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1 Introduction

In the past 20 years, there has been a significant amount of work done on understanding the
approximability of various constraint satisfaction problems (CSPs).

For the purposes of this paper, a CSP is defined by a k-ary predicate P : {−1, 1}k → {0, 1}
over a Boolean alphabet.1 An instance consists of a set of constraints, each of which dictates that
P applied to some list of k literals should be satisfied (a literal is a variable or the negation of a
variable). The objective is to find an assignment to the variables so as to maximize the number of
satisfied constraints. Two well-known examples are Max k-Sat (where P is the disjunction of the
k input bits) and Max k-Lin (where P is the parity of the k input bits).

Essentially every Max CSP is NP-hard (the exception being when P only depends on one of
its input bits). In terms of approximability, it is easy to see that choosing a uniformly random
assignment to the variables, without even looking at the instance, yields an approximation ratio of
|P−1(1)|/2k , where |P−1(1)| is the number of inputs in {−1, 1}k that satisfy P .

Improving upon this trivial algorithm turns out to be surprisingly difficult. In a groundbreaking
paper, Goemans and Williamson [GW95] used semidefinite programming (SDP) to give improved
approximation algorithms for Max 2-Sat and Max 2-Lin. SDP was soon used to give better
approximation algorithms for many other problems as well, but for some CSPs, perhaps most
prominently Max 3-Sat and Max 3-Lin, no improvement over the random assignment algorithm
was found. Then, in a new breakthrough, H̊astad [H̊as01] showed that such an improvement would
not be possible: approximating Max 3-Sat within 7/8 + ǫ or Max 3-Lin within 1/2 + ǫ for some
ǫ > 0 is NP-hard. In other words, Max 3-Sat and Max 3-Lin have the remarkable property that
the completely mindless random assignment algorithm is optimal!

CSPs which have this property – that they are NP-hard to approximate within |P−1(1)|/2k + ǫ
– are called approximation resistant. Following H̊astad’s initial result, many more CSPs have been
shown to be approximation resistant [GLST98, ST00, EH08, Has05]. Fairly quickly, a complete
characterization of approximation resistance for predicates of arity three was found: P : {−1, 1}3 →
{0, 1} is approximation resistant if and only if P accepts all inputs of odd parity, or if it accepts all
inputs of even parity [H̊as01, Zwi98].

However, the next small case, predicates of arity 4, is still not completely classified, and it is
not at all clear whether there is a nice, clean characterization. We would like to emphasize that
by a characterization we mean a necessary and sufficient condition. Modulo symmetries, there are
400 non-constant predicates of arity 4. Hast [Has05] showed 275 of these to be approximable, 79
of them to be approximation resistant, and left the status of the remaining 46 open.

In recent years, progress has been made on our understanding of approximation resistance under
the assumption of the Unique Games Conjecture (UGC) [Kho02]. The first author and Mossel
[AM09] proved that assuming the UGC, P is approximation resistant if there exists an unbiased
pairwise independent distribution over {−1, 1}k supported on P−1(1). Using this condition, it
can be shown that as k → ∞, an overwhelming fraction of all predicates are in fact approximation
resistant [AH11]. A somewhat more (complicated and) general sufficient condition is known [AH12].
As in [AM09], this condition is in terms of the biases and pairwise correlations of distributions
supported on P . At this point, it seems unlikely that there is a clean characterization (necessary
and sufficient), but one can hope that approximation resistance is at least decidable.

Relevant here is the work of Raghavendra [Rag08], which shows assuming the UGC that for any
CSP, its approximability threshold is determined by the integrality gap of a natural SDP relaxation

1 As is common, the input bits are written in the {−1, 1} notation with −1 interpreted as logical True and 1 as

logical False. Also “parity” corresponds to taking product of the bits: odd parity means the product is −1 and even

parity means the product is 1.
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for the problem. Furthermore, Raghavendra and Steurer [RS09] show that this integrality gap can
be approximated to within an additive error ǫ (in time doubly exponential in ǫ).

This “almost” shows that it is decidable to determine whether a CSP is approximation resistant.
However, as we have no a priori bound on the error ǫ needed, it only shows that it is recursively
enumerable to determine whether a CSP is approximable. Note that, for every k there is a smallest
gap ǫk such that any approximable predicate P on k bits can be approximated within at least
|P−1(1)|/2k+ ǫk. If this number ǫk can be computed, approximation resistance would be decidable,
but it is possible (though seemingly unlikely) that ǫk tends to 0 faster than any computable function.

1.1 Our Contribution

The strength of [Rag08], namely that it works in a black-box fashion for any CSP, is in some sense
a weakness in this setting, as it is not explicit and does not give any insight into what structural
properties cause a predicate to be approximation resistant. In this paper, we make progress towards
an explicit characterization of approximation resistance. We restrict the class of CSPs we study in
two ways.

1. We only consider k-partite instances. In a k-partite instance, the variables are grouped into
k layers, and in each constraint, the literal passed as the i’th argument to P comes from the
i’th layer.

2. We only consider P which are even. P is even if P (x) = P (−x) for every x ∈ {−1, 1}k , where
−x denotes bitwise negation of x.

We refer to this as the Max PartCSP(P ) problem. Our main contribution is an explicit
necessary and sufficient characterization (assuming the UGC) of when Max PartCSP(P ) is ap-
proximation resistant. As in the case of [AM09] and its generalizations, our condition is based on
the existence of certain distributions µ over the set of satisfying assignments of P and furthermore
the conditions on these distributions depend only on their pairwise correlations Eµ[xixj].

In order to properly state the characterization, we need to make a few definitions.

Definition 1.1. Let G = (S,E) be a multigraph with vertex set S ⊆ [k] and no self-loops. For a
correlation matrix ρ ∈ R

k×k we define ρ(G) =
∏

ij∈E ρij. For a distribution Λ over k×k correlation
matrices we define Λ(G) = Eρ∈Λ[ρ(G)].

