 1
8e

−8αǫm(1− e−ǫ). (5)

To see this, note that inequality (3) changes to

Pr
A

[
A(~0) ∈ G

]
≥

≥

(((
Pr
A
[A(S) ∈ G] · e−ǫ − δ

)
e−ǫ − δ

)
· · ·

)
e−ǫ − δ

≥
1

4
e−8αǫm − δ

(
8αm−1∑

i=0

e−iǫ

)

≥
1

4
e−8αǫm − δ

(
1

1− e−ǫ

)
≥

1

8
e−8αǫm.

The rest of the proof remains almost intact (only minor changes in the constants). With that in
mind, we see that the lower bound showed in Theorem 3.19 for ǫ-differentially private (that is, with
δ = 0) learners also applies for (ǫ, δ)-differentially private learners satisfying inequality (5). That

is, every such learner for a class C must use Ω
(
RepDim(C)

αǫ

)
samples.

When using (ǫ, δ)-differential privacy, δ should be negligible in the security parameter, that
is, in d – the representation length of elements in Xd. Therefore, using (ǫ, δ)-differential privacy
instead of ǫ-differential privacy cannot reduce the sample complexity for PPAC learning a concept
class C whenever RepDim(C) = O (log(d)).

6.2 Probabilistic Representation Using a Hypothesis Class

We will now consider a generalization of our representation notations that can be useful when
considering PPAC learners that use a specific hypothesis class. In particular, those notation can
be useful when considering proper-PPAC learners, that is, a learner that learns a class C using a
hypothesis class B ⊆ C.

Definition 6.1. We define the α-Deterministic Representation Dimension of a concept class C
using a hypothesis class B as

DRepDimα(C,B) = min



size(H) :

H ⊆ B is an
α-representation
for class C



 .

Note that DRepDim 1
4
(C, 2Xd) = DRepDim(C). The dependency on α in the above definition

is necessary: if C is not contained in B then for every small enough α, the hypothesis class B
itself does not α-represents C (and therefore no subset H ⊆ B can α-represent C). Moreover, when
considering the notations of representation using a hypothesis class, our boosting technique for α
does not work (as the boosting uses more complex hypotheses).

Example 6.2. Beimel et al. [3] showed that for every α < 1, every subset H ( POINTd does not
α-represent the class POINTd. Therefore, DRepDimα(POINTd, POINTd) = θ(d) for every α < 1.
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Definition 6.3. A pair (H ,P) is an (α, β)-probabilistic representation for a concept class C using
a hypothesis class B if:

1. (H ,P) is an (α, β)-probabilistic representation for the class C, as formulated in Definition
3.6.

2. Every Hi ∈ H is a subset of B.

Note that whenever B = 2Xd , this definition is identical to Definition 3.6. Using this general
notation, we can restate Lemma 3.12 and Lemma 3.16 as follows:

Lemma 6.4. If there exists a pair (H ,P) that (α, β)- probabilistically represents a class C using a
hypothesis class B, then for every ǫ and every γ there exists an algorithm A that (α+γ, 3β, ǫ)-PPAC
learns C using B and a sample size m = O((size(H ) + ln( 1β ))max{ 1

γǫ ,
1
γ2 }).

Note that in the above lemma the resulting algorithm A has accuracy (α+ γ) as opposed to 6α
in lemma 3.12, where γ is arbitrary. While in section 3 we did not mind the multiplicative factor
of 6 in the accuracy parameter (as we could boost it back), replacing it with an additive factor of
γ might be of value in this section as our boosting technique for the accuracy parameter does not
work here. As an example, consider a representation with α = 1

10 . Without boosting capabilities,
this change makes the difference between the ability to generate an algorithm with α = 6

10 , or an
algorithm with α = 1

10 + 1
1000 .

Proof. Let (H ,P) be an (α, β)-probabilistic representation for class C using a hypothesis class B,
and consider the following algorithm A:

Inputs: S = (xi, yi)
m
i=1, and a privacy parameter ǫ.

1. Randomly choose Hi ∈P H .
2. Choose h ∈ Hi using the exp. mechanism with ǫ.

First note that the support of A is indeed (a subset of) B. By the properties of the exponential
mechanism, A is ǫ-differentially private. Fix some c ∈ C and D, and define the following 3 good
events:

E1 Hi chosen in step 1 contains at least one hypothesis h s.t. errorD(h) ≤ α.

E2 For every h ∈ Hi it holds that |errorS(h)− errorD(c, h)| ≤
γ
3 .

E3 The exponential mechanism chooses an h such that errorS(h) ≤
γ
3 +minf∈Hi

{errorS(f)}.

Note that if those 3 good events happen, algorithm A returns an (α+ γ)-good hypothesis. We will
now show that those 3 events happen with high probability.

As (H ,P) is an (α, β)-probabilistic representation for the class C, event E1 happens with
probability at least 1− β.

Using the Hoeffding bound, event E2 happens with probability at leat 1 − 2|Hi| exp(−
2
9γ

2m).

For m ≥ 9
2γ2 ln(

2|Hi|
β ), this probability is at leat 1− β.

The exponential mechanism ensures that the probability of event E3 is at least 1 − |Hi| ·

exp(−ǫγm/6) (see Section 2.4), which is at least (1− β) for m ≥ 6
γǫ ln(

|Hi|
β ).