The key part of our definition is the existence of distributions Λ over correlation matrices each
of which arises from a distribution over P−1(1) – we refer to these as P -supported correlation
matrices – such that Λ(G) vanishes on certain graphs. Specifically:

Definition 1.2. Let Λ be a distribution over k × k correlation matrices. We say that Λ is m-
vanishing on P if:

1. Λ is a distribution over P -supported correlation matrices.

2. For every S ⊆ [k] such that P̂ (S) 6= 0, and every odd-degree multigraph G on S with at most
m edges, it holds that Λ(G) = 0.

Here P̂ (S) denotes the Fourier coefficient of the predicate P on the set S (i.e. the coefficient
of the monomial

∏

i∈S xi when P is written as a multi-linear polynomial). Now we can state our
main result.

Theorem 1.3. Assuming the UGC, Max PartCSP(P ) is approximation resistant if and only if
for every positive integer m there exists a distribution Λ which is m-vanishing on P .
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Note that if there is a pairwise independent distribution supported on P , i.e., if the identity
matrix is P -supported, then taking Λ to be the singleton distribution on the identity matrix is
m-vanishing on P for every m. As such, this characterization generalizes the sufficient condition of
[AM09].

Givenm and P , it is fairly easy to prove that the existence of anm-vanishing Λ on P is decidable.
Hence the condition of Theorem 1.3 is recursively enumerable. We feel that this characterization
is promising with respect to decidability. For instance, it is quite possible that one can show some
explicit upper bound on the largest value of m that one needs to check, which would immediately
give decidability. We also remark that, even though we do not prove it here, the characterization
in Theorem 1.3 is equivalent to saying that there is a distribution Λ which is m-vanishing on P for
all m simultaneously.

1.2 Proof Ideas

We now briefly and informally outline the main ideas of the proof of Theorem 1.3.

Algorithm. Suppose there is no m-vanishing distribution Λ for some m. By LP duality, there
are then constants {γG} such that

∑

G γGρ(G) > δ for all P -supported ρ, where the sum is over
all odd-degree G on at most m edges. Now, assume we are given a solution to the basic SDP
relaxation for Max PartCSP(P ) with value 1 (in reality it will only have value close to 1 but this
is just a small technicality). Then for each constraint we have a local distribution µ and since the
SDP value is 1 its correlation matrix ρ is P -supported. The basic idea is, very loosely, to design a
rounding algorithm which, given some graph G, finds an assignment with value |P−1(1)|/2k+ρ(G).
Picking a random G with probability proportional to |γG| then gives an assignment with value
|P−1(1)|/2k +Ω(δ).

To get an assignment with value |P−1(1)|/2k +ρ(G), the idea is to do as follows. For simplicity,
suppose V (G) = [k] and consider the monomial

∏k
i=1 xi. We can construct the solution iteratively

edge by edge, as follows. Initially, set all xi = 1 (corresponding to the empty graph). Then, for

an edge e = (i, j), pick a standard Gaussian vector g
¯e
, and multiply xi (resp. xj) by

〈

g
¯e
, v
¯i

〉

(resp.
〈

g
¯e
, v
¯j

〉

), where v
¯i

and v
¯j

are the vectors in the SDP solution corresponding to xi and xj .

This operation has the effect of multiplying E[
∏

i∈[k] xi] by a factor
〈

v
¯i
, v
¯j
〉

= ρij where ρij is the
correlation between i and j in the local distribution on x1, . . . , xk. Repeating this for all edges of
the graph, we get E[

∏

i∈[k] xi] = ρ(G), and we can make sure that all other non-constant monomials

have expectation 0, meaning that we get an advantage of ρ(G) over |P−1(1)|/2k + ρ(G).
To wrap this up and get the formal proof, there are som additional technicalities to account for:

the values assigned by the above rounding are not Boolean-valued, we need to deal with negated
literals, and we need to take the magnitude of the Fourier coefficients P̂ (S) of P into consideration.
The formalization of the “monomial rounding” described above is given in Lemma 4.1 in Section 4.1
and its use to give a non-trivial algorithm for Max PartCSP(P ) is then described in Section 4.3.

Hardness. As is by now standard, the task of proving hardness boils down to constructing a
dictatorship test using the predicate P . The dictatorship test gets oracle access to k functions
f1, . . . , fk : {−1, 1}n → {−1, 1}, and the question is whether f1 = f2 = . . . = fk are all equal to
some dictatorship function. The test operates by picking k inputs x1, . . . , xk and then accepts iff
P (f1(x1), f2(x2), . . . , fk(xk)) = 1. The restriction to only using P as the acceptance predicate is
what gives us hardness for Max CSP(P ) rather than an arbitrary CSP, and the restriction that
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we have k different functions and make one query to each, instead of a single function, is precisely
what gives us hardness for Max PartCSP(P ) instead of Max CSP(P ).

Such a test is completely specified by the distribution of (x1, . . . , xk). To specify this we
choose some very large m and use the m-vanishing distribution Λ guaranteed to exist. To sample
(x1, . . . , xk), we do as follows: first sample a P -supported correlation matrix ρ according to Λ, and
let µ be some P -supported distribution with correlation matrix ρ. Then, for each i ∈ [n] we sample
the i’th coordinate (xi1, . . . , x

i
k) independently from µ. The completeness of the test follows by µ

being P -supported. The soundness follows using the invariance principle: first, we show that if the
functions f1, . . . , fk have low influence the acceptance probability (appropriately arithmetized) can
be well approximated by a multilinear polynomial in Gaussian variables with the same second mo-
ments as x. Since higher moments of Gaussian variables are determined by their covariance matrix,
this multilinear polynomial (and therefore also the acceptance probability) can be expressed as a
function of the covariance matrix, i.e., ρ, and it turns out that all terms except for the constant
|P−1(1)|/2k are of the form ρ(G) for some odd-degree graph G on less than m edges. Hence taking
the expectation over ρ ∼ Λ, all non-constant terms vanish.

Source of the various restrictions. It may be instructive to point out where the various restrictions
we impose come into play.

k-partiteness. The fact that we know for each variable what “role” it will play is critical in allowing
us to obtain the algorithm. In particular, in the “monomial rounding” described above, it
is important that any given variable corresponds to some given vertex of the graph G that
we are using (the vertices of G correspond to layers of the CSP instance). If a vertex could
appear as several different vertices of G (i.e., in several different layers), it is not clear how
to round it in such a way that the different occurences don’t interfere with each other.

Even predicates. This restriction is in some sense minor and more technical in nature. It allows us
to assume that the distributions µ supported on P−1(1) are unbiased, which simplies may
arguments. That said, it is not clear exactly how to generalize the present characterization
to a general P .

Odd-degree graphs. The reason why the characterization only involves odd-degree graphs is essen-
tially the presence of negated literals. First, in the algorithm it turns out that it is necessary
for the graphs to be odd-degree, as this essentially ensures that we don’t have cancellations
when dealing with negated literals. Second, in the hardness result it turns out that it is
sufficient for the graphs to have odd-degree, because the functions fi we are testing can be
assumed to be odd by the standard technique of folding, which is implemented by introducing
negated literals.

1.3 Discussion

On the unnecessity of pairwise independence. It is known that there are approximation resistant
predicates which do not support a pairwise independent distribution. A basic such example is the
predicate GLST : {−1, 1}4 → {0, 1} defined by

GLST (x1, x2, x3, x4) =

{

x2 6= x3 if x1 = −1
x2 6= x4 if x1 = 1

.

This predicate was shown to be approximation resistant by Guruswami et al. [GLST98], but there
is no pairwise independent distribution supported on its accepting assignments – indeed it is not
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difficult to check that x2x3 + x2x4 + x3x4 < 0 for all accepting inputs. In [AH12], Theorem VIII.6,
a generalization of the pairwise independence condition was given which also covers the GLST
predicate and in fact as far as we are aware cover all currently known examples of approximation
resistant predicates.

The condition of Theorem 1.3 essentially generalizes the condition of [AH12]. We say “es-
sentially” because Theorem VIII.6 of [AH12] in some cases allows for a condition referred to as
{i, j}-negativity, and it is not clear that this condition is captured by Theorem 1.3. The only ex-
ample given in [AH12] using the {i, j}-negativity condition is not an even predicate, so it is possible
that this is a distinction between even P and general P . On the other hand, it appears that for the
example given in [AH12], one can prove approximation resistance without using {i, j}-negativity
so it is not completely clear whether allowing this adds any new predicates. Another possibility
is that this is a distinction between Max CSP(P ) and Max PartCSP(P ), because the proof in
[AH12] that {i, j}-negativity suffices does not extend to partite instances. In short, the situation
is a bit of a mystery and may warrant further study.

On Max PartCSP(P ) vis-à-vis Max CSP(P ). It is not known whether Max PartCSP(P ) be-
haves differently from Max CSP(P ) with respect to approximation resistance. Almost all proofs of
approximation resistance for Max CSP(P ), including NP-hardness results such as [H̊as01, EH08],
can be adjusted to produce k-partite instances, thereby showing approximation resistance for
Max PartCSP(P ).

However, one exception is the result of Raghavendra [Rag08], where it is not at all clear how
to achieve this. If it were the case that the reduction of [Rag08] can be adjusted to produce
partite instances, our restriction to k-partite instances would have been without loss of generality
(assuming the UGC), but as matters stand, this can not be deduced.

Another exception is the hardness derived in [AH12] from the {i, j}-negativity condition men-
tioned above.

1.4 Outline

In Section 2 we introduce notation and terminology used throughout the paper and state some
known theorems that we need. In Section 3 we describe how to decide whether an m-vanishing
distribution exists. We then proceed to prove Theorem 1.3, giving an algorithm in Section 4 and
proving hardness in Section 5.

2 Notation and definitions

As is common, for convenience of notation we use {−1, 1} for Boolean values rather than {0, 1}.
Throughout, P denotes a k-ary predicate P : {−1, 1}k → {0, 1} which we assume to be even, i.e.,
P (x) = P (−x) for all x.

We say a distribution µ over {−1, 1}k is P -supported if supp(µ) ⊆ P−1(1). Similarly a correla-
tion matrix ρ ∈ R

k×k is P -supported if there is a P -supported µ such that ρij = Eµ[xixj ] for all i, j.
Note that since P is even, any P -supported distribution can without loss of generality be assumed
to be unbiased, i.e., satisfying Eµ[xi] = 0 for all i, as far as its correlation matrix is concerned (since
we can spread the probability mass equally on any pair of assignments x and −x without affecting
the correlation matrix).

For the purposes of this paper, a multigraph is a graph G which may have multiple edges but no
self-loops. A multigraph has odd degree if every vertex of the graph has odd degree (when edges are
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counted with multiplicities). A key role in our characterization is played by multigraphs G whose
vertex set is some subset S ⊆ [k], we refer to this as a multigraph on S.

We write Sn for the n-dimensional unit sphere (i.e., the set of unit vectors in R
n+1, and for two

vectors u
¯
, v
¯
∈ R

n we write 〈u
¯
, v
¯
〉 for their standard inner product.

2.1 Partite Max-CSP and its SDP relaxation

An instance Ψ of Max PartCSP(P ) has k · n Boolean variables indexed by [k] × [n]. Each
constraint is of the form P (b1x1,j1 , b2x2,j2 , . . . , bkxk,jk) for some indices j1, . . . , jk and some signs
b1, . . . , bk ∈ {−1, 1}.

We use the following notation. The constraints of an instance are (T1, P1), (T2, P2), . . ., where
Ti ⊆ [k] × [n] are the set of variables that the i’th constraint depends on – exactly one from each
layer – and Pi : {−1, 1}Ti → {0, 1} is P applied to the variables of Ti, possibly with some variables
negated.

We say that Ψ is α-satisfiable if there is an assignment to the variables which satisfies an α
fraction of all the constraints.