All in all, by setting m = 6(size(H ) + ln( 2β ))max{ 1
γ2 ,

1
γǫ} we ensure that the probability of A

failing to output an (α+ γ)-good hypothesis is at most 3β.
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Lemma 6.5. If there exists an algorithm A that (α, 12 , ǫ)-PPAC learns a concept class C using a
hypothesis class B and a sample size m, then there exists a pair (H ,P) that (α, 1/4)-probabilistically
represents the class C using the hypothesis class B where size(H ) = O (mǫ).

The proof of Lemma 6.5 is identical to the proof of Lemma 3.15.

Definition 6.6. We define the α-Probabilistic Representation Dimension of a concept class C using
a hypothesis class B as

RepDimα(C,B) = min




size(H ) :

∃P s.t. (H ,P)
is an (α, 14)-prob.
representation
for C using B





.

Example 6.7. Beimel et al. [3] showed that for every α < 1, every proper-PPAC learner for POINTd
requires Ω((d+log(1/β))/(ǫα)) labled examples. Using Lemma 6.4, we get that RepDimα(POINTd, POINTd) =
Ω(d).

We still do not know the relation between the representation dimension of a concept class and its
VC dimension. However, the above example shows a strong separation between the VC dimension
of the class POINTd and RepDimα(POINTd, POINTd).

7 A Probabilistic Representation for Points

Example 3.8 states the existence of a constant size probabilistic representation for the class POINTd.
We now give the construction.

Claim 7.1. There exists an (α, β)-probabilistic representation for POINTd of size ln(4/α)+ln ln(1/β).
Furthermore, each hypothesis h in each Hi has a short description and given x, the value h(x) can
be computed efficiently.

Proof. Consider the following set of hypothesis classes

H =

{
H ⊆ 2Xd : |H| ≤

4

α
ln(

1

β
)

}
.

That is, H ∈ H if H contains at most 4
α ln( 1β ) boolean functions. We will show an appropriate

distribution P s.t. (H ,P) is an (α, β)-probabilistic representation of the class POINTd. To this
end, fix a target concept cj ∈ POINTd and a distribution D on Xd (remember that j is the unique
point on which cj(j) = 1). We need to show how to randomly choose an H ∈R H such that
with probability at least (1 − β) over the choice of H, there will be at least one h ∈ H such that
errorD(cj , h) ≤ α. Consider the following process for randomly choosing an H ∈ H :

1. Denote M = 4
α ln( 1β )

2. For i = 1, . . . ,M construct hypothesis hi as follows:
For each x ∈ Xd (independently):

Let hi(x) = 1 with probability α/2,
and hi(x) = 0 otherwise.

3. Return H = {h1, h2, . . . , hM}.
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The above process induces a distribution on H , denoted as P. We will next analyze the
probability that the returned H does not contain an α-good hypothesis. We start by fixing some i
and analyzing the expected error of hi, conditioned on the event that hi(j) = 1. The probability is
taken over the random coins used to construct hi.

E
hi

[
errorD(cj , hi)

∣∣∣ hi(j) = 1
]
=

= E
hi

[
E

x∈D

[ ∣∣cj(x)− hi(x)
∣∣ ]
∣∣∣ hi(j) = 1

]

= E
x∈D

[
E
hi

[ ∣∣cj(x)− hi(x)
∣∣
∣∣∣ hi(j) = 1

]]
≤

α

2
.

Using Markov’s Inequality,

Pr
hi

[
errorD(cj , hi) ≥ α

∣∣∣∣ hi(j) = 1

]
≤

1

2
.

So, the probability that hi is α-good for cj and D is:

Pr
hi

[errorD(cj , hi) ≤ α] ≥

≥ Pr
hi

[hi(j) = 1] · Pr
hi

[
errorD(cj , hi) ≤ α

∣∣∣∣ hi(j) = 1

]

≥
α

2
·
1

2
=

α

4
.

Thus, the probability that H fails to contain an α-good hypothesis is at most
(
1− α

4

)M
, which is

less than β for our choice of M . This concludes the proof that (H ,P) is an (α, β)-probabilistic
representation for POINTd.

When a hypothesis hi() was constructed in the above random process, the value of hi(x) was
independently drawn for every x ∈ Xd. This results in a hypothesis whose description size is O(2d),
which in turn, will result in a non efficient learning algorithm. We next construct hypotheses whose
description is short. To achieve this goal, we note that in the above analysis we only care about the
probability that hi(x) = 0 given that hi(j) = 1. Thus, we can choose the values of hi in a pairwise
independent way, e.g., using a random polynomial of degree 2. The size of the description in this
case is O(d).

Observation 7.2. Consider the class POINTN, defined in Example 3.14. The above construction
can be adjusted to yield an (inefficient) improper private learner for POINTN with Oα,β,ǫ(1) samples.
The only adjustments necessary are in the construction of the (α, β)-probabilistic representation.
Specifically, we need to specify how to randomly draw a boolean function h over the natural numbers,
such that for every x ∈ N the probability of h(x) = 1 is α/2, and the values of h on every two distinct
points in N are independent. This can be done easily, as a random real number could be interpreted
as a random function over N.
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