The basic SDP relaxation is described in Figure 1. It has as variables a vector v
¯i,j

∈ Sn·k

for every variable xi,j , and an unbiased distribution µi over {−1, 1}Ti for each constraint (Ti, Pi).
The fact that this is a relaxation follows from the following observation: for any global integral
assignment σ ∈ {−1, 1}k·n, let D be the uniform distribution over the pair of integral assignments σ
and −σ. Let µi be the restrictions of D to the respective sets Ti and vi,j = σi,j be a 1-dimensional
vector. Then it is easy to see that this is a feasible solution to the SDP and its objective is same
as the fraction of constraints satisfied by σ (or −σ). Here we use the evenness of the predicate.

Maximize
∑

i

E
x∼µi

[Pi(x)]

Subject to µi is an unbiased distribution over {−1, 1}Ti for every i

v
¯i,j

∈ Sn·k for all (i, j) ∈ [k]× [n]

µi|T = µj |T where T = Ti ∩ Tj
〈

v
¯i1,j1

, v
¯i2,j2

〉

= E
x∼µl

[xi1,j1xi2,j2 ] for all (i1, j1), (i2, j2) ∈ Tl

Fig. 1: SDP relaxation of Max PartCSP(P ).

2.2 The Unique Games Conjecture

In this section, we state the formulation of the Unique Games Conjecture that we will use.

Definition 2.1. An instance Λ = (U, V,E,Π, [L]) of Unique Games consists of an unweighted
bipartite multigraph G = (U ∪ V,E), a set Π of constraints, and a set [L] of labels. For each edge
e ∈ E there is a constraint πe ∈ Π, which is a permutation on [L]. The goal is to find a labeling
ℓ : U ∪ V → [L] of the vertices such that as many edges as possible are satisfied, where an edge
e = (u, v) is said to be satisfied by ℓ if ℓ(v) = πe(ℓ(u)).
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Definition 2.2. Given a Unique Game instance Λ = (U, V,E,Π, [L]), let Opt(Λ) denote the max-
imum fraction of simultaneously satisfied edges of Λ by any labeling, i. e.,

Opt(Λ) :=
1

|E| max
ℓ:U∪V→[L]

|{ e : ℓ satisfies e }|.

Conjecture 2.3. ([Kho02]) For every γ > 0, there is an integer L such that, for Unique Games
instances Λ with label set [L] it is NP-hard to distinguish between

• Opt(Λ) ≥ 1− γ

• Opt(Λ) ≤ γ.

2.3 Analytic Tools

Any Boolean function f : {−1, 1}n → R can be written uniquely as a multilinear polynomial

f(x) =
∑

T⊆[n]

f̂(T )χT (x),

where f̂(T ) are the Fourier coefficients of f and χT (x) =
∏

i∈T xi. As such, f can be viewed as a
multilinear polynomial f : Rn → R and this is the view we commonly take. We write f≤d for the
part of f that is of degree ≤ d, i.e., f≤d(x) =

∑

|S|≤d f̂(S)χS(x).

Fact 2.4.

E[f(X)] = f̂(∅) Var[f(X)] =
∑

T 6=∅

f̂(T )2,

where the expectations are over a uniform X in {−1, 1}n.
Definition 2.5. The influence of the i’th variable on f is

Infi(f) =
∑

T∋i

f̂(T )2,

and the low-degree influence is

Inf≤d
i (f) = Infi(f

≤d) =
∑

T∋i
|T |≤d

f̂(T )2.

As is common, the main analytic tool in our hardness result is the invariance principle [MOO10,
Mos10]. In particular, we have the following theorem.

Theorem 2.6. For every k, ǫ > 0 there is a δ > 0 such that the following holds.
Let µ be an unbiased distribution over {−1, 1}k with minx∈{−1,1}k µ(x) ≥ ǫ, X be a random

k × n matrix over {−1, 1} with each column distributed according to µ, independently, and G be a
random k × n matrix of standard Gaussians with the same covariance structure as X.

Then for any k multilinear polynomials f1, . . . , fk : Rn → R with Inf
≤1/δ
j (fi) ≤ δ and Var[fi] ≤ 1

for all i ∈ [k], j ∈ [n], we have

∣

∣

∣

∣

∣

E
X

[

k
∏

i=1

fi(Xi)

]

− E
G

[

k
∏

i=1

f
≤1/δ
i (Gi)

]∣

∣

∣

∣

∣

≤ ǫ.
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Theorem 2.6 can be derived using Theorem 4.2 and Lemma 6.2 of [Mos10]: using Lemma 6.2 it

follows that EX

[

∏k
i=1 fi(Xi)

]

is close to EX

[

∏k
i=1 f

≤1/δ
i (Xi)

]

for sufficiently small δ. Then we can

use Theorem 4.2 on the functions {f≤1/δ
i }. In Theorem 4.2, the values of f

≤1/δ
i (Xi) and f

≤1/δ
i (Gi)

are truncated to the range [0, 1]. By scaling this holds with [0, 1] replaced by some interval [−B,B].
It is not too hard to show that for sufficiently large B (as a function of k and ǫ) truncation to the

interval [−B,B] does not change E[
∏k

i=1 f
≤1/δ
i (Xi)] (resp. E[

∏k
i=1 f

≤1/δ
i (Gi)]) by more than ǫ.

2.4 Products of Gaussians

We need the following Lemma about the expectation of a product of gaussians in terms of their
pairwise correlations.

Lemma 2.7. Let r be an integer and let g1, . . . , gr be gaussians with mean 0, variance 1, and
covariance matrix ρ. Then

E

[

r
∏

i=1

gi

]

=
∑

M

∏

ij∈M

ρij ,

where M ranges over all perfect matchings of the complete graph on r vertices (if r is even there
are (r − 1)!! terms and if r is odd the expectation is 0).

3 Decidability of m-vanishing Distributions

Proposition 3.1. Given P and m, the existence of a Λ which is m-vanishing on P is decidable.

Proof. There are M ≤ 2k · k2m graphs G1, . . . , GM of interest namely graphs with at most m edges
supported on some vertex set S ⊆ [k]. We need to decide whether there is a distribution Λ on
P -supported correlation matrices such that

E
ρ∈Λ

[(ρ(G1), . . . , ρ(GM ))] = 0.

By Carathéodory’s theorem this implies that Λ can be assumed to have support at most M . Each
ρ in the support of Λ can be represented using |P−1(1)| + k2 + 1 real variables, representing a
distribution µ over P−1(1), its correlation matrix ρ, and finally its probability under Λ. The
constraints that each ρ is the correlation matrix of the corresponding µ and that Λ(Gi) = 0 for
every Gi can be written as a finite number of polynomial equations in the M(|P−1(1)| + k2 + 1)
variables.2 In other words the set of m-vanishing Λ of support size ≤ M form an algebraic set,
so determining whether such Λ exists boils down to determining whether this algebraic set is non-
empty, which is decidable [Tar51].

4 Algorithm

In this section we give an approximation algorithm with approximation ratio strictly larger than
|P−1(1)|/2k for predicates P which do not satisfy the condition of Theorem 1.3. Thus, there exists
an m such that for every distribution Λ (over P -supported correlation matrices), there is an odd-
degree multigraph G over S ⊆ [k] with at most m edges such that P̂ (S) 6= 0 and Λ(G) 6= 0. For
the rest of this section, fix this value of m.

2 The variables representing probabilities need to be non-negative. This can be effected by taking them to be

squares of respective variables.
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4.1 Rounding Monomials

First, we give an algorithm which will allow us to “pick up” a contribution proportional to ρ(G)
for any monomial, where ρ is the correlation matrix of the local distribution (given by the SDP)
on that monomial and G is any graph. Lemma 4.1 below formalizes the high-level idea given in
Section 1.2. Recall that the variables of the CSP are partitioned into k layers, there are n variables
in each layer, and the SDP relaxation is as in Figure 1.

Lemma 4.1. Let S ⊆ [k] be a set of layers, G be an odd-degree multigraph on S, and τ > 0.
Then for all sufficiently large B ≥ poly(log 1/τ) (where the polynomial depends only on G) there is
a polynomial time algorithm which, given an SDP solution as in Figure 1 outputs an assignment
α : S × [n] → [−1, 1] to the layers of S such that the following holds.

Let V : S → [n] be any choice of variables, one from each layer in S. Then

E

[

∏

i∈S

αi,V (i)

]

=
ρ(G)

B|S|
± τ,

where ρ is the correlation matrix defined by the SDP solution on these k variables, i.e., ρi1,i2 =
〈

v
¯ i1,V (i1), v¯ i2,V (i2)

〉

.

Proof. The algorithm works as follows. For each edge e ∈ E(G), pick a standard Gaussian vector
g
¯e
, independently. For a vertex u ∈ V (G), let E(u) ⊆ E(G) denote the set of edges incident on u.

For a variable xi,j such that i ∈ S, set

βi,j =
∏

e∈E(i)

〈

g
¯e
, v
¯i,j

〉

.

Then, set

αi,j =

{

βi,j

B if |βi,j | ≤ B

0 otherwise.

Fix V : S → [n] as in the statement. Now let us analyze E[
∏

i∈S αi,V (i)]. Note that without the
truncation when |βi,V (i)| exceeds B, the expectation would be exactly equal to (where in the second
step below we use the independence of the Gaussians to move the expectation inside the product)

E

[

1

B|S|

∏

i∈S

βi,V (i)

]

=
1

B|S|
E





∏

i∈S

∏

e∈E(i)

〈

g
¯e
, v
¯i,V (i)

〉





=
1

B|S|

∏

(a,b)=e∈E(G)

E

[〈

g
¯e
, v
¯a,V (a)

〉〈

g
¯e
, v
¯b,V (b)

〉]

=
1

B|S|

∏

(a,b)∈E(G)

〈

v
¯a,V (a), v¯b,V (b)

〉

=
ρ(G)

B|S|

Thus we want to bound the expectation of
∣

∣

∣

∏

i∈S
βi,V (i)

B −∏

i∈S αi,V (i)

∣

∣

∣ by τ . This can be shown to

be of order m ·exp(−B2/m/2), because each βi,V (i) is a product of at most |E(G)| ≤ m independent

gaussians. Thus setting B of order (log 1/τ)m/2 we get the desired error bound.
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4.2 Setup for the Algorithm

LetM ≤ 2k ·k2m be the number of odd-degree graphs on some S ⊆ [k] with P̂ (S) 6= 0 and at mostm
edges, and let G1, . . . , GM be these graphs. Further write St = V (Gt) ⊆ [k] for the vertex set of Gt.
For a correlation matrix ρ ∈ R

k×k, let q(ρ) be the vector q(ρ) = (ρ(G1), ρ(G2), . . . , ρ(GM )) ∈ R
M ,

and let Q ⊆ R
M be the convex hull of {q(ρ) : ρ is P -supported}.

Note that a Λ such that Λ(Gi) = 0 for all 1 ≤ i ≤ M is precisely a convex combination Λ of ρ’s
such that Eρ∼Λ[q(ρ)] = 0

¯
. In other words since P does not satisfy the condition of Theorem 1.3 we

have that Q does not contain the origin. Furthermore Q is compact and so we can find a separating
hyperplane (γ1, . . . , γM ) such that

∑M
t=1 γtρ(Gt) > δ for every P -supported ρ and some universal

constant δ (depending only on P ).
Now let τ = δ

4M and set B = poly(log 1/τ) large enough to make Lemma 4.1 work for all the
graphs G1, . . . , GM . In our algorithm, we are going to choose one t ∈ [M ] at random and then the
algorithm is going to focus solely on the terms involving layers St. More precisely, as we shall see

in the next section, t should be chosen with probability proportional to
∣

∣

∣

γt
P̂ (St)

∣

∣

∣
·B|St|. In order for

this to make sense, we therefore need that

M
∑

t=1

∣

∣

∣

∣

∣

γt

P̂ (St)

∣

∣

∣

∣

∣

· B|St| ≤ 1. (1)

Fortunately, we can assume without loss of generality that this holds: since B|St| ≤ Bk depends
sub-linearly (in fact even poly-logarithmically) on 1/τ , dividing each γt by some factor f > 1 causes
δ and τ to also be divided by f , which in turn changes B|St| to poly log(f/τ) = o(fB|St|), so that
the sum in the left hand side of (1) decreases by a factor which is super-constant in f . Hence
choosing f a sufficiently large constant, we can make (1) hold.

4.3 The Rounding Algorithm

We are now ready to describe the algorithm. Without loss of generality, we may assume that we
are given a (1 − ǫ)-satisfiable Max PartCSP(P ) instance where ǫ > 0 is some sufficiently small
constant (depending on P ) to be determined later. If the instance is not (1 − ǫ)-satisfiable then a

random assignment already gives an approximation ratio of |P−1(1)|
2k(1−ǫ)

.

By Markov’s inequality, for at least a 1−√
ǫ fraction of constraints (Ti, Pi) we have Ex∼µi

[Pi(x)] ≥
1−√

ǫ. In other words, µi has a 1−√
ǫ fraction of its mass on P−1

i (1).

Claim 4.2. Given a correlation matrix ρ ∈ R
k×k of a distribution which is (1−√

ǫ)-supported on
P−1(1), there is a P -supported correlation matrix ρ′ such that |ρ(G) − ρ′(G)| ≤ √

ǫ2m for every G
on m edges.

Thus, setting ǫ < δ2

4·2m we have that
∑

i γiρ(Gi) > δ/2 for all correlation matrices of distributions
which are (1−√

ǫ)-supported on P−1(1).
Now the rounding algorithm is as in Figure 2.
Now, fix the value of t chosen in step 1, and let αi,j be the rounded value to the variable xi,j as

in Lemma 4.1 and α̃i,j be equal to αi,j or its negation after the third step above. The assignment
α̃ is in [−1, 1]n×k but as the objective function is multilinear it can be greedily adjusted to an
integral assignment in {−1, 1}n×k without decreasing the objective value, so it suffices to study α̃.
Let S ⊆ [k] be some set of layers and V : S → [n] be any choice of variables from these layers.
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1. Pick t ∈ [M ] with probability
∣

∣

∣

γt
P̂ (St)

∣

∣

∣
·B|St|.

2. Using Lemma 4.1, round the variables in layers in St using graph Gt. For every other
layer, set all the variables in that layer to 0.

3. If sign(γtP̂ (St)) = −1, then select an odd sized subset A of St at random, else select an
even sized subset A of St at random. Flip the sign of all variables in layers in A.

Fig. 2: Rounding algorithm for Max PartCSP(P )

Observe that for every S 6= St,

E
α

[

∏

i∈S

α̃i,V (i)

]

= 0.

To see this, note that if S 6⊆ St, then the variables in layers S \ St are set to 0. On the other
hand if S ⊂ St, then we flip the signs of a random set of layers of either odd or even size. As the
distribution over which layers get flipped is (|St| − 1)-wise independent, the layers of any S ⊂ St

get flipped completely uniformly.
On the other hand, by Lemma 4.1 and the way the signs are flipped in the third step, if S = St

we have

E
α
[
∏

i∈S

α̃i,V (i)] = sign(γtP̂ (St)) ·
ρ(Gt)

B|St|
± τ.

Thus, taking the expectation of Eα[
∏

i∈S α̃i,V (i)] over t ∈ [M ] chosen according to Step 1, we have

E
t

[

E
α
[
∏

i∈S

α̃i,V (i)]

]

=
∑

t:St=S

∣

∣

∣

∣

∣

γt

P̂ (St)

∣

∣

∣

∣

∣

·B|St|

(

sign(γtP̂ (St)) ·
ρ(Gt)

B|St|
± τ

)

=
∑

t:St=S

γt

P̂ (St)
ρ(Gt)± τ

Now we can analyze the probability that any specific constraint is satisfied. Let (Ti, Pi) be a
constraint involving one variable from each layer which is (1 − √

ǫ)-satisfied by the SDP solution.
In other words, Ex∼µi

[Pi(x)] ≥ 1 − √
ǫ. Write V : [k] → [n] for the variables involved (i.e.,

Ti = {(i′, V (i′)) : i′ ∈ [k]}) and write Pi(x) = P (b1x1,V (1), . . . , bkxk,V (k)) for some signs b1, . . . , bk ∈
{−1, 1}.

We also associate the domain of Pi with {−1, 1}k in the obvious way. As such, it is easy to
verify that the Fourier coefficient P̂i(S) for S ⊆ [k] satisfies P̂i(S) = P̂ (S)χS(b). Furthermore, let
µ̃i be the distribution over {−1, 1}k obtained by sampling from µi and performing coordinatewise
multiplication by b, and let ρ (resp. ρ̃) denote the correlation matrix of µi (resp. µ̃i). Then, for any
graph G we have

ρ(G) =
∏

(a,a′)∈E

ρa,a′ =
∏

(a,a′)∈E

ρ̃a,a′χ{a,a′}(b) = ρ̃(G) · χOdd(G)(b)

where Odd(G) denotes the set of odd-degree vertices of G. In particular for G = Gt all vertices
have odd degree so Odd(Gt) = St. Using this and noting that µ̃i is (1−

√
ǫ)-supported on satisfying
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assignments of P we see that
∑

t

γtρ(Gt)χSt(b) =
∑

t

γtρ̃(Gt) > δ/2.

We then have the following, where the expectation below is taken over all the random choices of
the algorithm (including that of t ∈ [M ]).

E[Pi(α̃1,V (1), · · · , α̃k,V (k))] = P̂i(∅) +
∑

∅6=S⊆[k]

P̂i(S)6=0

P̂i(S)E[
∏

i∈S

α̃i,V (i)]

= P̂ (∅) +
∑

∅6=S⊆[k]

P̂ (S)6=0

P̂ (S)χS(b)
∑

t:St=S

γt

P̂ (St)
ρ(Gt)± τ

= P̂ (∅) +
M
∑

t=1

γtρ(Gt)χSt(b)± τM > P̂ (∅) + δ

4
.

Thus the total fraction of constraints satisfied by the algorithm is in expectation at least (1 −√
ǫ)(P̂ (∅) + δ/4) which is at least P̂ (∅) + δ/8 assuming ǫ < (δ/8)2.
In other words, the algorithm finds a (P̂ (∅) + δ/8)-approximate solution on all instances with

value at least 1− ǫ. Combining this with a random assignment gives an approximation better than
P̂ (∅) for any instance, and concludes the proof of approximability of Max PartCSP(P ).

5 Hardness

In this section we show that any P which satisfies the condition of Theorem 1.3 is approximation
resistant, assuming the UGC. As usual, we prove hardness by designing an appropriate dictatorship
test, which is given in Section 5.1, followed by the (standard) hardness reduction in Section 5.2.

5.1 Dictatorship Test

Theorem 5.1. Let P satisfy the condition of Theorem 1.3. Then for every k and ǫ > 0 there exists
a δ > 0 such that the following holds for all n.

There is a randomized algorithm T which, given oracle access to k odd functions f1, . . . , fk :
{−1, 1}n → [−1, 1], produces k queries X1, . . . ,Xk ∈ {−1, 1}n such that

(Yes) If f1(x) = f2(x) = . . . = fk(x) = xi are the same dictator function, then E[P (f1(X1), . . . , fk(Xk))] ≥
1− ǫ.

(No) If all fi’s have Inf
≤1/δ
j (fi) ≤ δ for all j ∈ [n] then E[P (f1(X1), . . . , fk(Xk))] ≤ P̂ (∅) + ǫ

Let m = k · n and let Λ be a distribution over P -supported correlation matrices which is m-
vanishing on P . Let Uk be the uniform distribution over {−1, 1}k. The tester T is described in
Figure 3.

That the completeness is 1− ǫ follows immediately from supp(η) ⊆ P−1(1).
Let us then analyze the soundness. The acceptance probability can be written as

Pr[T accepts] = E
ρ∼Λ

[

E
X∼µ

[P (f1(X1), . . . , fk(Xk))]

]

= P̂ (∅) + E
ρ





∑

S 6=∅

P̂ (S)E
X
[
∏

i∈S

fi(Xi)]



 . (2)
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Input: functions f1, . . . , fk : {−1, 1}n → [−1, 1]

Output: accept/reject

1. Pick a random ρ ∼ Λ.

2. Let η be an unbiased P -supported distribution with correlation matrix ρ (if there are
many such η pick an arbitrary one in a deterministic fashion).

3. Let µ = (1− ǫ)η + ǫUk.

4. Pick a random k × n matrix X where each column is sampled independently according
to µ.

5. Accept with probability P (f1(X1), . . . , fk(Xk)).

Fig. 3: Dictatorship Test

Let ρ′ be the correlation matrix of µ. Note that ρ′ = (1 − ǫ)ρ + ǫI. Fix the value of ρ for the
moment, and let G be a random k×n matrix of standard Gaussians with the same covariances as X
(i.e., the columns are independent and in the j’th column we have E[Gi,jGi′,j] = ρ′i,i′ = (1 − ǫ)ρi,i′

for i 6= i′).

Next, set δ small enough so that Theorem 2.6 gives that if Inf
≤1/δ
j (fi) ≤ δ for all i ∈ [k], j ∈ [n]

then
∣

∣

∣

∣

∣

E
X
[
∏

i∈S

fi(Xi)]− E
G
[
∏

i∈S

f
≤1/δ
i (Gi)]

∣

∣

∣

∣

∣

≤ ǫ/2k (3)

for all S. Define f ′
i = f≤1/δ. We need to understand expressions of the form EG[

∏

i∈S f ′
i(Gi)] for

S ⊆ [k]. Expanding f ′
i =

∑

T⊆[n] f̂
′(T )χT and applying Lemma 2.7, we obtain

E
G

[

∏

i∈S

f ′
i(Gi)

]

=
∑

{Ti}i∈S

∏

i∈S

f̂ ′
i(Ti)

n
∏

j=1

E





∏

i:j∈Ti

Gij





=
∑

{Ti}i∈S

∏

i∈S

f̂ ′
i(Ti)

n
∏

j=1

∑

Mj∈M({i:j∈Ti})

∏

i,i′∈Mj

ρ′i,i′ , (4)

where we write M(S) for the set of perfect matchings on the complete graph with vertex set S.

For a choice T
¯

= {Ti}i∈S of Ti’s, let c(T
¯
) =

∏

i∈S f̂ ′
i(Ti). Further, for a choice of matchings

M
¯
= (M1, . . . ,Mn) let H(M

¯
) denote the multigraph being the union of M1, . . . ,Mn. With a slight

abuse of notation, write M(T
¯
) for the set of M

¯
’s for a given T

¯
; i.e., M(T

¯
) = {(M1, . . . ,Mn) : Mj ∈

M({i : j ∈ Ti}). With all this cumbersome notation in place, the equation above simplifies to

(4) =
∑

T
¯

∑

M
¯
∈M(T

¯
)

c(T
¯
)ρ′(H(M

¯
)), (5)

where T
¯

ranges over all {Ti ⊆ [n]}i∈S . Note that since fi (and therefore also f ′
i) is odd, we can

restrict the sum to T
¯
such that each |Ti| is odd, implying that H(M

¯
) is always odd degree.
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Plugging (5) into (3), we have

∣

∣

∣

∣

∣

∣

E
X
[
∏

i∈S

fi(Xi)]−
∑

T
¯

∑

M
¯
∈M(T

¯
)

c(T
¯
)ρ′(H(M

¯
))

∣

∣

∣

∣

∣

∣

≤ ǫ/2k

Finally, plugging this into (2) and using the identity ρ′ = (1− ǫ)ρ+ ǫI yields

Pr[T accepts] ≤ P̂ (∅) + E
ρ





∑

S 6=∅



P̂ (S)
∑

T
¯

∑

M
¯
∈M(T

¯
)

c(T
¯
)ρ′(H(M

¯
)) + ǫ/2k









≤ P̂ (∅) + ǫ+
∑

S 6=∅

P̂ (S)
∑

T
¯

∑

M
¯
∈M(T

¯
)

c(T
¯
)(1− ǫ)|E(H(M

¯
))|

E
ρ
[ρ(H(M

¯
))]

= P̂ (∅) + ǫ,

where the last equality follows by the m-vanishing property of Λ: H(M
¯
) has at most n|S|/2 < nk =

m edges, and so for each S either P̂ (S) = 0 or Eρ[ρ(H(M
¯
))] = Λ(H(M

¯
)) = 0.

5.2 Hardness Reduction

Given the dictatorship test as in Theorem 5.1, a UGC-based hardness reduction can be designed
in a standard manner. Some care needs to be taken however to ensure that the CSP instance
produced by the reduction is k-partite. As is standard, we present the reduction as a Probabilis-
tically Checkable Proof (PCP) for NP whose acceptance predicate matches the predicate P , has

completeness 1− o(1) and soundness |P−1(1)|
2k

+ o(1).
The PCP is based on the conjectured NP-hard instance Λ = (U, V,E,Π, [L]) of Unique Games

as in Definition 2.1. Let L and γ be as in Conjecture 2.3. The PCP proof consists of k layers where
the bits in the i’th layer correspond to Vi × {−1, 1}L and Vi is a copy of the “right hand side” V
of the UG instance. For any vi ∈ Vi(= V ), the set of bits {vi} × {−1, 1}L correspond to the bits of
the long code of the label of vi. In a “correct” proof, the assignment to these bits corresponds to
a dictatorship function f(x) = xj where j ∈ [L] is the intended label of vi.

For a function g : {−1, 1}L → {−1, 1} and a permutation π : [L] → [L], let g ◦π−1 : {−1, 1}L →
{−1, 1} denote the function defined as g ◦ π−1(x) = g(xπ−1(1), . . . , xπ−1(L)). The PCP verifier
proceeds as in Figure 4.

1. Pick a random vertex u ∈ U .

2. Pick k random neighbors of u, namely v1, . . . , vk ∈ V .

3. Let g1, . . . , gk be the functions (supposed long codes) for v1 ∈ V1, . . . , vk ∈ Vk respectively.

4. Let f1, . . . , fk be the permuted versions of g1, . . . , gk respectively, i.e., fi = gi ◦ π−1
i ,

πi = πei=(u,vi) for 1 ≤ i ≤ k.

5. Run the dictatorship test as in Theorem 5.1 on (f1, . . . , fk).

Fig. 4: PCP Verifier
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5.2.1 Completeness

Let ℓ : U ∪ V → [L] be a labeling to the UG instance that satisfies 1 − γ fraction of its edges.
For every vi ∈ Vi(= V ), let gi be the long code of ℓ(vi), i.e. gi(x) = xℓ(vi). With probability at
least 1−kγ, all k edges (u, v1), . . . , (u, vk) are satisfied by the labeling and whenever this holds, the
dictatorship test accepts with probability 1− ǫ. The latter conclusion follows by observing that if
πi(ℓ(u)) = ℓ(vi) for every 1 ≤ i ≤ k, then in the PCP test above,

fi(x) = gi ◦ π−1
i (x) = gi(xπ−1

i (1), . . . , xπ−1
i (L)) = xπ−1

i (ℓ(vi))
= xℓ(u),

and hence f1, . . . , fk are identical dictatorship functions.

5.2.2 Soundness

Assume that the soundness of the UG instance is at most γ which is chosen to be sufficiently small
beforehand. Fix any layer i in the PCP proof and let gi,v be the supposed long code corresponding
to the vertex v (in the i’th layer). For any u ∈ U , define the function fi,u which is the average of
functions over the neighbors of u after appropriate permutation:

fi,u(x) = E
v:(u,v)∈E

[

gi,v ◦ π−1
(u,v)(x)

]

.

Note that fi,u are [−1, 1]-valued. By a standard argument, we may assume that for all but
√
γ

fraction of u ∈ U , the function fi,u has no coordinate that has degree 1/δ influence δ (referred to
as a low-influence function for brevity).

Otherwise, suppose that for
√
γ fraction of u, fi,u has a coordinate that has degree 1/δ influence

δ. For brevity, call any such coordinate simply as an influential coordinate. The set of all influential
coordinates has size bounded by 1/δ2. Assign this bounded set as the set of candidate labels for
u. For any influential coordinate j ∈ [L], since fi,u is an average of gi,v ◦ π−1

(u,v)
over neighbors of

u, by an averaging argument, for at least δ/2 fraction of the neighbors, π(u,v)(j) is influential for
gi,v. All influential coordinates of gi,v are assigned as the candidate labels for v. Now define a
(randomized) labeling that selects one label at random from the candidate set of each vertex. The
argument sketched implies that this labeling satisfies

√
γ · δ/2 · δ4 fraction of the UG edges. This

is a contradiction if the soundness γ was chosen to be sufficiently small to begin with.
Hence except with probability k

√
γ, the PCP verifier chooses u ∈ U such that the k functions

fi,u, one in each layer, are all low influence functions. Whenever this holds, the analysis of the

dictatorship test implies that the verifier accepts with probability at most |P−1(1)|
2k

+ ǫ. One only
needs to observe that for a fixed u, the verifier picks its random neighbor in each layer and hence
running the test on these random neighbors (one in each layer) has the same effect as running the
test on the (possibly non-boolean) averaged functions (again, one in each layer). Formally, fixing
u,

E
v1,...,vk

[

E
T
[P (g1,v1 ◦ π−1

1 (X1), . . . , gk,vk ◦ π−1
k (Xk))]

]

= E
T

[

P (E
v1
[g1,v1 ◦ π−1

1 (X1)], . . . , E
vk
[gk,vk ◦ π−1

k (Xk)])

]

= E
T
[P (f1,u(X1), . . . , fk,u(Xk))] .
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